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A B S T R A C T

Rodent strains used in epilepsy research have various neurological characteristics. These differences

were suggested to be attributed to the diverse densities of the ionotropic glutamate receptor (iGluR)

subunits. However, previous studies failed to find interstrain differences in the hippocampal receptor

levels.

We supposed that a detailed layer-to-layer analysis of the iGluR subunits in the hippocampus might

reveal strain-dependent differences in their base lines and reactions induced by pilocarpine (PILO)

between two mouse strains without documented ancestors.

Levels of iGluR subunits in Balb/c and NMRI mice were compared using semiquantitative

immunohistochemistry. The alterations in the neuronal circuitry were validated by neuropeptide Y

(NPY) and neuronal nuclear antigen (NeuN) immunostainings.

Immunohistochemistry showed interstrain laminar differences in some subunits of both the control

and PILO-treated animals. The seizure-induced irreversible neuronal changes were accompanied by

reduced GluA1 and GluA2 levels. Their changes were inversely correlated in the individual NMRI mice by

Pearson’s method. Increase in NPY immunoreactivity showed positive correlation with GluA1, and

negative correlation with GluA2. The NMRI strain was susceptible to PILO-induced hippocampal

sclerosis, while the Balb/c animals showed resistance.

Basal levels of iGluRs differ in mouse strains, which may account for the interstrain differences in

their reactions to the convulsant.

� 2015 Published by Elsevier B.V.
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Introduction

 The rodent PILO model of temporal lobe epilepsy reproduces
the main neuropathological features of the human epileptic
disorder therefore it has been widely used (Schauwecker, 2012;
Curia et al., 2008; Winawer et al., 2007; Scharfman et al., 2001;
Cavalheiro et al., 1991, 1996). The muscarinic cholinergic agonist
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Abbreviations: AMPAR, AMPA receptor; DG, dentate gyrus; GC, granule cell; GluR,

glutamate receptor; iGluR, ionotropic glutamate receptor; IML, internal molecular

layer; KAR, kainate receptor; MC, mossy cell; MF, mossy fibre; ML, molecular layer;

NMDAR, NMDA receptor; NMDAR1, NMDA receptor 1, GluN1; NeuN, neuronal

nuclear antigen; NPY, neuropeptide Y; PC, pyramidal cell; PILO, pilocarpine; SGZ,

supragranular zone; SL, stratum lucidum; SLM, stratum lacunosum-moleculare; SO,

stratum oriens; SR, stratum radiatum.
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and induction of hippocampal sclerosis with pilocarpine in m
j.jchemneu.2015.02.002

http://dx.doi.org/10.1016/j.jchemneu.2015.02.002

0891-0618/� 2015 Published by Elsevier B.V.
PILO induces status epilepticus, which is followed by Qcharacteristic
neuropathological changes that may lead to the appearance of
spontaneous recurrent seizures. After PILO-induced status epi-
lepticus, neuronal cell loss, gliosis and MF sprouting were observed
predominantly in the hippocampus (Borges et al., 2003; Turski
et al., 1984). The neuronal loss of hilus, one of the common
neuropathological features of the rodent models, was reported to
correlate with the development of spontaneous seizures (Mello
et al., 1993; Buckmaster and Dudek, 1997; Borges et al., 2003).

Significant increase of glutamate release is involved in status
epilepticus, which may play a crucial role in the development and
maintenance of chronic epileptic seizures (Carvalho et al., 2011;
Costa et al., 2004; Kovacs et al., 2003). Several studies reported that
PILO-induced status epilepticus also resulted in increase of gluta-
mate release (Cavalheiro, 1995; Smolders et al., 1997). Moreover,
alterations in expression and synaptic functions of glutamate
receptors (GluRs) were associated with glutamate excitotoxicity
and neuronal death (Zhang et al., 2004; Ding et al., 2007).
es of ionotropic glutamate receptor subunits in the hippocampus
ice. J. Chem. Neuroanat. (2015), http://dx.doi.org/10.1016/

http://dx.doi.org/10.1016/j.jchemneu.2015.02.002
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GluRs may operate as canonical ion channels and/or metabo-
opic receptors, which elicit diverse signalling cascades. Based on
e pharmacological properties and structural homology, iGluRs
n be grouped into four distinct classes: AMPA receptors
MPARs), kainate receptors (KARs), NMDA receptors (NMDARs)
d d-receptors (Traynelis et al., 2010). AMPARs are characterized
 very low Ca2+ permeability and fast kinetics, while NMDARs are
aracterized by large Ca2+ permeability and slow kinetics. While
ese two iGluRs are postsynaptic, the KARs are localized both pre-
d postsynaptically and may operate as metabotropic receptors,
o. The functions of the d-receptors are still unresolved. The
bunit composition of the iGluRs is crucial to their function
ortenbruck et al., 2001; Su et al., 2002).
Several studies found important species differences in the

sponses to convulsants (Curia et al., 2008). The species
fferences include various behavioural properties, e.g. suscepti-
lity to convulsants and neuronal damages. In addition to the
ylogenetic characteristics in the reactions, significant genealog-

al and even source-dependent intrastrain variations in seizure
d cellular susceptibility were reported (Winawer et al., 2007;
rtelli et al., 2009; Schauwecker, 2012). In previous experiments,

e found marked individual differences between PILO-injected
ice of the CFLP strain; in spite of the symptoms of acute status
ilepticus, only a small fraction of the treated animals developed
ontaneous recurrent seizures (Karoly et al., 2011, in prepara-
n).
Since the hippocampal principal neurones are glutamatergic,

e discrepancies between the responses of the animals to
nvulsants may be based on the amount and/or the composition

