Interstrain differences of ionotropic glutamate receptor subunits in the hippocampus and induction of hippocampal sclerosis with pilocarpine in mice

Endre Dobó*, Ibolya Török, András Mihály, Norbert Károly, Beáta Krisztin-Péva

Department of Anatomy, Faculty of Medicine, University of Szeged, Szeged, Hungary

ARTICLE INFO

Article history:
Received 18 October 2014
Received in revised form 16 January 2015
Accepted 6 February 2015
Available online xxx

Keywords:
Hippocampus
Pilocarpine
Glutamate receptor
Interstrain difference
Hippocampal sclerosis

ABSTRACT

Rodent strains used in epilepsy research have various neurological characteristics. These differences were suggested to be attributed to the diverse densities of the ionotropic glutamate receptor (iGluR) subunits. However, previous studies failed to find interstrain differences in the hippocampal receptor levels.

We supposed that a detailed layer-to-layer analysis of the iGluR subunits in the hippocampus might reveal strain-dependent differences in their base lines and reactions induced by pilocarpine (PILO) between two mouse strains without documented ancestors.

Levels of iGluR subunits in Balb/c and NMRI mice were compared using semiquantitative immunohistochemistry. The alterations in the neuronal circuitry were validated by neuropeptide Y (NPY) and neuronal nuclear antigen (NeuN) immunostainings.

Immunohistochemistry showed interstrain laminar differences in some subunits of both the control and PILO-treated animals. The seizure-induced irreversible neuronal changes were accompanied by reduced GluA1 and GluA2 levels. Their changes were inversely correlated in the individual NMRI mice by Pearson’s method. Increase in NPY immunoreactivity showed positive correlation with GluA1, and negative correlation with GluA2. The NMRI strain was susceptible to PILO-induced hippocampal sclerosis, while the Balb/c animals showed resistance.

Basal levels of iGluRs differ in mouse strains, which may account for the interstrain differences in their reactions to the convulsant.

© 2015 Published by Elsevier B.V.

Introduction

The rodent PILO model of temporal lobe epilepsy reproduces the main neuropathological features of the human epileptic disorder therefore it has been widely used (Schauwecker, 2012; Curia et al., 2008; Winawer et al., 2007; Scharfman et al., 2001; Cavalheiro et al., 1991, 1996). The muscarinic cholinergic agonist PILO induces status epilepticus, which is followed by characteristic q16 neuropathological changes that may lead to the appearance of spontaneous recurrent seizures. After PILO-induced status epilepticus, neuronal cell loss, gliosis and MF sprouting were observed predominantly in the hippocampus (Borges et al., 2003; Turski et al., 1984). The neuronal loss of hilus, one of the common neuropathological features of the rodent models, was reported to correlate with the development of spontaneous seizures (Mello et al., 1993; Buckmaster and Dudek, 1997; Borges et al., 2003).

Significant increase of glutamate release is involved in status epilepticus, which may play a crucial role in the development and maintenance of chronic epileptic seizures (Carvalho et al., 2011; Costa et al., 2004; Kovacs et al., 2003). Several studies reported that PILO-induced status epilepticus also resulted in increase of glutamate release (Cavalheiro, 1995; Smolders et al., 1997). Moreover, alterations in expression and synaptic function of glutamate receptors (Glur) were associated with glutamate excitotoxicity and neuronal death (Zhang et al., 2004; Ding et al., 2007).

Abbreviations: AMPAR, AMPA receptor; DG, dentate gyrus; GC, granule cell; GluR, glutamate receptor; iGluR, ionotropic glutamate receptor; IML, internal molecular layer; KAR, kainate receptor; MC, mossy cell; MF, mossy fibre; ML, molecular layer; NMDAR, NMDA receptor; NMDAR1, NMDA receptor 1; GluN1, NeuN, neuronal nuclear antigen; NPY, neuropeptide Y; PC, pyramidal cell; PILO, pilocarpine; SGZ, supragranular zone; SL, stratum lucidum; SLM, stratum lacunosum-moleculare; SO, stratum oriens; SR, stratum radiatum.

* Corresponding author at: Department of Anatomy, Faculty of Medicine, University of Szeged, H-6724 Szeged, Kossuth L. sgt. 40, Hungary.
Tel.: +36 62 545665; fax: +36 62 545707.
E-mail address: dobo.endre@med.u-szeged.hu (E. Dobó).

http://dx.doi.org/10.1016/j.chemneu.2015.02.002
0891-0618/© 2015 Published by Elsevier B.V.

