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Abstract: Microwave-assisted syntheses of novel ring D-condensed 2-pyrazolines in the estrone 

series were efficiently carried out from steroidal ,-enones and hydrazine derivatives. The ring-

closure reaction of 16-benzylidene estrone 3-methyl ether with hydrazine in acetic acid resulted in 

a 2:1 diastereomeric mixture of two 16,17-cis fused pyrazolines, which is contrary to the former 

literature data for both stereoselectivity and product structure. However, the cyclization reactions 

of a mestranol-derived unsaturated ketone with different arylhydrazines in acidic ethanol furnished 

the heterocyclic products in good to excellent yields independently of the substituents present on 

the aromatic ring of the reagents applied. The MW conditions also permitted the ring-closure 

reaction with p-nitrophenylhydrazine which is unfavorable under conventional heating. Moreover, 

the transformations led to the heterocyclic compounds stereoselectively with a 16,17-cis ring 

junction without being susceptible to spontaneous and promoted oxidation to pyrazoles. 

Keywords: arylpyrazolines; heterocyclization; microwave; stereoselectivity; steroids 

 

1. Introduction 

Pyrazolines represent an attractive group of five-membered heterocyclic compounds as a 

consequence of their widespread natural occurrence and diverse pharmacological activities [1,2]. 

They can be found as structural units in a number of natural products, such as in vitamins, alkaloids 

and pigments [3]. Moreover, particular attention has been devoted to synthetic derivatives in view of 

their considerable biological effects and relative simplicity of preparation. Several compounds 

containing this moiety have been reported to display antifungal [4,5], antibacterial [6,7], 

antidepressant [8,9], anti-inflammatory [10,11], anticancer [12,13] and anticonvulsant [14,15] 

properties. They also serve as useful synthons in organic chemistry [16] and precursors for the 

synthesis of heteroaromatic pyrazoles [17]. 

In recent years growing interest has been focused on steroidal 2-pyrazolines and pyrazoles due 

to their antiandrogenic [18] or direct antiproliferative effect [1921] or their ability to inhibit one of 

the key regulatory enzymes of steroid biosynthesis [2225], which makes them potential candidates 

for the chemoprevention or treatment of cancerous diseases. Some further derivatives are also known 

to possess neuroprotective [26], antimicrobial [27] or insecticidal activity [28] (Figure 1). 

Although the incorporation of a ring-condensed pyrazoline moiety—most frequently by the 

reactions of steroidal enones with hydrazine derivatives—is relatively common in the androstane 

[1820,26,29] and cholestane series [28,30], surprisingly, only a few examples are to be found in the 

literature for the construction of such heterocycles on estrone-based molecules [21], which may also 
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possess valuable bioactivities. Since the use of MW irradiation can advantageously affect the outcome 

of various organic syntheses leading to different heterocycles both in product yield and 

chemoselectivity [31], this technique is often applied for the efficient access to both steroidal and non-

steroidal pyrazolines [29,32–34]. Considering the high optical purity of chiral steroids, 

heterocyclization reactions often proceed in a stereoselective manner to afford one of the possible 

isomers mainly or exclusively, making these reactions more attractive both from a chemical and 

pharmacological points of view. Steric effect caused by the angular methyl group on C-13 can also 

exert stereocontrol during the preparation of different ring D-fused analogs [35]. 

In view of the aforementioned reasons and as we are interested in developing stereoselective 

synthetic routes on steroid models, we now report a facile access to novel ring D-annelated 2-

pyrazolines in the estrone series from a mestranol-derived ,-enone with various aromatic 

hydrazines through the application of microwave (MW) irradiation. Our further goal was to 

investigate the stereoselectivity of the cyclization under acidic conditions, the electronic effect of the 

substituents of the arylhydrazines on the reaction rate, and the yields of the desired products. 

 

Figure 1. Previously synthesized biologically active steroidal 2-pyrazolines and pyrazoles. 
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2. Results and Discussion 

During preliminary experiments to synthesize novel ring D-fused pyrazolines in the estrone 

series, 16-benzylidene-estrone 3-methyl ether (2) [36], obtained from its precursor (1) by MW-assisted 

Claisen-Schmidt condensation, was reacted with hydrazine hydrate in acetic acid (Scheme 1). 

 

Scheme 1. Synthesis of ring D-fused 2-pyrazolines from 16-benzylidene-estrone 3-methyl ether 

Reagents and conditions: (i) Ph-CHO, KOH, EtOH, MW, 100 °C, 20 min; (ii) N2H4, AcOH, reflux, 4h 

or MW, 120 °C, 20 min. 

On the basis of relevant references about similar reactions in the androstane series [18,37], a 

highly diastereoselective ring-closure was expected to occur in this case, leading to a single isomer of 

5 despite the formation of two new chiral centers on C-16 and C-5’, with simultaneous acetylation of 

the heteroring-N(1’) by the solvent. Contrarily, the 1H-NMR spectrum of the crude product indicated 

that a mixture of two acetylated pyrazoline diastereomers was obtained in a ratio of 2:1 under both 

MW-irradiation at 120 °C for 20 min and conventional heating for 4 h. These findings are in direct 

contradiction to those by Amr et al. [18] and Romero-López et al. [37], who independently stated that 

only one of the four possible pyrazoline isomers of 5 was formed in a ca. 70% yield. It is important to 

note, however, that the results of the abovementioned authors are also in conflict with each other. 

Although they carried out the cyclization of steroidal 16-benzylidene-17-ones in the androstane series 

with hydrazine under almost identical conditions, the formation of a 16-H, 5’-H isomer of 5 was 

reported in [18], while that of a 16-H, 5’-H was established by the authors of [33]. This inconsistency 

may arise from the fact that the exact structure and stereo-orientation of the heteroring were 

elucidated only via determination of the vicinal coupling constant of protons at the newly-formed 

chirality centers and by the 1H-NMR chemical shift of 18-CH3 of the isolated compounds. According 

to our previous results, the cyclization of steroidal ,-enones with hydrazine hydrate in AcOH 

proceeds through a hydrazone intermediate, which undergoes intramolecular cyclization before 

being acetylated by the solvent. This is most likely to occur during the ring-closure of compound 2 

(Scheme 1). We also demonstrated earlier that merely the chemical shift of 18-CH3 is not indicative of 

the orientation of a ring D-fused pyrazoline heteroring [29]. Therefore, the mixture of the 

diastereomers was subjected to column chromatography and both compounds were obtained in 

almost pure form, sufficient for 1D and 2D NMR studies. Although the formation of two of the four 

possible stereoisomers of compound 5 could not be excluded on the basis of 1D NMR measurements, 
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2D NMR spectra clearly demonstrated that instead of 5, the isomers of pyrazoline 6 were obtained 

during the cyclization (Supplementary Material). Thus, the major compound 6a proved to be the 16-

H, 17-H compound while 6b was the 16-H,17-H diastereomer (Scheme 1). This can be explained 

by the tendency of 1-unsubstituted 2-pyrazolines, such as 4, to tautomerize under heating or in the 

presence of an acid [38], and the driving force of the tautomeric equilibrium to be shifted toward 4-

T3 is the extended conjugation, especially in product 6 after acetylation. A significant difference ( = 

0.37) between the chemical shift values of the equivalent protons of 18-CH3 was actually observed by 

comparing the 1H-NMR spectra of 6a and 6b. The shielding effect of the pyrazoline ring, which bends 

toward the angular Me group in 6a, results in an upfield shift of 18-CH3 ( = 0.63 ppm) compared 

with that of 6b ( = 1.01 ppm). However, the J(16-H,17-H) coupling constants, determined from the 

doublet of pyrazole 17-H for both compounds, did not differ substantially; 11,4 Hz for 6a and 9,2 Hz 

for 6b, but are in good agreement with the theoretical coupling values calculated according to the 

Karplus equation for the small (67°) dihedral angles (H17,C17,C16,H16). The 16,17-trans 

connection of the heteroring is precluded because of ring strain. 