 the functional iGluRs. However, previous studies failed to find
planation for strain differences on the hippocampal receptor

vel (Schauwecker, 2003; Kurschner et al., 1998). In the present
periments, we supposed that a detailed layer-to layer analysis
ay reveal the possible strain-dependent differences in the
nsities of the iGluRs.
We investigated the hippocampal distribution of iGluR subunits

 two mouse strains lacking registered common ancestors by
eans of semiquantitative immunohistochemistry. The effects of
e chemoconvulsant PILO on the densities of iGluRs were
aluated in both strains after a 2-month post-treatment period,
hich is thought to be sufficient for the development of
ontaneous recurrent seizures (Curia et al., 2008). NPY immuno-
stochemistry was used to indicate the incidence of spontaneous
current seizures and to validate the neuropathological altera-
ns of the hippocampal neuronal circuitry, and NeuN immuno-

stochemistry was applied to detect the intense neuronal loss.

terials and methods

imal treatment with PILO

Adult, male Balb/c and NMRI mice (25–30 g) were kept in a temperature

ntrolled room under standard light/dark cycle, with food and water ad libitum. All

perimental procedures were conducted according to the EU Directive (2010/63/

) and to the Hungarian Animal Act. Specific approval of care and use of animals

s obtained in advance from the Faculty Ethical Committee on Animal

periments (University of Szeged). Animals were injected with a single

raperitoneal (i.p.) dose of PILO (Sigma–Aldrich Co., St. Louis, MO, USA) that

s adjusted so as to cause at least a single occurrence of status epilepticus in only

o-thirds of the animals in order to decrease the death rate. In preliminary

periments, 180 mg/kg and 195 mg/kg PILO were found to be appropriate for Balb/

nd NMRI strains, respectively. Ninety minutes after the first onset of status

ilepticus, the animals were injected i.p. with diazepam (Seduxen, Gedeon Richter,

dapest, Hungary; dose: 10 mg/kg). The NMRI strain exhibited a higher incidence

e of status epilepticus, though reacted less severely than the Balb/c strain during

e PILO-induced initiation period. This protocol resulted in comparable seizure

rtality: 38% in the Balb/c mice and 32% in the NMRI strain. Post-treatment of the

imals included i.p. injections with Ringer lactate solution. The control animals

eived the same volume of physiological saline, the solvent of PILO. The animals,

ich developed status epilepticus during the treatment were termed ‘‘PILO-

ponsive’’ animals.
Please cite this article in press as: Dobó, E., et al., Interstrain differen
and induction of hippocampal sclerosis with pilocarpine in 
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Tissue preparation

The PILO-treated and the control animals were sacrificed 2 months after the

injections. The animals were deeply anaesthetized with diethyl ether, and perfused

through the ascending aorta with physiological saline, and then with 4%

formaldehyde in 0.1 M phosphate buffer (PB). The brains were dissected and

cryoprotected overnight in 30% sucrose in PB at 4 8C. Coronal brain sections were

cut on a freezing microtome at a thickness of 24 mm. Section planes were selected

according to the Mouse Brain Atlas of Franklin and Paxinos (1997).

Immunohistochemistry

The free-floating sections were treated with 0.5% Triton X-100 and 3% hydrogen

peroxide, then with normal swine serum (diluted: 1/10). The following primary

antisera were used: rabbit anti-NPY (Abcam, Cambridge, UK, dilution: 1/10,000);

mouse anti-NeuN (Chemicon, Temecula, CA, USA, dilution: 1/8000); rabbit anti-

GluA1 (Millipore, Temecula, CA, USA, 1/500); mouse anti-GluA2 (Chemicon,

dilution: 1/200); rabbit anti-GluA2/3 (Chemicon, dilution: 1/400); monoclonal

rabbit anti-GluK2 (clone: EPR6307; Abcam, dilution: 1/3000); mouse anti-NMDAR1

(Abcam, dilution: 1/5000). The sections were incubated under continuous agitation

at room temperature overnight. After washing, the sections were incubated with

the appropriate biotinylated secondary antibody (Jackson ImmunoResearch, West

Grove, PA, USA, dilution: 1/400) for 60 min, and finally with peroxidase-labelled

streptavidin (Jackson ImmunoResearch, dilution: 1/1000) for 60 min. The sites of

immunoreaction were visualized with diaminobenzidine in the absence or

presence of nickel (Adams, 1981). At one particular series of a given immuno-

staining for assessment, all the sections were incubated in aliquots from the same

solutions of either the immunoreagents or the chromogens synchronously for

exactly the same time. The same number of sections of the control and PILO-

responsive animals of both strains was incubated in the same volume of the

solutions.

Image analysis

Pictures were taken with an image-capture system (Olympus DP50) attached to

an Olympus BX-50 microscope (Soft Imaging System GmbH, Münster, Germany).

Image analysis was performed with Adobe Photoshop 7 (Adobe Systems

Incorporated, San Jose, CA, USA). A researcher blind to the experimental conditions

of the animals measured the pixel density of immunostained images. Briefly:

through use of the ‘‘marquee’’ tool, 8–12 circular, 0.1 mm diameter areas were

selected in adjacent positions inside the hippocampal layers. The average of

10 background determinations (carried out near the layers in unstained neuropil-

containing sites) was subtracted from the average pixel densities measured within

the hippocampal layers. Differences between the corresponding hippocampal

regions of the control and PILO-responsive, but non-sclerotic animals were assessed

by using the unpaired one-tailed Student’s t-test. Pearson’s correlation analysis was

used to evaluate the relationship between the optical densities of different

hippocampal layers. Data were analyzed and plotted with the aid of GraphPad 4.0

(GraphPad Software, Inc., CA, USA).