GluRs may operate as canonical ion channels and/or metabotropic receptors, which elicit diverse signalling cascades. Based on the pharmacological properties and structural homology, iGluRs can be grouped into four distinct classes: AMPA receptors (AMPArs), kainate receptors (kARs), NMDA receptors (NMDARs) and \(\delta \)-receptors (Traynelis et al., 2010). AMPArs are characterized by very low Ca\(^{2+} \) permeability and fast kinetics, while NMDARs are characterized by large Ca\(^{2+} \) permeability and slow kinetics. While these two iGluRs are postsynaptic, the kARs are localised both pre- and postsynaptically and may operate as metabotropic receptors, too. The functions of the \(\delta \)-receptors are still unresolved. The \(Q_4 \) subunit composition of the iGluRs is crucial to their function (Kortenbruck et al., 2001; Su et al., 2002).

Several studies found important species differences in the responses to convulsants (Curia et al., 2008). The species differences include various behavioural properties, e.g. susceptibility to convulsants and neuronal damages. In addition to the phylogenetic characteristics in the reactions, significant genealogical and even source-dependent intrastrain variations in seizure and cellular susceptibility were reported (Winawer et al., 2007; Portelli et al., 2009; Schauwecker, 2012). In previous experiments, we found marked individual differences between PILO-injected mice of the CFLP strain; in spite of the symptoms of acute status epilepticus, only a small fraction of the treated animals developed spontaneous recurrent seizures (Karolyi et al., 2011, in preparation).

Since the hippocampal principal neurones are glutamatergic, the discrepancies between the responses of the animals to convulsants may be based on the amount and/or the composition of the functional iGluRs. However, previous studies failed to find explanation for strain differences on the hippocampal receptor level (Schauwecker, 2003; Kurschner et al., 1998). In the present experiments, we supposed that a detailed layer-to-layer analysis may reveal the possible strain-dependent differences in the densities of the iGluRs.

We investigated the hippocampal distribution of GluR subunits in two mouse strains lacking registered common ancestors by means of semiquantitative immunohistochemistry. The effects of the chemovonvulant PILO on the densities of iGluRs were evaluated in both strains after a 2-month post-treatment period, which is thought to be sufficient for the development of spontaneous recurrent seizures (Curia et al., 2008). NPY immunohistochemistry was used to indicate the incidence of spontaneous recurrent seizures and to validate the neuropathological alterations of the hippocampal neuronal circuitry, and NeuN immunohistochemistry was applied to detect the intense neuronal loss.

Materials and methods

Animal treatment with PILO

Adult, male Balb/c and NMRI mice (25–30 g) were kept in a temperature-controlled room under standard light/dark cycle, with food and water ad libitum. All experimental procedures were conducted according to the EU Directive (2010/63/EU) and to the Hungarian Animal Act. Specific approval of care and use of animals was obtained in advance from the Faculty Ethical Committee on Animal Experiments (University of Szeged). Animals were injected with a single intraperitoneal (i.p.) dose of PILO (Sigma–Aldrich Co., St. Louis, MO, USA) that was adjusted so as to cause at least a single occurrence of status epilepticus in only two-thirds of the animals in order to decrease the death rate. In preliminary experiments, 180 mg/kg and 195 mg/kg PILO were found to be appropriate for Balb/c and NMRI strains, respectively. Ninety minutes after the first onset of status epilepticus, the animals were injected i.p. with diazepam (Seduxen, Gedeon Richter, Budapest, Hungary; dose: 10 mg/kg). The NMRI strain exhibited a higher incidence rate of status epilepticus, though reacted less severely than the Balb/c strain during the PILO–induced initiation period. This protocol resulted in comparable seizures: mortality: 38% in the Balb/c mice and 32% in the NMRI strain. Post-treatment of the animals included i.p. injections with Ringer lactate solution. The control animals received the same volume of physiological saline, the solvent of PILO. The animals, which developed status epilepticus during the treatment were termed "PILO-responsive" animals.

The PILO-treated and the control animals were sacrificed 2 months after the injections. The animals were deeply anaesthetised with diethyl ether, and perfused through the ascending aorta with physiological saline, and then with 4% formaldehyde in 0.1 M phosphate buffer (PB). The brains were dissected and cryoprotected overnight in 30% sucrose in PB at 4°C. Coronal brain sections were cut on a freezing microtome at a thickness of 24 μm. Section planes were selected according to the Mouse Brain Atlas of Franklin and Paxinos (1997).