Due to the low stereoselectivity of the above reaction and the difficult separability of the two 

resulting isomers, a more selective transformation had to be developed for the synthesis of ring D-

fused pyrazolines in the estrone series. For this purpose, mestranol (7), a clinically applied prodrug 

for oral contraception and as a component of menopausal hormone therapy, was used as starting 

material. In principle, compounds containing an -alkynylcarbinol moiety such as mestranol (7), can 

undergo Rupe rearrangement [39] to provide ,-unsaturated methyl ketones (13) in a single step 

under acidic conditions (Scheme 2). This reaction involves the protonation of a tertiary alcohol and 

E1-type dehydration to form a tertiary carbocation (8) that expels the -proton to give an enyne 

intermediate (12). Hydration of the acetylene moiety yields an unsaturated enol, which immediately 

tautomerizes to the more stable ,-unsaturated ketone (13) [40]. However, in case of Brønsted acid-

induced transformation of mestranol (7), the Rupe rearrangement is usually accompanied or often 

replaced by other competitive reactions, such as ring expansion/aromatization reaction leading to a 

D-homoaromatic compound (10) via a Wagner-Meerwein product (9) or Meyer-Schuster 

rearrangement resulting in an ,-enal (11) [41,42]. All of these side-reactions are attributable to the 

common propargylic cation intermediate (8), which can be stabilized in several directions, also taking 

into account the nearby location of the angular methyl group on C-13. 
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Scheme 2. Synthesis of enone 13 from mestranol (7): competitive routes under Brønsted acidic 

conditions (Method A) and a two-step E2-elimination/Markovnikov hydration sequence (Method B). 

Reagents and conditions: Method A: (i) H2SO4/SiO2, or p-toluenesulfonic acid (PTSA)/SiO2, toluene, 

reflux [40]; (ii) HCl, H2O, EtOAc, reflux [40]; (iii) HCOOH, reflux [41]; Method B: (i) POCl3, pyridine, 

0 °C → rt, 24 h; (ii) HCOOH, MW, 100 °C, 2 min. 

In order to avoid the formation of by-products in similar or even larger quantities than the 

desired compound 13, a two-step protocol had to be applied. Thus, mestranol (7) was reacted with 

phosphorus oxychloride (POCl3) in pyridine, acting as both base and solvent, under mild conditions 

for 24 h to afford enyne 12 via E2 process in good yield [43], together with a small amount of a 21-

chloroallenic derivative 14. The formation of this latter compound can be explained by a OH → Cl 

interchange at C-17 upon reaction of 7 with POCl3, followed by an allylic rearrangement. Similar 

polarities of 12 and 14 did not allow their complete separation by column chromatography, but the 

minor impurity did not interfere in the subsequent hydration reaction of 12, which was carried out 

in the presence of formic acid (98%) under MW heating at 100 °C for 2 min. The desired ,-enone 13 

was obtained in good yield (75%) referring to 7 in this two-step procedure. 

As a continuation, heterocyclization reaction of 13 with phenylhydrazine hydrochloride (15a) 

was carried out in acidic ethanol (Table 1, entry 1). The MW-promoted transformation at 100 °C for 

20 min led to the stereoselective formation of a single ring D-condensed pyrazoline isomer (17a) in 

high yield. When the temperature of the MW-induced reaction was elevated to 150 °C, the reaction 

time was reduced to 5 min to reach complete conversion, but side-reactions became conspicuous in 

this case. The supposed phenylhydrazone intermediate 16a of the ring-closure reaction could not be 

detected because of the use of a closed vessel, therefore its independent synthesis was attempted from 

13 with 15a in the presence of NaOAc by mildly heating the reactants in iPrOH. Although a less polar 

intermediate (presumably 16a) was observed by TLC, it could not be isolated due to its spontaneous 

cyclization to 17a under the given conditions. 

Table 1. Stereoselective syntheses of ring D-fused 1’-aryl-2’-pyrazolines in the estrone series. 
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Entry Ar-NH-NH2 Ar Product Yield 1 (%) 

1 15a Ph 17a 89 

2 15b 4-CH3-C6H4 17b 95 

3 15c 2-CH3-C6H4 17c 75 

4 15d 2,4-diCH3-C6H3 17d 80 

5 15e 4-F-C6H4 17e 88 

6 15f 4-Cl-C6H4 17f 81 

7 15g 4-Br-C6H4 17g 83 

8 15h 4-CN-C6H4 17h 85 

9 15i 4-NO2-C6H4 17i 80 

10 15j 4-MeO-C6H4 17j 82 

1 After purification by column chromatography. 

The ring-closure reaction via 1,4-addition of similar arylhydrazones under conventional heating 

was earlier observed to be affected significantly by the nature of the substituents: electron-donating 

groups facilitated, while electron-withdrawing substituents interfered with it by increasing or 

decreasing the electron density of the intramolecularly attacking internal NH. As a consequence, p-

nitrophenylhydrazones containing a strong electron-withdrawing NO2 group on their aromatic 

moiety did not cyclize to the corresponding pyrazolines [44]. Therefore, our next goal was to 

investigate whether the electronic demand of different substituents on the benzene ring of 15a may 

have an influence on the yields of the desired products under MW heating. For this reason, cyclization 

reactions of 13 were also performed with substituted arylhydrazine hydrochlorides 15bj, and the 

corresponding ring D-fused pyrazolines 17bj were obtained in good to excellent yields (Table 1, 

entries 210) even when p-nitrophenylhydrazine (15i) was used (entry 9). 

The structures of the synthesized steroidal heterocycles 17aj were confirmed by NMR and MS 

measurements. 2D NMR spectra were also recorded for the representative compound 17j. After 

identification of the related 1H and 13C signals with the help of HSQC and HMBC spectra, the 16,17-

cis orientation of the pyrazoline ring was determined on the basis of through-space (NOESY) 

correlations. Thus, spatial proximity was evidenced by cross-peaks between 16-H18-H3, 17-H18-

H3, 16-H17-H, 17-H12-H, 17-H3’-CH3, 16-H2″-H, 16-H15-H, 16-H15-H, (Figure 2a,b). The 

stereoselective ring-closure of the arylhydrazone intermediates can be attributed to the  orientation 

of the angular Me group on C-13, which permits the intramolecular attack of the NH nitrogen only 

from the opposite () direction. 
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(a) 

 
(b) 

Figure 2. (a) Partial NOESY spectrum of compound 17j; (b) NOESY correlations between protons 

observed for 17j. 

The synthesized ring D-fused pyrazolines were proved to be resistant against autooxidation to 

pyrazoles. In addition, dehydrogenation leading to a single heteroaromatic product by oxidizing 

agents (DDQ, I2, Jones reagent, manganese dioxide or iodobenzene diacetate) also failed. 