Results

NPY immunohistochemistry

According to previous data (Scharfman and Gray, 2006), only
a few, small NPY-immunoreactive neurones were scattered
throughout the hippocampus of the control animals (Fig. 1A).
These interneurones displayed short non-varicose branches.
Dramatic increase in hippocampal NPY synthesis was reported to
be a diagnostic tool to confirm the incidence of spontaneous
recurrent seizures (Sperk et al., 1992; Borges et al., 2003;
Scharfman and Gray, 2006). After the PILO treatment the NPY
immunoreactivity greatly increased in the whole area of the
dentate gyrus (DG) and in the stratum lucidum (SL) of CA3 in
every PILO-responsive mouse (Fig. 1B), irrespective of the
strains.

The vast majority of the increased immunostaining was
localized in the synaptic fields of the MFs. We did not observe
the NPY staining in the perikarya of dentate granule cells (GCs).
Apart from the heavy staining of the MF areas, NPY-immunoreac-
tive puncta were seen in the thin supragranular zone (SGZ) within
the internal molecular layer (IML) of the DG. The immunoreactivity
increased in the molecular layer (ML) too, but in much less extent
than in the areas supplied by MFs. Furthermore, the NPY-
immunoreactive cells in the CA1 region displayed stronger staining
ces of ionotropic glutamate receptor subunits in the hippocampus
mice. J. Chem. Neuroanat. (2015), http://dx.doi.org/10.1016/
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Fig. 1. PILO-induced changes in the mouse hippocampus after 2 months are demonstrated using NPY (A–C) and NeuN (D–F) immunohistochemistry. In the control animals,

sparse cellular NPY immunoreactivity was observed (A). In the PILO-responsive animals, NPY expression significantly increased in the synaptic fields of the MFs in the hilus

and SL (B), which is typical of animals with spontaneous recurrent seizures. In 3 animals out of 18 PILO-responsive NMRI mice, hippocampi exhibited greatly reduced lateral

extent of SL (C). High density of NeuN-immunoreactive neurones is visible in the layers of GCs and PCs of the control animals (D). Occasionally, subsets of PCs were lost in

patches (asterisk) in the CA3 region (E). NeuN immunohistochemistry confirmed extensive loss of neurones in the sclerotic hippocampus of NMRI mouse (F). Images C and F

were taken from the same animal. SL: stratum lucidum; H: hilus; GC: granule cell; PC: pyramidal cell. Scale bar: 250 mm.

E. Dobó et al. / Journal of Chemical Neuroanatomy xxx (2015) xxx–xxx 3

G Model

CHENEU 1316 1–11
in PILO-responsive animals. Newly formed immunopositive
processes were not detected in this region.

In the NMRI strain, but not in the Balb/c mice, 3 animals out of
18 PILO-responsive mice developed hippocampal sclerosis
(Fig. 1C). In the sclerosed hippocampi, the lateral extent and the
width of SL in the CA3a were dramatically reduced, but the NPY
staining was strong. In these three animals, the hilus of the DG was
also strongly labelled similarly to other PILO-responsive animals of
the NMRI and Balb/c strains.

NeuN immunohistochemistry

Neuronal loss was checked by means of NeuN immunostaining
in the PILO-responsive animals. In 3 out of the 7 PILO-responsive
Balb/c mice, the number of pyramidal cells (PCs) in the CA3a and
Please cite this article in press as: Dobó, E., et al., Interstrain differenc
and induction of hippocampal sclerosis with pilocarpine in m
j.jchemneu.2015.02.002
CA3b subregions was slightly reduced (Fig. 1D and E). No
considerable loss of PCs was observed in the CA1, CA2 and CA3c
regions. By comparing the subsequent NPY- and NeuN-immunos-
tained sections of the same Balb/c animals, no correlation was
detected between the extent of NPY immunoreactivity and the
degree of cell loss.

In the NMRI strain, the cell loss was more pronounced, 8 out of
the 18 PILO-responsive mice displayed patchy neuronal loss in the
PC layer of CA1 and CA3 regions. In 3 out of 18 PILO-responsive
animals, the marked loss of PCs extended from the CA3a/b to the
CA3c subregion (Fig. 1F). The PILO-responsive animals that
displayed the loss of the entire NeuN-immunoreactive CA3 PC
populations were referred as to sclerotic in this study. The paired
comparisons of the NPY- and NeuN-immunostained sections
revealed that the NPY-immunoreactive SL was greatly shortened in
es of ionotropic glutamate receptor subunits in the hippocampus
ice. J. Chem. Neuroanat. (2015), http://dx.doi.org/10.1016/

http://dx.doi.org/10.1016/j.jchemneu.2015.02.002
http://dx.doi.org/10.1016/j.jchemneu.2015.02.002
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e animals with this pattern of neuronal damage (Fig. 1C and F).
e absence of CA3c PCs and the characteristic shortage of NPY-
munoreactive SL differentiate the aforementioned 3 mice from

e other PILO-responsive individuals. Beside the loss of CA3 PCs,
 the two sclerotic mice, the superior blade of the GC layer was
maged to a large extent (Fig. 1F). Because of the distorted
ppocampal structure of the sclerotic mice, the consistent laminar
alysis of the iGluR subunits was not possible.