Tissue preparation

The free-floating sections were treated with 0.3% Triton X-100 and 3% hydrogen peroxide, then with normal swine serum (diluted: 1/10). The following primary antisera were used: rabbit anti-NPY (Abcam, Cambridge, UK; dilution: 1/10,000); mouse anti-Neun (Chemicon, Temecula, CA, USA, dilution: 1/8000); rabbit anti-GluA1 (Millipore, Temecula, CA, USA, 1/500); mouse anti-GluA2 (Chemicon, dilution: 1/2000); rabbit anti-GluA2/3 (Chemicon, dilution: 1/400); monoclonal rabbit anti-GluD2 (clone: EPR6307; Abcam, dilution: 1/3000); mouse anti-NMDA1 (Abcam, dilution: 1/5000). The sections were incubated under continuous agitation at room temperature overnight. After washing, the sections were incubated with the appropriate biotinylated secondary antibody (Jackson Immunoresearch, West Grove, PA, USA, dilution: 1/400) for 60 min, and finally with peroxidase-labelled streptavidin (Jackson Immunoresearch, dilution: 1/1000) for 60 min. The sites of immunoreaction were visualized with diaminobenzidine in the absence or presence of nickel (Adams, 1981). At one particular series of a given immunostaining for assessment; all the sections were incubated in aliquots from the same solutions of either the immunoreagents or the chromogens synchronously for exactly the same time. The same number of sections of the control and PILO-responsive animals of both strains was incubated in the same volume of the solutions.

Image analysis

Images were taken with an image-capture system (Olympus DP50) attached to an Olympus BX-50 microscope (Soft Imaging System GmbH, Münster, Germany). Image analysis was performed with Adobe Photoshop 7 (Adobe Systems Incorporated, San Jose, CA, USA). A researcher blind to the experimental conditions of the animals measured the pixel density of immunostained images. Briefly, through use of the “marquee” tool, 8–12 circular, 0.1 mm diameter areas were selected in adjacent positions inside the hippocampal layers. The average of 10 background determinations (carried out near the layers in unstained neuropil-containing sites) was subtracted from the average pixel densities measured within the hippocampal layers. Differences between the corresponding hippocampal regions of the control and PILO-responsive, but non-sclerotic animals were assessed by using the unpaired one-tailed Student’s t-test. Pearson’s correlation analysis was used to evaluate the relationship between the optical densities of different hippocampal layers. Data were analyzed and plotted with the aid of GraphPad 4.0 (GraphPad Software, Inc., CA, USA).

Results

NPY immunohistochemistry

According to previous data (Scharman and Gray, 2006), only a few, small NPY-immunoreactive neurons were scattered throughout the hippocampus of the control animals (Fig. 1A). These interneurones displayed short non-varicose branches. Dramatic increase in hippocampal NPY synthesis was reported to be a diagnostic tool to confirm the incidence of spontaneous recurrent seizures (Sperk et al., 1992; Borges et al., 2003; Scharman and Gray, 2006). After the PILO treatment the NPY immunoreactivity greatly increased in the whole area of the dentate gyrus (DG) and in the stratum lucidum (SL) of CA3 in every PILO-responsive mouse (Fig. 1B), irrespective of the strains.

The vast majority of the increased immunostaining was localized in the synaptic fields of the MFs. We did not observe the NPY staining in the perikarya of dentate granule cells (GCs). Apart from the heavy staining of the MF areas, NPY-immunoreactive puncta were seen in the thin supragranular zone (SGZ) within the external molecular layer (EML) of the DG. The immunoreactivity increased in the molecular layer (ML) too, but in much less extent than in the areas supplied by MFs. Furthermore, the NPY-immunoreactive cells in the CA1 region displayed stronger staining.
in PILO-responsive animals. Newly formed immunopositive processes were not detected in this region.

In the NMRI strain, but not in the Balb/c mice, 3 animals out of 18 PILO-responsive mice developed hippocampal sclerosis (Fig. 1C). In the sclerosed hippocampi, the lateral extent and the width of SL in the CA3a were dramatically reduced, but the NPY staining was strong. In these three animals, the hilus of the DG was also strongly labelled similarly to other PILO-responsive animals of the NMRI and Balb/c strains.

NeuN immunohistochemistry

Neuronal loss was checked by means of NeuN immunostaining in the PILO-responsive animals. In 3 out of the 7 PILO-responsive Balb/c mice, the number of pyramidal cells (PCs) in the CA3a and CA3b subregions was slightly reduced (Fig. 1D and E). No considerable loss of PCs was observed in the CA1, CA2 and CA3c regions. By comparing the subsequent NPY- and NeuN-immunostained sections of the same Balb/c animals, no correlation was detected between the extent of NPY immunoreactivity and the degree of cell loss.