3. Materials and Methods 

3.1. General Information 

Reagents and materials were obtained from commercial suppliers (Sigma-Aldrich Corporation, 

St. Louis, MO, USA; Alfa Aesar, Haverhill, MA, USA or TCI, Tokyo, Japan) and used without 

purification. All solvents were distilled shortly prior to use. Reactions under MW-irradiation were 

carried out with a CEM Discover SP,instrument (CEM Corporation, Matthews, NC, USA) using 

dynamic control program with a maximum power of 200 W. Reactions were monitored by TLC on 
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Kieselgel-G (Si 254 F, Merck KGaA, Darmstadt, Germany) layers (0.25 mm thick); solvent systems 

(ss): (A) hexane/CH2Cl2 (10:90 v/v), (B) hexane/CH2Cl2 (20:80 v/v), (C) hexane/CH2Cl2 (80:20 v/v), (D) 

hexane/CH2Cl2 = 90:10, (E) EtOAc/CH2Cl2 (2:98 v/v) and (F) EtOAc/CH2Cl2 (4:96 v/v). The spots were 

detected by spraying with 5% phosphomolybdic acid in 50% aqueous phosphoric acid. Flash 

chromatography: Merck silica gel 60, 40–63 μm (Merck KGaA, Darmstadt, Germany). Melting points 

(Mps) were determined on an SRS Optimelt digital apparatus (Stanford Research Systems Inc, 

Sunnyvale, CA, USA) and are uncorrected. Elementary analysis data were determined with a 

PerkinElmer CHN analyzer model 2400 (PerkinElmer Inc, Waltham, MA, USA). NMR spectra were 

obtained at room temperature with a Bruker DRX 500 instrument (Bruker, Billerica, MA, USA). 

Chemical shifts are reported in ppm (δ scale), and coupling constants (J) in Hz. The multiplicities of 

the 1H resonance peaks are indicated as a singlet (s), a broad singlet (bs), a doublet (d), a double 

doublet (dd), a triplet (t), a triplet of doublets (td) or a multiplet (m). 13C NMR spectra are 1H-

decoupled. For the determination of multiplicities, the J-MOD pulse sequence was used. Automated 

flow injection analyses were performed by using an HPLC/MSD system. The system comprised an 

Agilent 1100 micro vacuum degasser (Agilent Technologies, Santa Clara, CA, USA) a quaternary 

pump, a micro-well plate autoinjector and a 1946A MSD equipped with an electrospray ion source 

(ESI) operated in positive ion mode. The ESI parameters were as follows: nebulizing gas N2, at 35 psi; 

drying gas N2, at 350 °C and 12 L/min; capillary voltage 3000 V; fragmentor voltage 70 V. The MSD 

was operated in scan mode with a mass range of m/z 60−620. Samples (0.2 μL) with automated needle 

wash were injected directly into the solvent flow (0.3 mL/min) of CH3CN/H2O 70:30 (v/v) 

supplemented with 0.1% formic acid. The system was controlled by Agilent LC/MSD Chemstation 

software (C.01.08, Agilent Technologies Inc, Santa Clara, CA, USA). 

3.2. Synthetic Procedures 

3.2.1. MW-assisted Synthesis of 3-methoxy-16-benzylidene-estra-1,3,5(10)-triene-17-one (2) 

Estrone 3-methyl ether (427 mg, 1.50 mmol) was dissolved in EtOH (6 mL), then KOH (28 mg, 

0.5 mmol) and benzaldehyde (0.19 mL, 1,85 mmol) were added to the solution. The mixture was 

irradiated in a closed vessel at 100 °C for 20 min. After completion of the reaction, the mixture was 

poured into water (20 mL), and extracted with CH2Cl2 (2 × 25 mL). The combined organic phases 

were dried with anhydrous Na2SO4 and concentrated in vacuo. The crude product was purified by 

column chromatography with hexane/CH2Cl2 = 15:85. Yield: 497 mg (white solid); Mp 169–171 °C; Rf = 

0.52 (ss B). Anal. Calcd. for C26H28O2 (372.51): C, 83.83; H, 7.58. Found: C, 83.70; H, 7.68. 1H-NMR (CDCl3, 

500 MHz): δ 1.01 (s, 3H, 18-H3), 1.48 (m, 1H), 1.55–1.77 (overlapping m, 4H), 2.11 (m, 2H), 2.32 (m, 1H), 

2,45 (m, 1H), 2.55 (m, 1H), 2.91–3.03 (m, 3H, 6-H2 and 1H), 3.79 (s, 3H, 3-OMe), 6.67 (m, 1H, 4-H), 6.75 

(m, 1H, 2-H), 7.23 (m, 1H, 1-H), 7.39 (m, 1H, 4″-H), 7.43 (m, 2H, 3″-H and 5″-H), 7.49 (bs, 1H, CH=), 7.58 

(m, 2H, 2″-H and 6″-H); 13C-NMR (CDCl3, 125 MHz): δ 14.5 (C-18), 26.0 (CH2), 26.8 (CH2), 29.1 (CH2), 

29.6 (C-6), 31.7 (CH2), 38.0 (C-8), 44.0 (C-9), 47.8 (C-13), 48.6 (C-14), 55.2 (3-OMe), 111.6 (C-2), 113.9 (C-

4), 126.2 (C-1), 128.6 (2C, C-3″ and C-5″), 129.2 (C-4″), 130.3 (2C, C-2″ and C-6″), 132.0 (C-10), 133.1 (CH=), 

135.6 and 136.0 (C-1″ and C-16), 137.6 (C-5), 157.6 (C-3), 209.5 (C-17); ESI-MS 373 [M + H]+. 

3.2.2. Cyclization of 3-methoxy-16-benzylidene-estra-1,3,5(10)-triene-17-one (2) with hydrazine 

hydrate 

To a solution of 2 (343 mg, 0.8 mmol) in acetic acid (5 mL), hydrazine hydrate (0.4 mL, 8.0 mmol) 

was added and the mixture was irradiated in a closed vessel at 120 °C for 20 min, or stirred at reflux 

temperature for 4 h. After completion of the reaction, the mixture was poured into water (20 mL), 

neutralized by the addition of NaHCO3 and extracted with EtOAc (2 × 15 mL). The combined organic 

phases were dried with anhydrous Na2SO4 and concentrated in vacuo. The crude product was 

purified by column chromatography with EtOAc/CH2Cl2 = 2:98, the minor product (6b) was eluated 

first. The ratio of the two 16,17-cis fused pyrazolines (6a and 6b) was determined by 1H-NMR 

measurement of the crude product. Overall yield of 6a and 6b: 261 mg (white solid). 
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(16S,17R)-3-Methoxy-1′-acetyl-3′-phenyl-2′-pyrazolino[4 ′,5′:16,17]-estra-1,3,5(10)-triene (6a): Rf = 0.46 

(ss F). Anal. Calcd. for C28H32N2O2 (428.58): C, 78.47; H, 7.53. Found: C, 78.35; H, 7.41. 1H-NMR (CDCl3, 

500 MHz): δ 0.63 (s, 3H, 18-H3), 1.42–1.57 (overlapping m, 5H, 7-H, 11-H, 8-H, 15-H and 14-H), 

1.73–1.65 (td, J = 13.2, J = 3.4 Hz, 1H, 12-H), 1.92 (m, 1H, 7-H), 2.27 (m, 1H, 9-H), 2.33 (m, 1H, 11-