PAR immunohistochemistry

AMPAR antibodies to GluA1, GluA2, GluA2/3 provided similar
munostaining in the consecutive sections (Fig. 2). The strongest
munostaining was observed with the GluA1 antibody (Fig. 2A),

hile the GluA2/3 antibody gave the weakest staining (Fig. 2E). The
tibodies stained mainly neuropil: the most intense staining was
perienced in the stratum oriens (SO) and stratum radiatum (SR)

 CA1 region. The least intense staining was found in the hilus of
e DG and in the SL of CA3. GluA2 and GluA2/3 antibodies also
ained several multipolar neurones in the hilus (Fig. 2C and E),
hich were supposedly mossy cells (MCs) (Tang et al., 2005). It is
orth noting that the layer-to-layer comparisons of the semi-
antitative data of the two strains revealed significant density

fferences in the GluA2 immunoreactivities of the DG. The ML and
e hilus of the NMRI mice showed lower values compared to the
lb/c mice (�23% and �79%, respectively, empty columns in

g. 3).
PILO-treatment resulted in remarkable changes in the immu-

reactivity, the extent of which was analyzed in some of the
ppocampal layers by means of semiquantitative immunohis-
chemistry (Table 1, Fig. 3). The density of the GluA1 immunore-
tivity decreased in every hippocampal layer (Fig. 2B), except the
1 SR of the NMRI mice. In all other layers, very similar changes

ere observed in both strains. The most significant reductions
ere found in the dentate hilus (�72% for Balb/c and �69% for

RI).
The GluA2 immunostaining density also decreased in both

rains (Fig. 2D). The intensity changes in the layers were two- or
ree-fold higher in the Balb/c strain than in the NMRI strain. The
ghest reduction of the GluA2 immunoreactivity was found in the
naptic field of the MFs in both strains. The statistical analysis of
e GluA2/3 immunohistochemical results (Fig. 2F) showed largely

ilar alterations. The lowest density values and the highest
gree of reduction of the optical densities were found in the hilus

 the DG in the Balb/c and NMRI mice (�58% and �45%,
spectively). The density of the hilar immunopositive cells
nificantly reduced in both mouse strains (�29% for Balb/c
d �62% for NMRI).

uK2 immunohistochemistry

The application of the rabbit monoclonal antibody for the
tection of the low affinity GluK2 KAR subunit resulted in a

aining pattern very similar to that of the AMPAR antibodies in the
ppocampus (Fig. 2G). In the control animals, strong immunore-
tivity was observed in the hippocampus. Weak immunostaining
as found in the pyramidal and the granular layers, in the hilus
d in the SL of CA3 (Fig. 2G). The layer-to-layer comparisons of the
ta from the two strains revealed significant intensity differences

 the GluK2 immunoreactivities: the ML and the hilus of the NMRI
rain exhibited higher density values than the Balb/c mice (+22%
d +79%, respectively, empty columns in Fig. 3).
After PILO treatment, the intensity of the GluK2 immunoreac-
ity increased in the hippocampus (Fig. 2H). An increase in the
munostaining density was found in every hippocampal layer of

e Balb/c mice: the highest increase was observed in the hilus
Please cite this article in press as: Dobó, E., et al., Interstrain differen
and induction of hippocampal sclerosis with pilocarpine in 
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(+43%; Table 1). Opposite alteration, the decrease of the GluK2
density was observed in the hilar region of the NMRI mice (�27%;
Table 1). Intensity increases were also significant in the SR of CA1
and the stratum lacunosum-moleculare (SLM) of CA3 in the Balb/c
strain (+23% and +15%, respectively). In the NMRI mice similar, but
less increase was observed in those layers (+13% in SR, +8% in SLM).
The ML of the Balb/c mice showed +13% intensity increase, while
no alteration was measured in the ML of the NMRI mice. In both
strains, no significant changes were detected in the staining
intensity of the SL (Table 1).

GluN1 immunohistochemistry

GluN1 immunohistochemistry revealed a laminar staining
pattern in the control hippocampus, which was similar to the
AMPAR immunostaining (Fig. 2I). In contrast to the AMPAR
antibodies, the GluN1 antibody did not label neurones in any of the
examined areas. The most intense neuropil staining was found in
the SO and the SR. The staining of these layers was increasing
towards the subiculum. Moderate immunostaining was experi-
enced in the SLM and the SM, while the weakest staining was
observed in the hilus, the SL of CA3 and in the pyramidal and the
granular layers. The staining in the hilus was almost nil, therefore
no measurements were done there. On the other hand, the SGZ
displayed a relatively strong labelling, which was evaluated in
PILO-treated mice.

PILO treatment exerted measurable effects on the GluN1
immunostaining in the hippocampal layers of the two examined
mouse strains (Fig. 2J, Table 1). In the Balb/c specimens the
intensity of the staining in the SR and in the SLM of CA1 were
significantly decreased (�32% and �36%, respectively, Table 1).
The PILO treatment did not cause modification in the immuno-
staining density of the overall ML of the DG. However, in the close
vicinity of the GC layer, that is in the SGZ our semiquantitative
method revealed a significant intensity decrease (�16%). In the
NMRI mice the only significant change, an increase (+29%) was
measured in the SLM of CA1.

Correlation analysis

The optical density data of the immunohistochemical stainings
in the hippocampal layers of the non-sclerotic PILO-responsive
NMRI mice were subjected to correlation analysis. The pairwise
comparisons within the individual animals revealed several
significant relationships between the densities of the receptor
subunits and NPY staining.

A set of relationships concerns the dendritic field of GCs in
the ML and their axon terminal field in the SL. While in the ML
considerably decreased GluA1 immunoreactivity was found, in
the SL markedly increased NPY immunoreactivity was mea-
sured. The pairwise correlations yielded a significant negative
correlation value (�0.636) between the pixel densities of the
GluA1 and NPY, i.e. the higher density of the NPY immunoreac-
tivity coincided with the more decrease of the GluA1 immuno-
reactivity, compared to the average values of the control animals
(Fig. 4).