In the NMRI strain, the cell loss was more pronounced, 8 out of the 18 PILO-responsive mice displayed patchy neuronal loss in the PC layer of CA1 and CA3 regions. In 3 out of 18 PILO-responsive animals, the marked loss of PCs extended from the CA3a/b to the CA3c subregion (Fig. 1F). The PILO-responsive animals that displayed the loss of the entire NeuN-immunoreactive CA3 PC populations were referred as to sclerotic in this study. The paired comparisons of the NPY- and NeuN-immunostained sections revealed that the NPY-immunoreactive SL was greatly shortened in

the animals with this pattern of neuronal damage (Fig. 1C and F).
The absence of CA3c PCs and the characteristic shortage of NPY-
immunoreactive SL differentiate the aforementioned 3 mice from
the other PILO-responsive individuals. Beside the loss of CA3 PCs,
in the two sclerotic mice, the superior blade of the GC layer was
damaged to a large extent (Fig. 1F). Because of the distorted
hippocampal structure of the sclerotic mice, the consistent laminar
analysis of the iGluR subunits was not possible.

AMPAR immunohistochemistry

AMPAR antibodies to GluA1, GluA2, GluA2/3 provided similar
immunostaining in the consecutive sections (Fig. 2). The strongest
immunostaining was observed with the GluA1 antibody (Fig. 2A),
while the GluA2/3 antibody gave the weakest staining (Fig. 2E). The
antibodies stained mainly neuropil: the most intense staining was
experienced in the stratum oriens (SO) and stratum radiatum (SR)
of CA1 region. The least intense staining was found in the hilus of
the DG and in the SL of CA3. GluA2 and GluA2/3 antibodies also
stained several multipolar neurons in the hilus (Fig. 2C and E),
which were supposedly mossy cells (MCs) (Tang et al., 2005). It is
worth noting that the layer-to-layer comparisons of the semi-
quantitative data of the two strains revealed significant density
increases in the GluA2 immunoreactivities of the DG. The ML and
the hilus of the NMRI mice showed lower values compared to the
Balb/c mice (~23% and ~79%, respectively, empty columns in
Fig. 3).

PILO-treatment resulted in remarkable changes in the immu-
noreactivity, the extent of which was analyzed in some of the
hippocampal layers by means of semiquantitative immunohisto-
chemistry (Table 1, Fig. 3). The density of the GluA1 immunore-
activity decreased in every hippocampal layer (Fig. 2B), except the
CA1 SR of the NMRI mice. In all other layers, very similar changes
were observed in both strains. The most significant reductions
were found in the dentate hilus (~72% for Balb/c and ~69% for
NMRI). The GluA2 immunostaining density also decreased in both
strains (Fig. 2D). The intensity changes in the layers were two- or
three-fold higher in the Balb/c strain than in the NMRI strain. The
highest reduction of the GluA2 immunoreactivity was found in the
synaptic field of the MFs in both strains. The statistical analysis of
the GluA2/3 immunohistochemical results (Fig. 2F) showed largely
similar alterations. The lowest density values and the highest
degree of reduction of the optical densities were found in the hilus
of the DG in the Balb/c and NMRI mice (~58% and ~45%,
respectively). The density of the hilar immunopositive cells
significantly reduced in both mouse strains (~29% for Balb/c and
~62% for NMRI).

GluK2 immunohistochemistry

The application of the rabbit monoclonal antibody for the
detection of the low affinity GluK2 KAR subunit resulted in a
staining pattern very similar to that of the AMPAR antibodies in the
hippocampus (Fig. 2G). In the control animals, strong immunore-
activity was observed in the hippocampus. Weak immunostaining
was found in the pyramidal and the granular layers, in the hilus
and in the SL of CA3 (Fig. 2G). The layer-to-layer comparisons of the
data from the two strains revealed significant intensity differences
in the GluK2 immunoreactivities: the ML and the hilus of the NMRI
strain exhibited higher density values than the Balb/c mice (+22%
and +79%, respectively, empty columns in Fig. 3).