H), 2.39 (m, 1H, 15-H), 2.40 (s, 3H, Ac-CH3), 2.43 (m, 1H, 12-H), 2.83 (m, 2H, 6-H2), 3.76 (s, 3H, 3-

OMe), 4.03 (m, 1H, 16-H), 4.59 (d, 1H, J = 11.4 Hz, 17-H), 6.61 (d, 1H, J = 2.4 Hz, 4-H), 6.71 (dd, 1H, J 

= 8.5 Hz, J = 2.4 Hz, 2-H), 7.21 (d, 1H, J = 8.5 Hz, 1-H), 7.41 (m, 3H, 3″-H, 4″-H and 5″-H), 7.76 (m, 2H, 2″-

H and 6″-H); 13C-NMR (CDCl3, 125 MHz): δ 12.4 (C-18), 21.6 (Ac-CH3), 26.6 (C-11), 28.0 (C-7), 29.7 (C-

6), 30.7 (C-15), 38.6 (C-8), 39.0 (C-12), 43.4 (C-9), 46.3 (C-13), 49.4 (C-16), 53.4 (C-14), 55.2 (3-OMe), 72.2 

(C-17), 111.4 (C-2), 113.8 (C-4), 126.4 (C-1), 126.9 (2C, C-2″ and C-6″), 128.6 (2C, C-3″ and C-5″), 129.9 (C-

4″), 131.1 (C-1″), 132.3 (C-10), 137.5 (C-5), 157.5 (2C, C-3 and C-3′), 169.4 (Ac-C); ESI-MS 429 [M + H]+. 

(16R,17S)-3-Methoxy-1′-acetyl-3′-phenyl-2′-pyrazolino[4′,5′:16,17]-estra-1,3,5(10)-triene (6b) Rf = 0.46 (ss 

F). Anal. Calcd. for C28H32N2O2 (428.58): C, 78.47; H, 7.53. Found: C, 78.60; H, 7.62. 1H-NMR (CDCl3, 500 

MHz): δ 1.00 (s, 3H, 18-H3), 1.22 (m, 1H, 14-H), 1.30 (m, 1H, 7-H), 1.44 (m, 1H, 8-H), 1.47–1.55 

(overlapping m, 2H, 12-H and 11-H), 1.76 (m, 1H, 7-H), 1.83 (m, 1H, 15-H), 1.93 (m, 1H, 15-H), 

2.08 (m, 1H, 12-H), 2.16 (m, 1H, 9-H), 2.33 (m, 1H, 11-H), 2,43 (s, 3H, Ac-CH3), 2.75–2.87 (overlapping 

m, 2H, 6-H2), 3.76 (s, 3H, 3-OMe), 4.12 (t, 1H, J = 9.1 Hz, 16-H), 4.56 (d, 1H, J = 9.1 Hz, 17-H), 6.59 (d, 

1H, J = 2.4 Hz, 4-H), 6.71 (dd, 1H, J = 8.6 Hz, J = 2.4 Hz, 2-H), 7.20 (d, 1H, J = 8.6 Hz, 1-H), 7.43 (m, 3H, 

3″-H, 4″-H and 5″-H), 7.77 (m, 2H, 2″-H and 6″-H); 13C NMR (CDCl3, 125 MHz): δ 18.5 (C-18), 22.3 (Ac-

CH3), 26.3 (C-11), 28.1 (C-7), 29.6 (C-6), 31.2 (C-15), 34.0 (C-12), 38.4 (C-8), 43.0 (C-9), 48.2 (C-14), 48.3 (C-

13), 48.4 (C-16), 55.2 (3-OMe), 71.6 (C-17), 111.4 (C-2), 113.7 (C-4), 126.4 (C-1), 126.9 (2C, C-2″ and C-6″), 

128.7 (2C,C-3″ and C-5″), 129.9 (C-4″), 131.0 (C-1″), 132.4 (C-10), 137.6 (C-5), 157.3 and 157.4 (C-3 and C-

3′), 171.3 (Ac-C); ESI-MS 429 [M + H]+. 

3.2.3. E2-type dehydration of mestranol to 17-ethinyl-3-methoxyestra-1,3,5(10),16-tetraene 

intermediate 12 by Method B 

Mestranol (2.48 g, 8.0 mmol) was dissolved in pyridine (30 mL), and POCl3 (7 mL) was added 

dropwise at 0 °C under vigorous stirring. After addition of POCl3 (approx. 10 min), the reaction 

mixture was allowed to warm to room temperature and after 24 h it was poured into a mixture of ice 

and concentrated H2SO4 (10 mL), and extracted with EtOAc (3 × 20 mL). The combined organic phases 

were washed with water (30 mL) and saturated NaHCO3 solution (2 × 30 mL), then dried with 

anhydrous Na2SO4 and evaporated in vacuo. The resulting crude product was purified by flash 

chromatography with CH2Cl2/hexane = 20:80 to give enyne 12 [43] with compound 14 as minor 

impurity. 

17-(2-Chloroethenylidene)-3-methoxyestra-1,3,5(10)-triene (14) Rf = 0.31 (ss C). Anal. Calcd. for C21H25ClO 

(328.88): C, 76.69; H, 7.66. Found: C, 76.60; H, 7.77. 1H-NMR (CDCl3, 500 MHz): δ 0.93 (s, 3H, 18-H3), 

1.27–1.71 (overlapping m, 7H), 1.93 (m, 2H), 2.14 (m, 1H), 2.28 (m, 1H), 2.39 (m, 1H), 2.62 (m, 1H), 

2.89 (m, 2H, 6-H2), 3.79 (s, 3H, 3-OMe), 6.03 (s, 1H, 20-H), 6.65 (m, 1H, 4-H), 6.73 (m, 1H, 2-H), 7.23 

(m, 1H, 1-H); 13C-NMR (CDCl3, 125 MHz): δ 18.1 (C-18), 24.3 (CH2), 26.5 (CH2), 27.6 (CH2), 27.9 (CH2), 

29.8 (CH2), 35.6 (CH2), 38.7 (C-8), 43.7 (C-9), 46.5 (C-13), 53.8 (C-14), 55.2 (3-OMe), 89.2 (C-20), 111.5 

(C-2), 113.8 (C-4), 125.4 (C-17), 126.3 (C-1), 132.4 (C-10), 137.8 (C-5), 157.5 (C-3), 193.3 (C-19); ESI-MS 

329 [M + H]+. 