Opposite changes were found when densities of NPY in the SL
and GluA2 in the ML were subjected to pairwise correlations.
Although, marked increase and decrease in the immunoreactivities
were found for NPY and GluA2, respectively, the appropriate
correlations revealed a positive correlation value (+0.462) between
the pixel densities of the NPY and GluA2, i.e. the higher increase in
the immunoreactivity for NPY coincided with the less decrease
(relatively elevated level) of the GluA2 staining (Fig. 4).

Pairwise comparisons of the GluA1 and GluA2 immunoreactiv-
ities in the ML confirmed the previous data analysis. Although,
ces of ionotropic glutamate receptor subunits in the hippocampus
mice. J. Chem. Neuroanat. (2015), http://dx.doi.org/10.1016/
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Fig. 2. PILO-treatment resulted in intensity changes in the immunoreactivity for GluA1 (A, B), GluA2 (C, D), GluA2/3 (E, F), GluK2 (G, H) and GluN1 (I, J) in the hippocampal

layers of control (A, C, E, G and I) and PILO-responsive (B, D, F, H and J) Balb/c mice. The immunohistochemical results show an overall reduction in the AMPAR subunit- and

GluN1-immunoreactive densities, whereas the GluK2 immunoreactivity increases in the whole hippocampus. Note that the spontaneous AMPAR immunoreactivity nearly

vanished in the hilar neuropil (compare insets in E and F), while many multipolar neurones, supposedly MCs, retained their immunoreactivity for the AMPAR subunits in the

hilus. H: hilus. Scale bar: 250 mm.
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significant decreases of both staining intensities were found, the
pairwise correlation showed a negative correlation value (�0.445)
between the pixel densities of the GluA1 and GluA2, i.e. the
stronger immunoreaction with GluA1 seemed to be significantly
related with the weaker immunoreactivity for GluA2, which
denoted inversely proportional changes of the GluA1 and GluA2
immunoreactivities (Fig. 4). Decreased GluA1 immunoreactivity in
the hilus was found to be inversely correlated with the decrease in
Please cite this article in press as: Dobó, E., et al., Interstrain differenc
and induction of hippocampal sclerosis with pilocarpine in m
j.jchemneu.2015.02.002
the immunoreactivity for GluK2 in the same layer (Pearson’s
correlation value: �0.557), i.e. the less the hilar GluA1 immunore-
activity decreased, the more the GluK2 immunoreactivity reduced
in the hilus. The pairwise correlations between the changes in the
GluR subunits within the hippocampal layers showed also that in
the SL the less increased NPY-immunoreactive layer was coincided
with the more decreased GluA2-immunoreactive one (Pearson’s
correlation value: +0.467).
es of ionotropic glutamate receptor subunits in the hippocampus
ice. J. Chem. Neuroanat. (2015), http://dx.doi.org/10.1016/
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Fig. 3. Distributions of GluA1, GluA2, GluA2/3, GluK2, GluN1 immunoreactivities in the hippocampal layers of control (empty columns) and non-sclerotic PILO-responsive

(filled columns) Balb/c and NMRI mice are compared. The most remarkable differences between the two studied strains were found in the GluA2 and GluK2 immunoreactivity

of the hilus and the ML (compare the matched empty columns). Note that the PILO treatment resulted in general reductions in the densities of the hippocampal AMPAR and

GluN1 subunits, and increases in the levels of the GluK2 immunoreactivity in both strains (empty vs filled columns) (Differences were significant at p < 0.05; *p < 0.05,

**p < 0.01, ***p < 0.001, ****p < 0.0001.) The values of the significant changes are summarized in Table 1. ML: molecular layer; H: hilus; SL: stratum lucidum; SR: stratum

radiatum; SLM: stratum lacunosum-moleculare; SGZ: supragranular zone.
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Table 1
The summary of the effects of PILO treatment on the GluA1, GluA2, GluA2/3, GluK2, GluN1 immunoreactivities in the hippocampal layers of the non-sclerotic Balb/c and NMRI

mice. The changes of immunoreactivities are expressed in percent.

Animal strain SR SLM SLM (CA3) ML SGZ H SL

GluA1 Balb/c �12** �42**** �72**** �34****

NMRI �1 �28**** �69**** �35****

GluA2 Balb/c �17**** �33**** �64**** �45****

NMRI �6* �18** �32 �27****

GluA2/3 Balb/c �9** �32**** �58**** �14

NMRI �3 �21** �45** �23**

GluK2 Balb/c +23*** +15* +13* +43* +6.5

NMRI +13**** +8** �3 �27** +1

GluN1 Balb/c �32**** �36**** �4 �16**

NMRI �2 +29** �0.4 �6

The values of significance are indicated as follows:
* p < 0.05.
** p < 0.01.
*** p < 0.001.
**** p < 0.0001.

Note the several marked interstrain differences in the responses of the strains to the convulsant at the level of the iGluRs. SR: stratum radiatum; SLM: stratum lacunosum-

moleculare; ML: molecular layer; SGZ: supragranular zone; H: hilus; SL: stratum lucidum.
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The sclerotic hippocampus of the NMRI mice

The PILO-responsive NMRI mice, but not the Balb/c mice,
showing greatly enhanced NPY immunoreactivity in the hilus and
SL, were divided into two groups on the basis of the severity of the
NeuN-immunoreactive cell loss in the CA3. In this study, the
arbitrary distinction between the groups was the presence or the
absence of PCs in the CA3c subfield in the non-sclerotic PILO-
responsive and the sclerotic mice, respectively. In the non-sclerotic
PILO-responsive group, CA3c PCs persisted even in those cases
where a complete segment of CA3a/b vanished (Fig. 5). In this
group, the NPY-immunoreactive SL seemingly remained un-
changed. However, in the 3 sclerotic mice out of 18 PILO-
responsive ones, the damage to the CA3 PCs was coincided with the
drastic loss of the NPY enhanced area (Figs. 1C and 5).