After PILO treatment, the intensity of the GluK2 immunoreac-
tivity increased in the hippocampus (Fig. 2H). An increase in the
immunostaining density was found in every hippocampal layer of the
Balb/c mice: the highest increase was observed in the hilus
(+43%; Table 1). Opposite alteration, the decrease of the GluK2
density was observed in the hilar region of the NMRI mice (~27%;
Table 1). Intensity increases were also significant in the SR of CA1
and the stratum lacunosum-moleculare (SLM) of CA3 in the Balb/c
strain (+23% and +15%, respectively). In the NMRI mice similar, but
less increase was observed in those layers (+13% in SR, +8% in SLM).
The ML of the Balb/c mice showed +13% intensity increase, while
no alteration was measured in the ML of the NMRI mice. In both
strains, no significant changes were detected in the staining
intensity of the SL (Table 1).

GluN1 immunohistochemistry

GluN1 immunohistochemistry revealed a laminar staining
pattern in the control hippocampus, which was similar to the
AMPAR immunostaining (Fig. 2I). In contrast to the AMPAR
antibodies, the GluN1 antibody did not label neurones in any of the
examined areas. The most intense neurispot staining was found in
the SO and the SR. The staining of these layers was increasing
towards the subiculum. Moderate immunostaining was experi-
enced in the SLM and the SM, while the weakest staining was
observed in the hilus, the SL of CA3 and in the pyramidal and the
granular layers. The staining in the hilus was almost nil, therefore
no measurements were done there. On the other hand, the SGZ
displayed a relatively strong labelling, which was evaluated in
PILO-treated mice.

PILO treatment exerted measurable effects on the GluN1
immunostaining in the hippocampal layers of the two examined
mouse strains (Fig. 2, Table 1). In the Balb/c specimens the intensity of the staining in the SR and in the SLM of CA1 were
significantly decreased (~32% and ~36%, respectively, Table 1).
The PILO treatment did not cause modification in the immuno-
 staining density of the overall ML of the DG. However, in the close
vicinity of the GC layer, that is in the SGZ our semiquantitative
method revealed a significant intensity decrease (~16%). In the
NMRI mice the only significant change, an increase (+29%) was
measured in the SLM of CA1.

Correlation analysis

The optical density data of the immunohistochemical stainings
in the hippocampal layers of the non-sclerotic PILO-responsive
NMRI mice were subjected to correlation analysis. The pairwise
comparisons within the individual animals revealed several
significant relationships between the densities of the receptor
subunits and NPY staining.

A set of relationships concerns the dendritic field of GCs in
the ML and their axon terminal field in the SL. While in the ML
considerably decreased GluA1 immunoreactivity was found, in
the SL markedly increased NPY immunoreactivity was mea-
sured. The pairwise correlations yielded a significant negative
correlation value (~0.636) between the pixel densities of the
GluA1 and NPY, i.e. the higher density of the NPY immunoreac-
tivity coincided with the more decrease of the GluA1 immunore-
activity, compared to the average values of the control animals
(Fig. 4).

Opposite changes were found when densities of NPY in the SL
and GluA2 in the ML were subjected to pairwise correlations.
Although, marked increase and decrease in the immunoreactivities
were found for NPY and GluA2, respectively, the appropriate
correlations revealed a positive correlation value (+0.462) between
the pixel densities of the NPY and GluA2, i.e. the higher increase in
the immunoreactivity for NPY coincided with the less decrease
(relatively elevated level) of the GluA2 staining (Fig. 4).

Pairwise comparisons of the GluA1 and GluA2 immunoreactiv-
ities in the ML confirmed the previous data analysis. Although,
significant decreases of both staining intensities were found, the pairwise correlation showed a negative correlation value (-0.445) between the pixel densities of the GluA1 and GluA2, i.e. the stronger immunoreaction with GluA1 seemed to be significantly related with the weaker immunoreactivity for GluA2, which denoted inversely proportional changes of the GluA1 and GluA2 immunoreactivities (Fig. 4). Decreased GluA1 immunoreactivity in the hilus was found to be inversely correlated with the decrease in the immunoreactivity for GluK2 in the same layer (Pearson's correlation value: -0.557), i.e. the less the hilar GluA1 immunoreactivity decreased, the more the GluK2 immunoreactivity reduced in the hilus. The pairwise correlations between the changes in the GluK subunits within the hippocampal layers showed also that in the SL the less increased NPY-immunoreactive layer was coincided with the more decreased GluA2-immunoreactive one (Pearson's correlation value: $+0.467$).
Fig. 3. Distributions of GluA1, GluA2, GluA2/3, GluK2, GluN1 immunoreactivities in the hippocampal layers of control (empty columns) and non-sclerotic PILO-responsive (filled columns) Balb/c and NMRI mice are compared. The most remarkable differences between the two studied strains were found in the GluA2 and GluK2 immunoreactivity of the hilus and the ML (compare the matched empty columns). Note that the PILO treatment resulted in general reductions in the densities of the hippocampal AMPAR and GluN1 subunits, and increases in the levels of the GluK2 immunoreactivity in both strains (empty vs filled columns) (Differences were significant at \(p < 0.05\); \(*p < 0.05\), \(**p < 0.01\), \(***p < 0.001\), \(****p < 0.0001\).) The values of the significant changes are summarized in Table 1. ML: molecular layer; H: hilus; SL: stratum lucidum; SR: stratum radiatum; SLM: stratum lacunosum-moleculare; SGZ: supragranular zone.