3.2.4. MW-Assisted Syntheses of 3-methoxy-19-norpregna-1,3,5(10),16-tetraene-20-one (13) 

Enyne 12 (2.45 g, contaminated with a small amount of 14) was dissolved in formic acid (25 mL), 

and the solution was irradiated in a closed vessel at 100 °C for 2 min. After completion of the reaction, 

the mixture was poured into water (100 mL), and extracted with EtOAc (3 × 20 mL). The combined 

organic phases were washed with water (30 mL), followed by saturated NaHCO3 solution (30 mL), 

then dried with anhydrous Na2SO4 and evaporated in vacuo. The crude product was purified by 

column chromatography with hexane/CH2Cl2 = 70:30. Mp 185–187 °C; Rf = 0.35 (ss D). Anal. Calcd. for 

C21H26O2 (310.44): C, 81.25; H, 8.44. Found: C, 81.36; H, 8.52. 1H-NMR (CDCl3, 500 MHz): δ 0.92 (s, 3H, 
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18-H3), 1.46 (m, 1H), 1.50-1.69 (overlapping m, 4H), 1.92 (m, 1H), 2.14 (m, 1H), 2.23–2.28 (overlapping 

m, 2H), 2.29 (s, 3H, 21-CH3), 2.34 (m, 1H), 2.41 (m, 1H), 2.52 (m, 1H), 2.89 (m, 2H, 6-H2), 3.78 (s, 3H, 3-

OMe), 6.64 (d, 1H, J = 2.3 Hz, 4-H), 6.72 (dd, 1H, J = 8.6 Hz, J = 2.3 Hz, 2-H), 6.74 (m, 1H, 16-H), 7.21 (d, 

1H, J = 8.6 Hz, 1-H); 13C-NMR (CDCl3, 125 MHz): δ 15.9 (C-18), 26.4 (CH2), 27.1 (C-20), 27.7 (CH2), 29.6 

(CH2), 31.9 (CH2), 34.7 (CH2), 36.9 (CH), 44.2 (CH), 46.5 (C-13), 55.2 (3-OMe), 55.5 (CH), 111.3 (C-2), 113.8 

(C-4), 126.1 (C-1), 132.7 (C-10), 137.7 (C-5), 144.3 (C-16), 155.5 (C-17), 157.4 (C-3), 196.8 (C-19); ESI-MS 

311 [M + H]+. 

3.2.5. General Procedure for the Synthesis of Ring D-condensed Pyrazolines 17a–j under MW 

Irradiation 

To a solution of 13 (248 mg, 0.80 mmol) in EtOH (5 mL), PTSA monohydrate (152 mg, 0.80 mmol) 

and (substituted) phenylhydrazine hydrochloride (15a–j, 1.10 mmol) were added, and the mixture 

was irradiated in a closed vessel at 100 °C for 20 min. After completion of the reaction, the mixture 

was poured into water (20 mL), neutralized by the addition of NaHCO3 and extracted with CH2Cl2 

(2 × 15 mL). The combined organic phases were dried with anhydrous Na2SO4 and concentrated in 

vacuo. The crude product was purified by column chromatography with hexane/CH2Cl2 = 50:50. 

(16R,17S)-3-Methoxy-3′-methyl-1′-phenyl-2′-pyrazolino[4′,5′:17,16]estra-1,3,5(10)-triene (17a) 

According to the general procedure, phenylhydrazine hydrochloride (15a, 159 mg) was used. Yield: 

285 mg (white solid); Mp 221–223 °C; Rf = 0.58 (ss A). Anal. Calcd. for C27H32N2O (400.57): C, 80.96; 

H, 8.05. Found: C, 80.81; H, 8.16. 1H-NMR (CDCl3, 500 MHz): δ 1.00 (s, 3H, 18-H3), 1.34–1.52 

(overlapping m, 3H, 7α-H, 8β-H and 14α-H), 1.58 (m, 1H, 11β-H), 1.68–1.78 (overlapping m, 2H, 12α-

H and 15-H), 1.85 (m, 1H, 7-H), 1.99 (m, 1H, 12-H), 2.12 (s + m, 4H, 3′-CH3 and 15α-H), 2.23 (m, 

1H, 9α-H), 2.39 (m, 1H, 11α-H), 2.84 (m, 2H, 6-H2), 3.28 (d, 1H, J = 10.0 Hz, 17β-H), 3.78 (s, 3H, 3-

OMe), 4.55 (dd, 1H, J = 10.0 Hz, J = 5.9 Hz, 16β-H), 6.62 (d, 1H, J = 2.3 Hz, 4-H), 6.72 (dd, 1H, J = 8.6 

Hz, J = 2.3 Hz, 2-H), 6.78 (t-like m, 1H, 4″-H), 7.01 (d, 2H, J = 8.4 Hz, 2″-H and 6″-H), 7.20 (d, 1H, J = 

8.6 Hz, 1-H), 7.25 (t-like m, 2H, 3″-H and 5″-H); 13C-NMR (CDCl3, 125 MHz): δ 17.1 (3′-CH3), 21.5 (C-

18), 26.5 (C-11), 28.1 (C-7), 29.7 (C-6), 33.5 (C-15), 36.0 (C-12), 38.5 (C-8), 43.3 (C-9), 46.9 (C-13), 49.6 

(C-14), 55.2 (3-OMe), 64.0 (C-16), 66.4 (C-17), 111.5 (C-2), 111.7 (2C, C-2″ and C-6″), 113.7 (C-4), 117.7 

(C-4″), 126.2 (C-1), 129.0 (2C, C-3″ and C-5″), 132.2 (C-10), 137.9 (C-5), 144.9 (C-1″), 149.3 (C-3′), 157.5 

(C-3); ESI-MS 401 [M + H]+.αβ 

(16R,17S)-3-Methoxy-3′-methyl-1′-(4″-tolyl)-2′-pyrazolino[4′,5′:17,16]estra-1,3,5(10)-triene (17b). 

According to the general procedure, 4-tolylhydrazine hydrochloride (15b, 174 mg) was used. Yield: 

315 mg (white solid); Mp 246–248 °C; Rf = 0.49 (ss B). Anal. Calcd. for C28H34N2O (414.59): C, 81.12; H, 

8.27. Found: C, 81.03; H, 8.18. 1H-NMR (CDCl3, 500 MHz): δ 0.99 (s, 3H, 18-H3), 1.36 (m, 1H, 7α-H), 

1.42-1.51 (overlapping m, 2H, 8β-H and 14α-H), 1.57 (m, 1H, 11β-H), 1.68-1.76 (overlapping m, 2H, 

12α-H and 15β-H), 1.84 (m, 1H, 7β-H), 1.98 (m, 1H, 12β-H), 2.11 (s + m, 4H, 3′-CH3 and 15α-H), 2.23 

(m, 1H, 9α-H), 2.28 (s, 3H, 4″-CH3), 2.38 (m, 1H, 11α-H), 2.83 (m, 2H, 6-H2), 3.26 (d, 1H, J = 10.0 Hz, 

17β-H), 3.78 (s, 3H, 3-OMe), 4.53 (dd, 1H, J = 10.0 Hz, J = 5.8 Hz, 16β-H), 6.63 (d, 1H, J = 2.6 Hz, 4-H), 

6.72 (dd, 1H, J = 8.3 Hz, J = 2.6 Hz, 2-H), 6.92 (d, 2H, J = 8.2 Hz, 3″-H and 5″-H), 7.08 (d, 2H, J = 8.2 Hz, 

2″-H and 6″-H), 7.20 (d, 1H, J = 8.3 Hz, 1-H); 13C-NMR (CDCl3, 125 MHz): δ 17.1 (3′-CH3), 20.4 (4″-

CH3), 21.5 (C-18), 26.5 (C-11), 28.1 (C-7), 29.8 (C-6), 33.6 (C-15), 36.0 (C-12), 38.5 (C-8), 43.3 (C-9), 46.9 

(C-13), 49.6 (C-14), 55.2 (3-OMe), 64.4 (C-16), 66.4 (C-17), 111.5 (C-2), 111.8 (2C, C-2″ and C-6″), 113.8 

(C-4), 126.2 (C-1), 126.9 (C-4″), 129.6 (2C, C-3″ and C-5″), 132.3 (C-10), 137.9 (C-5), 142.9 (C-1″), 148.8 

(C-3′), 157.5 (C-3); ESI-MS 415 [M + H]+. 