Immunohistochemistry for the iGluRs in the sclerotic mice
revealed robust changes in the distributions of all studied subunits,
when compared with those in the non-sclerotic PILO-responsive
mice. In the sclerotic animals, large areas lost their corresponding
immunoreactivities partially or even completely. Very strong
coincidence was observed in the severity of the density reductions
in the immunoreactivities for GluA1, GluK2, GluN1 and NeuN. The
areas with highly reduced immunoreactivity involved the CA1
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Fig. 4. Correlations between the changes in the immunostainings of NPY in the

terminal field of the MF (SL) and iGluR subunits in the dendritic field of GCs (ML)

were probed in the individual non-sclerotic PILO-responsive NMRI mice by the

Pearson’s correlation analysis. Bidirectional relationships were found between the

NPY and the iGluRs immunoreactivities; the more intense immunoreactivity for

NPY coincided with the more and the less decreases in immunoreactions with

GluA1 and GluA2, respectively, the changes in the GluA1 and GluA2

immunostainings were inversely proportional. Correlation values of pairwise

comparisons were �0.636 between NPY and GluA1, 0.462 between NPY and GluA2,

�0.445 between GluA1 and GluA2. SL: stratum lucidum; ML: molecular layer.
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region, including all of its layers (Fig. 5). The damage to the SO was
more extended than that of the SR in the same section. The more
CA1 PCs were lost, the larger areas in the SR disappeared from the
immunostaining. In the case of the considerable loss of GCs, the ML
of the DG lying towards the damaged SR was also greatly affected.
It is worth noting that in the apparently intact areas within the ML,
the immunoreactivity for GluK2 seemed to be slightly increased
(Fig. 5L), whereas immunoreactivities for GluA1 and GluN1 in the
corresponding areas in the subsequent sections were significantly
reduced.

Discussion

Hippocampal sclerosis and axonal sprouting

Temporal lobe epilepsy is the most common type of epilepsy in
adults, which is frequently associated with hippocampal sclerosis,
which is a complex histopathological manifestation of neuronal
cell loss and aberrant fibre sprouting. Several lines of evidence
suggest the vulnerability of excitatory MCs (Scharfman and Myers,
2012), PCs (Wasterlain et al., 1993; Borges et al., 2003) and the
vulnerability of some inhibitory neurones (Houser and Esclapez,
1996) to the seizures. The question whether the loss of cells
contributed to the epileptogenesis or the cell loss was the
consequence of the repeated seizures has not been answered
reliably. The surviving GCs and inhibitory neurones react to
convulsions and cell death with excessive fibre/axonal sprouting
(Curia et al., 2008; Levesque and Avoli, 2013). There is a general
notion that the activity of GCs increases in spite of earlier
suggestions that GCs are hyperinhibited and remain relatively
quiet during spontaneous seizures (Harvey and Sloviter, 2005).

GCs do not only Qsprout but also change their chemotype during
the chronic seizure (Gutiérrez, 2003). Several experiments proved
that tonic–clonic seizures evoked with electrical kindling (Rizzi
et al., 1993), kainate (Gruber et al., 1994; Sperk et al., 1992) or PILO
(Lurton and Cavalheiro, 1997) result in the appearance of strong
and long-lasting NPY immunoreactivity in MFs. The persistent NPY
immunoreactivity in hippocampal sclerosis indicated the impor-
tance of this chemotype change in the maintenance of the seizures
and/or in the survival of GCs.

Mouse strain differences

Various animal models offer suitable strategies for the
investigation of complex neurological disorders such as epilepsy.
Extrapolation of the results from one species and/or strain to
es of ionotropic glutamate receptor subunits in the hippocampus
ice. J. Chem. Neuroanat. (2015), http://dx.doi.org/10.1016/
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Fig. 5. PILO treatment may cause hippocampal sclerosis in some of the NMRI mice. Changed immunoreactivities are demonstrated in one non-sclerotic PILO-responsive (A, D,

G, J, M) and two sclerotic NMRI mice (sclerotic mouse 1: B, E, H, K, N; sclerotic mouse 2: C, F, I, L, O) with different degree of tissue damages. (A–C) Enhanced NPY

immunoreactivity is a reliable marker for the animals’ response to the PILO treatment, cf. Fig. 1A. (D–F) NeuN-immunoreactive PCs remained or disappeared in the CA3c of the

non-sclerotic (D) and sclerotic hippocampi (E, F), respectively, in addition to various cell loss in other areas. In the sclerotic animals large areas lost their corresponding

immunoreactivities of GluA1 (G–I), GluK2 (J–L) and GluN1 subunits (M–O) partially or even completely. SL: stratum lucidum; H: hilus. Scale bar: 250 mm.
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hers, is fairly questionable, since the rodents demonstrate
nificant species-, strain- and even intrastrain differences in the
sceptibility to convulsive agents and the consequences of
izures (Curia et al., 2008; Portelli et al., 2009).
Certain rodent strains exhibiting high resistance to chemically