The sclerotic hippocampus of the NMRI mice

The PILO-responsive NMRI mice, but not the Balb/c mice, showing greatly enhanced NPY immunoreactivity in the hilus and SL, were divided into two groups on the basis of the severity of the NeuN-immunoreactive cell loss in the CA3. In this study, the arbitrary distinction between the groups was the presence or the absence of PCs in the CA3c subfield in the non-sclerotic PILO-responsive and the sclerotic mice, respectively. In the non-sclerotic PILO-responsive group, CA3c PCs persisted even in those cases where a complete segment of CA3a/b vanished (Fig. 5). In this group, the NPY-immunoreactive SL seemingly remained unchanged. However, in the 3 sclerotic mice out of 18 PILO-responsive ones, the damage to the CA3 PCs was coincided with the drastic loss of the NPY enhanced area (Figs. 1C and 5).

Immunohistochemistry for the iGluRs in the sclerotic mice revealed robust changes in the distributions of all studied subunits, when compared with those in the non-sclerotic PILO-responsive mice. In the sclerotic animals, large areas lost their corresponding immunoreactivities partially or even completely. Very strong coincidence was observed in the severity of the density reductions in the immunoreactivities for GluA1, GluK2, GluN1 and NeuN. The areas with highly reduced immunoreactivity involved the CA1 region, including all of its layers (Fig. 5). The damage to the SO was more extended than that of the SL in the same section. The more CA1 PCs were lost, the larger areas in the SR disappeared from the immunostaining. In the case of the considerable loss of GCs, the ML of the DG lying towards the damaged SR was also greatly affected. It is worth noting that in the apparently intact areas within the ML, the immunoreactivity for GluK2 seemed to be slightly increased (Fig. 5L), whereas immunoreactivities for GluA1 and GluN1 in the corresponding areas in the subsequent sections were significantly reduced.

Discussion

Hippocampal sclerosis and axonal sprouting

Temporal lobe epilepsy is the most common type of epilepsy in adults, which is frequently associated with hippocampal sclerosis, which is a complex histopathological manifestation of neuronal cell loss and aberrant fibre sprouting. Several lines of evidence suggest the vulnerability of excitatory MCs (Scharfman and Myers, 2012), PCs (Wasterlain et al., 1993; Borges et al., 2003) and the vulnerability of some inhibitory neurons (Houser and Esclapez, 1996) to the seizures. The question whether the loss of cells contributed to the epileptogenesis or the cell loss was the consequence of the repeated seizures has not been answered reliably. The surviving GCs and inhibitory neurons react to convulsions and cell death with excessive fibre/axonal sprouting (Curia et al., 2008; Levesque and Avoli, 2013). There is a general notion that the activity of GCs increases in spite of earlier suggestions that GCs are hyperinhibited and remain relatively quiet during spontaneous seizures (Harvey and Sloviter, 2005). GCs do not only sprout but also change their chemotype during the chronic seizure (Gutiérrez, 2003). Several experiments proved that tonic–clonic seizures evoked with electrical kindling (Rizzi et al., 1993), kainate (Gruber et al., 1994; Sperk et al., 1992) or PILO (Lurton and Cavaleiro, 1997) result in the appearance of strong and long-lasting NPY immunoreactivity in MFs. The persistent NPY immunoreactivity in hippocampal sclerosis indicated the importance of this chemotype change in the maintenance of the seizures and/or in the survival of GCs.

Mouse strain differences

Various animal models offer suitable strategies for the investigation of complex neurological disorders such as epilepsy. Extrapolation of the results from one species and/or strain to

Table 1

The summary of the effects of PILO treatment on the GluA1, GluA2, GluA2/3, GluK2, GluN1 immunoreactivities in the hippocampal layers of the non-sclerotic Balb/c and NMRI mice. The changes of immunoreactivities are expressed in percent.