(16R,17S)-3-Methoxy-3′-methyl-1′-(2″-tolyl)-2′-pyrazolino[4′,5′:17,16]estra-1,3,5(10)-triene (17c) 

According to the general procedure, 2-tolylhydrazine hydrochloride (15c, 174 mg) was used. Yield: 249 

mg (white solid); Mp 73–76 °C; Rf = 0.61 (ss E). Anal. Calcd. for C28H34N2O (414.59): C, 81.12; H, 8.27. 

Found: C, 81.26; H, 8.39. 1H-NMR (CDCl3, 500 MHz): δ 0.96 (s, 3H, 18-H3), 1.20–1.42 (overlapping m, 

3H), 1.47 (m, 1H), 1.56 (m, 1H), 1.67–1.77 (overlapping m, 3H), 1.96 (m, 1H), 2.11 (s, 3H, 3′-CH3), 2.22 (m, 

1H), 2.32 (s, 3H, 2″-CH3), 2.38 (m, 1H), 2.78 (m, 2H, 6-H2), 3.24 (d, 1H, J = 9.9 Hz, 17-H), 3.77 (s, 3H, 3-

OMe), 4.77 (dd, 1H, J = 9.9 Hz, J = 6.3 Hz, 16-H), 6.61 (d, 1H, J = 2.6 Hz, 4-H), 6.72 (dd, 1H, J = 8.6 Hz, J 
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= 2.6 Hz, 2-H), 6.95 (m, 1H), 7.09 (m, 1H), 7.14 (overlapping m, 2H), 7.19 (d, 1H, J = 8.6 Hz, 1-H); 13C-

NMR (CDCl3, 125 MHz): δ 17.0 (3′-CH3), 20.2 (2″-CH3), 21.5 (C-18), 26.4 (C-11), 27.9 (C-7), 29.6 (C-6), 32.3 

(C-15), 35.7 (C-12), 38.5 (C-8), 43.3 (C-9), 46.7 (C-13), 49.9 (C-14), 55.2 (3-OMe), 65.5 (C-16), 66.4 (C-17), 

111.5 (C-2), 113.7 (C-4), 120.0 (CH), 122.5 (C-H), 126.1 (C-H), 126.2 (C-1), 129.3 (C-2″), 131.1 (C-H), 132.4 

(C-10), 137.8 (C-5), 144.6 (C-1″), 149.8 (C-3′), 157.5 (C-3); ESI-MS 415 [M + H]+. 

(16R,17S)-3-Methoxy-3′-methyl-1′-(2″,4″-dimethylphenyl)-2′-pyrazolino[4′,5′:17,16]estra-1,3,5(10)-triene 

(17d) 

According to the general procedure, 2,4-dimethylphenylhydrazine hydrochloride (15d, 190 mg) was 

used. Yield: 274 mg (white solid); Mp 214–216 °C; Rf = 0.55 (ss E). Anal. Calcd. for C29H36N2O (428.62): 

C, 81.27; H, 8.47. Found: C, 81.37; H, 8.38. 1H-NMR (CDCl3, 500 MHz): δ 0.95 (s, 3H, 18-H3), 1.23-1.47 

(overlapping m, 4H), 1.56 (m, 1H), 1.68–1.78 (overlapping m, 3H), 1.96 (m, 1H), 2.11 (s, 3H, 3′-CH3), 2.22 

(m, 1H), 2.28 (s, 6H, 2″-CH3 and 4″-CH3), 2.38 (m, 1H), 2.79 (m, 2H, 6-H2), 3.23 (d, 1H, J = 9.7 Hz, 17-H), 

3.77 (s, 3H, 3-OMe), 4.70 (dd, 1H, J = 9.7 Hz, J = 6.3 Hz, 16-H), 6.61 (d, 1H, J = 2.2 Hz, 4-H), 6.72 (dd, 1H, 

J = 8.5 Hz, J = 2.2 Hz, 2-H), 6.90-7.02 (overlapping m, 3H, 3″-H, 5″-H and 6″-H), 7.20 (d, 1H, J = 8.5 Hz, 1-

H); 13C-NMR (CDCl3, 125 MHz): δ 17.0 (3′-CH3), 19.8 (2″-CH3), 20.7 (4″-CH3), 21.5 (C-18), 26.4 (C-11), 28.0 

(C-7), 29.6 (C-6), 32.3 (C-15), 35.7 (C-12), 38.5 (C-8), 43.4 (C-9), 46.7 (C-13), 49.9 (C-14), 55.2 (3-OMe), 66.0 

(C-16), 66.5 (C-17), 111.4 (C-2), 113.7 (C-4), 120.7 (C-6″), 126.1 (C-1), 126.8 (C-5″), 129.8 (C-2″), 131.7 (C-

3″), 132.3 (C-4″), 132.4 (C-10), 137.9 (C-5), 142.4 (C-1″), 149.6 (C-3′), 157.5 (C-3); ESI-MS 429 [M + H]+. 

(16R,17S)-3-Methoxy-3′-methyl-1′-(4″-fluorophenyl)-2′-pyrazolino[4′,5′:17,16]estra-1,3,5(10)-triene (17e) 

According to the general procedure, 4-fluorophenylhydrazine hydrochloride (15e, 179 mg) was used. 

Yield: 295 mg (white solid); Mp 193–195 °C; Rf = 0.57 (ss B). Anal. Calcd. for C27H31FN2O (418.56): C, 

77.48; H, 7.47. Found: C, 77.39; H, 7.59. 1H-NMR (CDCl3, 500 MHz): δ 0.99 (s, 3H, 18-H3), 1.35–1.51 

(overlapping m, 3H, 7-H, 8-H and 14-H), 1.57 (m, 11-H), 1.67–1.77 (overlapping m, 2H, 12-H and 

15-H), 1.85 (m, 1H, 7-H), 1.98 (m, 1H, 12-H), 2.07 (dd, 1H, J = 12.4 Hz, J = 5.3 Hz, 15-H), 2.10 (s, 3H, 

3′-CH3), 2.23 (m, 1H, 9-H), 2.38 (m, 1H, 11-H), 2.84 (m, 2H, 6-H2), 3.27 (d, 1H, J = 10.1 Hz, 17-H), 3.78 

(s, 3H, 3-OMe), 4.49 (dd, 1H, J = 10.1 Hz, J = 5.9 Hz, 16-H), 6.63 (d, 1H, J = 2.5 Hz, 4-H), 6.72 (dd, 1H, J 

= 8.6 Hz, J = 2.5 Hz, 2-H), 6.91–6.98 (m, 4H, 2″-H, 6″-H and 3″-H, 5″-H), 7.20 (d, 1H, J = 8.6 Hz, 1-H); 13C-

NMR (CDCl3, 125 MHz): δ 17.0 (3′-CH3), 21.5 (C-18), 26.5 (C-11), 28.1 (C-7), 29.7 (C-6), 33.6 (C-15), 36.1 

(C-12), 38.5 (C-8), 43.3 (C-9), 46.8 (C-13), 49.7 (C-14), 55.2 (3-OMe), 64.7 (C-16), 66.7 (C-17), 111.5 (C-2), 

112.6 (2C, J = 7.1 Hz, C-2″ and C-6″), 113.8 (C-4), 115.5 (2C, J = 22.2 Hz, C-3″ and C-5″), 126.2 (C-1), 132.2 

(C-10), 137.8 (C-5), 141.8 (C-1″), 149.4 (C-3′), 156.1 (J = 235.7 Hz, C-4″), 157.5 (C-3); ESI-MS 419 [M + H]+. 