duced status epilepticus did not undergo degeneration or cell
mage in spite of similar seizure severity (Schauwecker and
eward, 1997). In our study, Balb/c and NMRI strains were
mpared for their chronic responses to the chemoconvulsant
LO. According to the historical records (Beck et al., 2000; Chia
 al., 2005) about the origins of these strains, no common
Please cite this article in press as: Dobó, E., et al., Interstrain differen
and induction of hippocampal sclerosis with pilocarpine in 
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progenitors were found. The immunohistochemical staining
revealed considerable hippocampal differences, though the NPY
immunoreactivity was equally intense in the hilus and SL after 2-
month post-treatment period. It is noteworthy that we recently
reported our results about the effects of PILO treatment on a third
mouse strain, CFLP (Karoly et al., 2011), which was thought not to
share progenitors with the other two strains of this study (Beck
et al., 2000). Strikingly, in contrast to Balb/c and NMRI strains, all
individuals of which suffered from the status epilepticus showed
marked NPY immunoreactivity in the field of the MFs, a
considerable portion of the PILO-treated CFLP mice failed to
ces of ionotropic glutamate receptor subunits in the hippocampus
mice. J. Chem. Neuroanat. (2015), http://dx.doi.org/10.1016/
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exhibit either marked NPY immunoreactivity or ectopic MF
sprouting in the SGZ.

The strain-adjusted doses of PILO that were applied did not
result in visible neuronal loss in the NeuN immunostained
preparations of 57.1% of the Balb/c and 55.5% of the NMRI. In the
rest of the animals, the CA3a/b subregions lost the neurones in
both strains in various degrees. An important difference
between the two studied strains was the specific elimination
of CA3c PCs from 17% of the PILO-responsive NMRI, whereas
these cells seemed to remain intact in the Balb/c mice. This
difference is in line with several papers reporting that (1) Balb/c-
related strains (Balb/cJ and Balb/cByJ) were found to be resistant
to PILO-induced status epilepticus for noticeable neuronal loss
(Schauwecker, 2012), and (2) the descendants of the so called
Swiss mice, a separate genealogical line (Beck et al., 2000),
including the NMRI strain, were found to undergo severe
damage to the CA3 PCs (Turski et al., 1984; Riban et al., 2002;
Tang et al., 2005).

AMPA receptors

The efficacy of the AMPAR-associated glutamatergic neuro-
transmission depends on the density, the stoichiometry of the
combining subunits, the modifications of the subunits (Russo et al.,
2013). Receptor-binding studies measuring AMPARs in the
hippocampal homogenates from seizure-prone (DBA/2J) and
seizure-resistant (C57BL/6J) mice did not find detectable inter-
strain differences (Frandsen et al., 1987; Kurschner et al., 1998). No
strain-dependent differences of the GluR subunits in the intact
hippocampi of mice were found with immunohistochemical
methods, either (Schauwecker, 2003). However, our semiquanti-
tative layer-to-layer comparisons of the AMPAR subunits showed
interstrain differences between the age-matched control animals
in the GluA2 but not in the GluA1. The differences were confined to
the DG; the hilus contained less GluA2 (�79%) in the NMRI mice
compared to the Balb/c. Coincidentally, the NMRI strain received
more amount of PILO than the Balb/c strain to obtain equal number
of PILO-responsive animals. Since the hilar GluA2 immunoreactivi-
ty is accounted for by the MCs, the remarkably higher density of
the Na+-permeable GluA2 immunoreactivity in the Balb/c may
serve as an explanation for its higher vulnerability to PILO than the
NMRI strain.

After the PILO treatment, our AMPAR immunohistochemical
results showed an overall reduction in the density of this iGluR
type in the non-sclerotic PILO-responsive hippocampus. It was
indicated earlier that the experimental inhibition of AMPARs can
prevent long-term increases in seizure susceptibility and seizure-
induced neuronal injury (Koh et al., 2004). Thus, the significant
decrease of AMPARs of the PILO-responsive hippocampus sug-
gested an extensive attenuation of excitatory response to
glutamate.

In the Balb/c mice, the decreases of the GluA1 and GluA2
subunits were comparable; their layer-by-layer ratios seemed
unaltered. The general reduction of the AMPAR density and the
absence of the change in the ratio of the GluA1 and GluA2 subtypes
indicated an intrinsic neuroplastic mechanism for counterbalan-
cing the increased excitability of hippocampus.

In the NMRI mice, the degree of the changes was less marked
than in the Balb/c strain, though the loss of the PCs and MCs was
more pronounced in the NMRI than in the Balb/c, resulting in
proneness of NMRI to hippocampal sclerosis, but not the Balb/c.
Besides, the MCs were more vulnerable to the PILO treatment in
the NMRI than in the Balb/c (62% and 29%, respectively). This
comparison also indicates that the general reduction in the
AMPAR level is not directly correlated with the loss of the
principal neurons.
Please cite this article in press as: Dobó, E., et al., Interstrain differenc
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The changes of the subtypes in the NMRI strain were examined
by means of Pearson’s correlation analysis in order to see the
relationships between the GluA1 and GluA2 subunits in the
individual animals. The results showed that the robust reductions
in the GluA1 and GluA2 densities (�28% and �18%, respectively) in
the ML were composed of significant (�0.445), inversely propor-
tional changes of these two GluR subunits; even though the
densities of both subunits decreased.

The correlation analysis between the changes of GluA1 and
GluA2 in the ML and the changes of NPY in the SL pointed to
significant tendencies, too. GCs, which may receive strong
synchronized nerve impulses in the ML, and terminate in the SL,
can be appropriate links between these three parameters. In the
ML, the relatively less reduced density of the GluA2 may render the
AMPAR less permeable the membrane for Ca2+. Thereby, the Ca2+-
operated K+ channels may be less activated, which are the key
elements for the afterhyperpolarization. The shorter duration of
afterhyperpolarization may less prevent the GCs from the intense
input. This susceptibility of the cells for the seizure-like activity
could be compensated by two mechanisms. On one hand, the
density of the GluA1 is more reduced. On the other hand, the
density of the inhibitory NPY is more elevated in the terminal field
of GCs. This tentative explanation may be in an agreement with
some authors’ notion that the increased NPY immunoreactivity in
the SL of the mice is a reliable indicator of the incidence of
recurrent seizures (Sperk et al., 1992; Borges et al., 2003;
Scharfman and Gray, 2006).

