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Some applications of Retkes’ identity

PETER KORUS

Abstract. We present some formulas for certain numeric sums related to
the Riemann zeta function. The main tool used in our investigation is
Retkes’ identity. We get a formula for ¢(3) with the Euler beta function
in it.
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1. Introduction. Retkes proved in [1] the following interesting theorem as an
extension of the Hermite-Hadamard inequality.

Theorem 1.1. Suppose that co < a < b < oo, and let f : [a,b) — R be a convex
function, z; € (a,b), i =1,...,n, such that x; # z; if 1 <i < j <n. Then
the following inequality holds:

In the concave case “<” 1is changed to “>".

Moreover, he showed some consequences and applications of Theorem 1.1,
see [1,2]. We need the following identity [1].
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Corollary 1.2. Ifx, #0, k=1,...,n and x; # z; if 1 <i<j<mn, then

- 1 n 1
Z;: kl_IlszxQHkxl,...,x)'

=1 "k

2. Application. We want to investigate the application of Corollary 1.2 for
certain sums. First, for the sum

sl
k?
k=1
using the fact
e(1,2,...,n) = (=1)" *(k = 1)!(n— k)!,

one can easily get the well-known formula [3, p. 5]

Formula 2.1.

S-St

Now apply Corollary 1.2 for the sum

"1
=1

We have that
i(1,3,...,2n —1) = 2" H(=1)" " F(k = 1)!I(n — k)!.

Hence
n 1 e . n B n 1
,;2147*1 =1 H@k 1); (2k — 1)2 27— 1(=1)" "k — 1)I(n — k)!
N (2n)!
B kZ:l 2k— 12 22n=1pl(k — 1)I(n — k)!’

and we obtain

Formula 2.2.
i 1_
2k
k=1

Consider the sum

-5 w0

"1
>
k=1

We calculate that
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1 n
Hk(1747"'7 ) Hk( ?Hk‘+‘7

()" (k= Dl(n — k)!(n + k)!
2k - k!

and

L 17T .2 % 2k - k!
= G LE ZI<:4(71)"7k(k71)!(n7k)!(n+k)!

—9 Zn: (—1)k1 (n)?
k2(n— k) (n+ k)"

k=1
Hence we proved

Formula 2.3.

Zn:i — Qi(_l)k—l (Z) —9 - (_l)k—l (n2-&7-lk)
=t k(N B

k=1

Let us take a look at
" 1
kzzl 2k —1)*"
Now

I,(1,32,...,(2n — 1)?) = I14(1,3,...,2n — 2%_1 H (k+j—1)

m=1(—1)" (k= 1)(n — k)! 2"(n +k—1)!
202k — 1) - (k — 1)! ’

> e =0 ek
k=1 k=1

n

2(2k — 1)
xk; 2%k — 1)*2n=1(=1)" F(n— k)27 (n+ k — 1)!

- ((2n))?
—1)*22@n=1) (n))*(n — K)(n+ k — 1)!

k:l
We get

Formula 2.4.

>~ () B i o)

k=1

Tt is interesting to consider the infinite series converging to ((3),

=1
:ZE'
k=1
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1
For the partial sums Z 73 we need

k=1
,(1,8,...,n%) = I,(1,2,... Hk‘2+kj—|—j
_ nk 2

Then we have

Sy f[ 3§nj i
pot k3 P n kk'(

k=1 W)=y (B2 + kj + 57)
?

- (n
3; o T 2 + 5 1 %)

and

Formula 2.5.

n 1 B n . (n)(n')Z
;EJ;(*N P02+ 5177

Before our formula for ¢(3), we study the terms in Formula 2.5. First one
can see that for an arbitrarily fixed k,

n 2
(5) () kB s B L V3, .
H?zl(k‘z—i—k:j—l—jz) k B(zkz—i- 5 k:z,2k 5 ki as n — oo

(2.1)
where B(z,y) is the Euler beta function [3, p. 909]
T4y (x + y +7)
B = x,y#0,—1,...).
(v H S )
Indeed, for a fixed k,
k
() (n) —J+1
= kB
1= (B2 + kj + %) k2Hk2+ky+fH nrg Bk

as n — oo, where x;, and y;, are such that xj, + v = k and z,y; = k2. Second,
for any n and k < n, we have

() (1) _mm k) nejt1
1, (k% + kj + 52) =1l kQ]ﬂ(LJkJJrﬂ [ i <1 (2:2)
j:

Then we will prove the following formula.

Formula 2.6.

B(lk + 7\/§kl *1]/»' — 7\/51472)
k ’
=3 E ( 1) 1 2 2 3 2 2 .

k=1
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Proof. Set € > 0 arbitrarily. There exists m(e) for which any n > m(e) satisfies
1
Z ﬁ <e€
k=n
Now fix n > m(e) arbitrarily. By (2.1), there exists an N > n such that

NN|2
GO g (L By L VB
[0+ hj + ) 2T

for any 1 < k < n. Then using (2.2), we get

B(Ak+Lki, Lk—Lri) Y _ (N (N1)?
k 1 2 D) 2 k—1 k
32 e —3> (-1)

N . .
=1 k3 11— (B2 +-kj+52)

<3Zk3+32k3 (3¢(3) + 3)e.

k=n+1

Moreover, by Formula 2.5,

33 (1)t O ()| = |3 & - <o) <
- - = — = g,
P k3T, (k2 + kj + 52) =k
hence

n B(ik+ Bki, 1k — Lki

_ 2 2 3 2
3 (=) ( e ) ¢(3)] < (3¢(3) + e,

k=1

which is the required result. O

It is a natural question what happens if we apply Corollary 1.2 for the sums
“ 1
> W
k=1

if r is an integer greater than 3, since these sums are the partial sums of the
appropriate Riemann zeta function values

Then we have
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Formula 2.7.

" PR kT
Z T (71) k" : : n—k n r .
ok k1;[1 o= R (=) R (= R Ty (e 4R

e (3 m e
=7 (_1)’c k =7 (=) aln, k7).
2 kT (X0 G/)°) >

To produce an identity for {(r) similar to Formula 2.6, with a similar ar-
gumentation as in the proof of Formula 2.6, we can write

C(T) =r Z (_1)k_1a(k7 T) s
k=1

where a(k,r) = lim, . a(n, k,r). For a fair result we need to calculate the
values a(k, r). We can do this by using the software Mathematica [4]. The more
interesting case is when r is odd since for even r, the value {(r) is well-studied.
After calculating the limits a(k,r) for r = 5,7,9, we conjecture the following
formula for odd integers r > 3:

& Lo (1 + 0 0
_ k=1 1
C(r)_rkz_l( D R+ k) '

where I'(z) is the Euler gamma function [3].
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