(16R,17S)-3-Methoxy-3′-methyl-1′-(4″-chlorophenyl)-2′-pyrazolino[4′,5′:17,16]estra-1,3,5(10)-triene (17f) 

According to the general procedure, 4-chlorophenylhydrazine hydrochloride (15f, 197 mg) was used. 

Yield: 282 mg (white solid); Mp 245–248 °C; Rf = 0.64 (ss B). Anal. Calcd. for C27H31ClN2O (435.01): C, 

74.55; H, 7.18. Found: C, 74.69; H, 7.28. 1H-NMR (CDCl3, 500 MHz): δ 0.99 (s, 3H, 18-H3), 1.34–1.51 

(overlapping m, 3H, 7-H, 8-H, 14-H), 1.57 (m, 1H, 11-H), 1.66-1.77 (overlapping m, 2H, 12-H, 15-

H), 1.84 (m, 1H, 7-H), 1.99 (m, 1H, 12-H), 2.06 (dd, 1H, J = 12.5 Hz, J = 5.6 Hz, 15-H), 2.11 (s, 3H, 3′-

CH3), 2.23 (m, 1H, 9-H), 2.38 (m, 1H, 11-H), 2.84 (m, 2H, 6-H2), 3.28 (d, 1H, J = 10.0 Hz, 17-H), 3.78 

(s, 3H, 3-OMe), 4.50 (dd, 1H, J = 10.0 Hz, J = 5.9 Hz, 16-H), 6.63 (d, 1H, J = 2.6 Hz, 4-H), 6.72 (dd, 1H, J 

= 8.6 Hz, J = 2.6 Hz, 2-H), 6.92 (d, 2H, J = 8.8 Hz, 2″-H and 6″-H), 7.19 (d, 1H, J = 8.6 Hz, 1-H and d, 2H, J 

= 8.8 Hz, 3″-H and 5″-H); 13C NMR (CDCl3, 125 MHz): δ 17.0 (3′-CH3), 21.4 (C-18), 26.4 (C-11), 28.0 (C-

7), 29.7 (C-6), 33.4 (C-15), 36.0 (C-12), 38.5 (C-8), 43.3 (C-9), 46.9 (C-13), 49.6 (C-14), 55.2 (3-OMe), 64.0 (C-

16), 66.6 (C-17), 111.5 (C-2), 112.9 (2C, C-2″ and C-6″), 113.7 (C-4), 122.4 (C-4″), 126.2 (C-1), 128.8 (2C, C-

3″ and C-5″), 132.2 (C-10), 137.8 (C-5), 143.4 (C-1″), 149.9 (C-3′), 157.5 (C-3); ESI-MS 436 [M + H]+. 

(16R,17S)-3-Methoxy-3′-methyl-1′-(4″-bromophenyl)-2′-pyrazolino[4′,5′:17,16]estra-1,3,5(10)-triene (17g) 

According to the general procedure, 4-bromophenylhydrazine hydrochloride (15g, 246 mg) was used. 

Yield: 318 mg (white solid); Mp 231–232 °C; Rf = 0.64 (ss B). Anal. Calcd. for C27H31BrN2O (479.46): C, 

67.64; H, 6.52. Found: C, 67.75; H, 6.39. 1H-NMR (CDCl3, 500 MHz): δ 0.99 (s, 3H, 18-H3), 1.33–1.50 

(overlapping m, 3H, 7-H, 8-H, 14α-H), 1.57 (m, 1H, 11β-H), 1.67–1.77 (overlapping m, 2H, 12-H, 

15-H), 1.84 (m, 1H), 1.98 (m, 1H, 12-H), 2.06 (dd, 1H, J = 12.6 Hz, J = 5.7 Hz, 15-H), 2.10 (s, 3H, 3′-
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CH3), 2.22 (m, 1H, 9-H), 2.38 (m, 1H, 11-H), 2.83 (m, 2H, 6-H2), 3.28 (d, 1H, J = 10.0 Hz, 17-H), 3.78 

(s, 3H, 3-OMe), 4.49 (dd, 1H, J = 10.0 Hz, J = 5.9 Hz, 16-H), 6.63 (d, 1H, J = 2.7 Hz, 4-H), 6.72 (dd, 1H, J 

= 8.6 Hz, J = 2.7 Hz, 2-H), 6.87 (d, 2H, J = 9.0 Hz, 2″-H and 6″-H), 7.19 (d, 1H, J = 8.6 Hz, 1-H), 7.32 (d, 2H, 

J = 9.0 Hz, 3″-H and 5″-H); 13C-NMR (CDCl3, 125 MHz): δ 17.0 (3′-CH3), 21.5 (C-18), 26.5 (C-11), 28.1 (C-

7), 29.7 (C-6), 33.3 (C-15), 36.0 (C-12), 38.5 (C-8), 43.3 (C-9), 46.9 (C-13), 49.6 (C-14), 55.2 (3-OMe), 63.9 (C-

16), 66.6 (C-17), 109.6 (C-4″), 111.5 (C-2), 113.4 (2C, C-2″ and C-6″), 113.8 (C-4), 126.2 (C-1), 131.7 (2C, C-

3″ and C-5″), 132.2 (C-10), 137.8 (C-5), 143.7 (C-1″), 150.0 (C-3′), 157.6 (C-3); ESI-MS 480 [M + H]+. 

(16R,17S)-3-Methoxy-3′-methyl-1′-(4″-cyanophenyl)-2′-pyrazolino[4′,5′:17,16]estra-1,3,5(10)-triene (17h) 

According to the general procedure, 4-cyanophenylhydrazine hydrochloride (15h, 187 mg) was used. 

Yield: 289 mg (white solid); Mp 214–216 °C; Rf = 0.64 (ss E). Anal. Calcd. for C28H31N3O (425.58): C, 79.02; 

H, 7.34. Found: C, 79.12; H, 7.20. 1H-NMR (CDCl3, 500 MHz): δ 1.01 (s, 3H, 18-H3), 1.32–1.41 (overlapping 

m, 2H, 7-H and 14-H), 1.47 (m, 1H, 8-H), 1.58 (m, 1H, 11-H), 1.69 (m, 1H, 12-H), 1.77 (m, 1H, 15-

H), 1.83 (m, 1H, 7-H), 1.98–2.08 (overlapping m, 2H, 12-H and 15-H), 2.14 (s, 3H, 3′-CH3), 2.22 (m, 

1H, 9-H), 2.39 (m, 1H, 11-H), 2.83 (m, 2H, 6-H2), 3.33 (d, 1H, J = 9.6 Hz, 17-H), 3.77 (s, 3H, 3-OMe), 

4.58 (dd, 1H, J = 9.6 Hz, J = 6.3 Hz, 16-H), 6.62 (d, 1H, J = 2.2 Hz, 4-H), 6.72 (dd, 1H, J = 8.6 Hz, J = 2.2 

Hz, 2-H), 6.96 (d, 2H, J = 8.5 Hz, 2″-H and 6″-H), 7.19 (d, 1H, J = 8.6 Hz, 1-H), 7.48 (d, 2H, J = 8.5 Hz, 3″-

H and 5″-H); 13C-NMR (CDCl3, 125 MHz): δ 17.1 (3′-CH3), 21.4 (C-18), 26.4 (C-11), 28.1 (C-7), 29.6 (C-6), 

33.1 (C-15), 35.9 (C-12), 38.5 (C-8), 43.2 (C-9), 46.9 (C-13), 49.5 (C-14), 55.2 (3-OMe), 63.1 (C-16), 66.7 (C-

17), 99.0 (C-4″), 111.6 (C-2), 111.6 (2C, C-2″ and C-6″), 113.7 (C-4), 120.5 (4″-CN), 126.1 (C-1), 131.9 (C-

10), 133.4 (2C, C-3″ and C-5″), 137.7 (C-5), 146.7 (C-1″), 152.6 (C-3′), 157.6 (C-3); ESI-MS 426 [M + H]+. 