<table>
<thead>
<tr>
<th>Animal strain</th>
<th>SR</th>
<th>SLM</th>
<th>SLM (CA3)</th>
<th>ML</th>
<th>SGZ</th>
<th>H</th>
<th>SL</th>
</tr>
</thead>
<tbody>
<tr>
<td>GluA1</td>
<td>Balb/c</td>
<td>-12***</td>
<td>-42***</td>
<td>-72***</td>
<td>-34***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NMRI</td>
<td>-1</td>
<td>-1***</td>
<td>-69***</td>
<td>-55***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GluA2</td>
<td>Balb/c</td>
<td>-17***</td>
<td>-33***</td>
<td>-69***</td>
<td>-45***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NMRI</td>
<td>-6</td>
<td>-18***</td>
<td>-32***</td>
<td>-27***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GluA2/3</td>
<td>Balb/c</td>
<td>-9</td>
<td>-32***</td>
<td>-8***</td>
<td>-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NMRI</td>
<td>-3</td>
<td>-21</td>
<td>-45***</td>
<td>-23***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GluK2</td>
<td>Balb/c</td>
<td>+23</td>
<td>+15</td>
<td>+13</td>
<td>+43***</td>
<td>+6.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NMRI</td>
<td>+13</td>
<td>+8</td>
<td>-3</td>
<td>-27</td>
<td>+1</td>
<td></td>
</tr>
<tr>
<td>GluN1</td>
<td>Balb/c</td>
<td>-32***</td>
<td>-36</td>
<td>-4</td>
<td>-16**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NMRI</td>
<td>-2</td>
<td>+29</td>
<td>-0.4</td>
<td>-6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The values of significance are indicated as follows:

* p < 0.05.
** p < 0.01.
*** p < 0.001.
**** p < 0.0001.

Note the several marked interstrain differences in the responses of the strains to the convulsant at the level of the iGluRs. SR: stratum radiatum; SLM: stratum lacunosum-moleculare; ML: molecular layer; SGZ: supragranular zone; H: hilus; SL: stratum lucidum.
others, is fairly questionable, since the rodents demonstrate significant species-, strain- and even intrastrain differences in the susceptibility to convulsive agents and the consequences of seizures (Curia et al., 2008; Portelli et al., 2009). Certain rodent strains exhibiting high resistance to chemically induced status epilepticus did not undergo degeneration or cell damage in spite of similar seizure severity (Schauwecker and Steward, 1997). In our study, Balb/c and NMRI strains were compared for their chronic responses to the chemoconvulsant PILO. According to the historical records (Beck et al., 2000; Chia et al., 2005) about the origins of these strains, no common progenitors were found. The immunohistochemical staining revealed considerable hippocampal differences, though the NPY immunoreactivity was equally intense in the hilus and SL after 2-month post-treatment period. It is noteworthy that we recently reported our results about the effects of PILO treatment on a third mouse strain, CFLP (Karoly et al., 2011), which was thought not to share progenitors with the other two strains of this study (Beck et al., 2000). Strikingly, in contrast to Balb/c and NMRI strains, all individuals of which suffered from the status epilepticus showed marked NPY immunoreactivity in the field of the MFs, a considerable portion of the PILO-treated CFLP mice failed to
The efficacy of the AMPAR-associated glutamatergic neurotransmission depends on the density, the stoichiometry of the coupling to NMDA, the modification of the GABAergic and NPY systems (Russo et al., 2013). Receptor-binding studies measuring AMPARs in the hippocampal homogenates from seizure-prone (DBA/2J) and seizure-resistant (C57BL/6J) mice did not find detectable interstrain differences (Fradens et al., 1987; Korscher et al., 1998). No strain-dependent differences of the GluR subunits in the intact hippocampi of mice were found with immunohistochemical methods, either (Schauecker, 2003). However, our semiquantitative layer-to-layer comparisons of the AMPAR subunits showed interstrain differences between the age-matched control animals in the GluA2 but not in the GluA1. The differences were confined to the DG; the hilar contained less GluA2 (~79%) in the NMRI mice compared to the Balb/c. Coincidentally, the NMRI strain received more amount of PILO than the Balb/c strain to obtain equal number of PILO-responsive animals. Since the hiliar GluA2 immunoreactivity is accounted for by the MCs, the remarkably higher density of the Na’-permeable GluA2 immunoreactivity in the Balb/c may serve as an explanation for its higher vulnerability to PILO than the NMRI strain.