Low-affinity kainate receptor: GluK2

KARs are present on both sides of the synapse, where they play
distinct and diverse roles (Huettner, 2003; Lerma, 2003; Fernandes
et al., 2009; Sihra et al., 2014). In our experiments, the GluK2
subunit was chosen to represent the distribution of the KARs by
means of immunohistochemistry. This subunit was supposed to
play a central role in the formation of presynaptic and postsynaptic
KARs (Wenthold et al., 1994; Contractor et al., 2001). In the control
animals, interstrain differences were confined to the DG: the ML
and the hilus of the NMRI mice contained +22% and +79% more
immunoreactivity, respectively, than those of the Balb/c strain.
Investigation of GluK2-overexpressing and knockout animals
suggested that the presence of hippocampal GluK2 promotes
seizure activity (Mulle et al., 1998; Telfeian et al., 2000).

Although the densities of the immunohistochemistry for the
AMPARs were found to be generally decreased in the non-sclerotic
PILO-responsive animals in both mouse strains, immunostaining
for the GluK2 was ambiguously altered between the two strains
and between the hippocampal layers within the given strain. In
Balb/c mice, the decrease of AMPARs was accompanied by the
increase of KAR density in the DG. In the NMRI mice, AMPAR
decreases were not followed by opposite KAR alterations.

The diverse changes in the GluK2 levels within the individual
hippocampal layers cannot be interpreted reliably on the basis of
the data available in the literature (Vincent and Mulle, 2009). The
GluK2 mRNA is mainly expressed in the glutamatergic principal
cells of the hippocampus (Paternain et al., 2000). Presynaptic
GluK2-containing KARs can modulate glutamate release not only
via ionotropic but also via metabotropic modes (Rodriguez-
Moreno and Sihra, 2007). Furthermore, glutamate may exert
bimodal effect on its own release in a concentration dependent
manner on certain presynaptic elements (Ruiz and Kullmann,
2012). The net effects of the GluK2-associated changes on the
spontaneous recurrent seizures may also be affected by the
GABAergic interneurones, which may receive glutamatergic
inputs, and are involved in the regulation of the activity of the
hippocampal principal cells (Christensen et al., 2004).
es of ionotropic glutamate receptor subunits in the hippocampus
ice. J. Chem. Neuroanat. (2015), http://dx.doi.org/10.1016/
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iquitous NMDA receptor subunit: GluN1

NMDARs colocalize with AMPARs to form the functional
naptic unit at virtually all central synapses, where the NMDARs
n modulate glutamatergic neurotransmission postsynaptically

 generating long-lasting Ca2+ influx and depolarization. The
nctional channels are heteromeric consisting of the obligatory
uN1 and the associated other subunits of any of the NR2A-D
btypes (Garcia-Gallo et al., 2001).
Interstrain differences were also experienced after the compar-
n of the GluN1 immunohistochemical results of the two studied

rains. In the Balb/c mice, marked decrease was detected in the
ical dendritic field of CA1 PCs: reductions were found in the SR,

here the Schaffer collaterals terminate, and in the SLM (�32% and
36%, respectively) where many fibres of the temporo-ammonic
thway innervate the distal dendritic branches of PCs. The
duction in the CA1 may result from the downregulation of the

DARs, which was also reported in electroconvulsive seizures
ark et al., 2014).

The similar degrees of reductions in the SR and SLM may be
counted for by either the lack of precise membrane trafficking of
e NMDAR subunits to input-specific sites along the dendritic
ee, or the similar degrees of involvements of the putative
ileptic excitations at CA1 PCs along the perforant path fibre–MF–
haffer collateral axis and the temporo-ammonic pathway. The
uN1 reduction in the SGZ could be attributed to the appearance

 the ectopic MFs in this sublayer, as indicated by many previous
ports (Buckmaster, 2012; Pierce et al., 2005).

GluN1 immunohistochemical staining of the NMRI hippocampi
sulted in a significant increase in the SLM of CA1, which may
ntribute to the increased susceptibility of this strain to the PILO-
duced hippocampal sclerosis.

nclusions

Comparison of the laminar distribution of the iGluR subunits in
two mouse strains (Balb/c and NMRI) with no documented
common ancestors revealed some interstrain differences. The
most remarkable differences between the two strains were
found in GluA2 and GluK2 immunoreactivity of the hilus and the
ML, which may indicate the involvement of MCs in the
interstrain differences in their predisposition to PILO-induced
neuronal alterations.
PILO-induced status epilepticus resulted in significantly differ-
ent degrees of changes in the laminar immunoreactivitiy for the
iGluR subunits in the two strains. The alterations of the neuronal
circuitry showed bidirectional relationships with the inversely
correlated changes of the GluA1 and GluA2 levels in the DG of
the individual non-sclerotic NMRI mice.
The PILO treatment caused sclerotic hippocampi in some NMRI
mice, whilst Balb/c animals seemed to be more resistant to
hippocampal neuronal death. The big strain difference
suggests that the researchers have to be careful in choosing
the suitable strains as the model animals for studying
temporal lobe epilepsy, since the genetic divergence can
highly determine the diverse disposition to hippocampal
sclerosis.
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