(16R,17S)-3-Methoxy-3′-methyl-1′-(4″-nitrophenyl)-2′-pyrazolino[4′,5′:17,16]estra-1,3,5(10)-triene (17i) 

According to the general procedure, 4-nitrophenylhydrazine hydrochloride (15i, 209 mg) was used. 

Yield: 285 mg (yellow solid); Mp 262–263 °C; Rf = 0.32 (ss B). Anal. Calcd. for C27H31N3O3 (445.56): C, 

72.78; H, 7.01. Found: C, 72.64; H, 7.12. 1H-NMR (CDCl3, 500 MHz): δ 1.02 (s, 3H, 18-H3), 1.32–1.41 

(overlapping m, 2H, 7-H and 14-H), 1.48 (m, 1H, 8-H), 1.58 (m, 1H, 11-H), 1.70 (m, 1H, 12-H), 

1.78–1.86 (overlapping m, 2H, 7-H and 15-H), 2.01 (m, 1H, 12-H), 2.08 (dd, 1H, J = 12.8, J = 5.8 Hz), 

2.16 (s, 3H, 3′-CH3), 2.22 (m, 1H, 9-H), 2.39 (m, 1H, 11-H), 2.83 (m, 2H, 6-H2), 3.37 (d, 1H, J = 9.4 Hz, 

17-H), 3.77 (s, 3H, 3-OMe), 4.65 (dd, 1H, J = 9.4 Hz, J = 6.4 Hz, 16-H), 6.62 (d, 1H, J = 2.1 Hz, 4-H), 6.72 

(dd, 1H, J = 8.6 Hz, J = 2.1 Hz, 2-H), 6.94 (d, 2H, J = 8.9 Hz, 2″-H and 6″-H), 7.19 (d, 1H, J = 8.6 Hz, 1-H), 

8.14 (d, 2H, J = 8.5 Hz, 3″-H and 5″-H); 13C-NMR (CDCl3, 125 MHz): δ 17.1 (3′-CH3), 21.3 (C-18), 26.3 (C-

11), 28.0 (C-7), 29.6 (C-6), 33.1 (C-15), 35.9 (C-12), 38.5 (C-8), 43.2 (C-9), 46.9 (C-13), 49.5 (C-14), 55.2 (3-

OMe), 63.1 (C-16), 66.8 (C-17), 110.7 (2C, C-2″ and C-6″), 111.6 (C-2), 113.8 (C-4), 126.1 (3C, C-1, C-3″ and 

C-5″), 131.8 (C-10), 137.7 (C-5), 138.2 (C-4″), 148.2 (C-1″), 154.3 (C-3′), 157.6 (C-3); ESI-MS 446 [M + H]+. 

(16R,17S)-3-Methoxy-3′-methyl-1′-(4″-methoxyphenyl)-2′-pyrazolino[4′,5′:17,16]estra-1,3,5(10)-triene 

(17j)  

According to the general procedure, 4-methoxyphenylhydrazine hydrochloride (15j, 192 mg) was used. 

Yield: 282 mg (white solid); Mp 210–212 °C; Rf = 0.58 (EtOAc/CH2Cl2 = 2:98). Anal. Calcd. for C28H34N2O2 

(430.59): C, 78.10; H, 7.96. Found: C, 78.25; H, 7.82. 1H-NMR (CDCl3, 500 MHz): δ 0.98 (s, 3H, 18-H3), 1.38 

(m, 1H, 7-H), 1.43–1.51 (overlapping m, 2H, 8-H and 14-H), 1.56 (m, 1H, 11-H), 1.67–1.77 

(overlapping m, 2H, 12-H and 15-H), 1.84 (m, 1H, 7-H), 1.97 (m, 1H, 12-H), 2.09 (overlapping m, 

1H, 15-H), 2.11 (s, 3H, 3′-CH3), 2.23 (m, 1H, 9-H), 2.38 (m, 1H, 11-H), 2.83 (m, 2H, 6-H2), 3.26 (d, 1H, 

J = 9.8 Hz, 17-H), 3.77 (s, 6H, 3-OMe and 4″-OMe), 4.49 (dd, 1H, J = 9.8 Hz, J = 5.5 Hz, 16-H), 6.63 (d, 

1H, J = 2.6 Hz, 4-H), 6.72 (dd, 1H, J = 8.5 Hz, J = 2.6 Hz, 2-H), 6.86 (d, 2H, J = 8.7 Hz, 3″-H and 5″-H), 6.97 

(d, 2H, J = 8.7 Hz, 2″-H and 6″-H), 7.20 (d, 1H, J = 8.5 Hz, 1-H); 13C-NMR (CDCl3, 125 MHz): δ 17.0 (3′-

CH3), 21.5 (C-18), 26.5 (C-11), 28.1 (C-7), 29.7 (C-6), 33.6 (C-15), 36.0 (C-12), 38.5 (C-8), 43.3 (C-9), 46.9 (C-

13), 49.7 (C-14), 55.2 (3-OMe), 55.8 (4″-OMe), 65.2 (C-16), 66.5 (C-17), 111.5 (C-2), 113.1 (2C, C-2″ and C-

6″), 113.7 (C-4), 114.7 (2C, C-3″ and C-5″), 126.2 (C-1), 132.3 (C-10), 137.9 (C-5), 139.8 (C-1″), 149.4 (C-3′), 

152.5 (C-4″), 157.5 (C-3); ESI-MS 431 [M + H]+. 

4. Conclusions 
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In summary, a number of novel ring D-fused five-membered N,N-heterocycles in the estrone 

series were efficiently prepared under MW conditions and their structures were completely 

characterized by 1D and 2D NMR measurements. In contrast to the related literature background, 

the ring-closure of 16-benzylidene estrone 3-methyl ether with hydrazine hydrate in AcOH led to a 

2:1 diastereomeric mixture of 1,3-disubstituted 16,17-cis- and 16,17-cis-fused products via 

tautomerization of the initially formed 1-unsubstituted 2-pyrazolines and subsequent acetylation 

under the applied conditions. However, a mestranol-derived ,-enone was also synthesized by a 

two-step E2-type elimination/acid-catalyzed Markovnikov hydration protocol instead of performing 

the process in a single step under Rupe conditions in order to avoid carbocation-mediated side 

reactions. The conversion of this latter compound with different arylhydrazines proved to be highly 

diastereoselective to furnish novel 16,17-cis-annelated heterocycles in good to excellent yields 

independently of the substituents of the reagents applied. The resulting pyrazolines were found to 

be extremely resistant to oxidation and may deserve attention from a pharmacological point of view. 

Supplementary Materials: Spectral data of the synthesized compounds are available online: 1H-NMR, 13C-NMR, 

and 2D NMR. 
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