After the PILO treatment, our AMPAR immunohistochemical results showed an overall reduction in the density of this iGlur type in the non-sclerotic PILO-responsive hippocampus. It was indicated earlier that the experimental inhibition of AMPARs can prevent long-term increases in seizure susceptibility and seizure-induced neuronal injury (Koh et al., 2004). Thus, the significant decrease of AMPARs of the PILO-responsive hippocampus suggested an extensive attenuation of excitatory response to glutamate.

In the Balb/c mice, the decreases of the GluA1 and GluA2 subunits were comparable; their layer-by-layer ratios seemed unaltered. The general reduction of the AMPAR density and the absence of the change in the ratio of the GluA1 and GluA2 subtypes indicated an intrinsic neuroplastic mechanism for counterbalancing the increased excitability of hippocampus.

In the NMRI mice, the degree of the changes was less marked than in the Balb/c strain, though the loss of the PCs and MCs was more pronounced in the NMRI than in the Balb/c, resulting in a profounder change in NMRI hippocampal sclerosis, but not the Balb/c. Besides, the MCs were more vulnerable to the PILO treatment in the NMRI than in the Balb/c (62% and 25%, respectively). This comparison also indicates that the general reduction in the AMPAR level is not directly correlated with the loss of the principal neurons.
Ubiquitous NMDA receptor subunit: GluN1

NMDARs colocalize with AMPARs to form the functional synaptic unit at virtually all central synapses, where the NMDARs can modulate glutamatergic neurotransmission postsynaptically by generating long-lasting Ca\(^{2+}\) influx and depolarization. The functional channels are heteromeric consisting of the obligatory GluN1 and the associated other subunits of any of the NR2A-D subtypes (Garcia-Gallo et al., 2001).

Interstrain differences were also experienced after the comparison of the GluN1 immunohistochemical results of the two studied strains. In the Balb/c mice, marked decrease was detected in the apical dendritic field of CA1 PCs: reductions were found in the SR, where the Schaffer collaterals terminate, and in the SLM (~32% and ~36%, respectively) where many fibres of the tempo-ammonic pathway innervate the distal dendritic branches of PCs. The reduction in the CA1 may result from the downregulation of the NMDARs, which was also reported in electroconvulsive seizures (Park et al., 2014).

The similar degrees of reductions in the SR and SLM may be accounted for by either the lack of precise membrane trafficking of the NMDAR subunits to input-specific sites along the dendritic tree, or the similar degrees of involvements of the putative excitatory excitations in PCs along the perforant path-MS-Schaffer collateral axis and the tempo-ammonic pathway. The GluN1 reduction in the SGZ could be attributed to the appearance of the ectopic MFs in this sublayer, as indicated by many previous reports (Buckmaster, 2012; Pierce et al., 2005).

GluN1 immunohistochemical staining of the NMRI hippocampi resulted in a significant increase in the SLM of CA1, which may contribute to the increased susceptibility of this strain to the PILO-induced hippocampal sclerosis.

Conclusions

1. Comparison of the laminar distribution of the GluR subunits in two mouse strains (Balb/c and NMRI) with no documented common ancestors revealed some interstrain differences. The most remarkable differences between the two strains were found in GluA2 and GluK2 immunoreactivity of the hilus and the ML, which may indicate the involvement of MCs in the interstrain differences in their predisposition to PILO-induced neuronal alterations.

2. PILO-induced status epilepticus resulted in significantly different degrees of changes in the laminar immunoreactivity for the GluR subunits in the two strains. The alterations of the neuronal circuitry showed bidirectional relationships with the inversely correlated changes of the GluA1 and GluA2 levels in the DG of the individual non-sclerotic NMRI mice.

3. The PILO treatment caused sclerotic hippocampi in some NMRI mouse strains, whilst Balb/c animals seemed to be more resistant to hippocampal neuronal death. The big strain difference suggests that the researchers have to be careful in choosing the suitable strains as the model animals for studying temporal lobe epilepsy, since the genetic divergence can highly determine the diverse disposition to hippocampal sclerosis.

References

 Garcia-Gallo, M., Renart, J., Diaz-Guerra, M., 2001. The NR1 subunit of the N-methyl-D-aspartate receptor can be efficiently expressed alone in the cell surface of mouse spinal cord neurons and be expressed for the transport of the NR2A subunit. Biochem. J. 356 (Pt 2), 539L–547L.

Author contributions

ED and IT designed research; IT, ED and NK performed research; IT, ED and BKV analyzed data; ED, IT and AM wrote the paper.

Acknowledgement

Grant: TÁMOP 4.2.2-A-11/1/KONV-2012-0052.

