Some applications of Retkes' identity

PÉTER KÓRUS

Abstract. We present some formulas for certain numeric sums related to the Riemann zeta function. The main tool used in our investigation is Retkes' identity. We get a formula for $\zeta(3)$ with the Euler beta function in it.

Mathematics Subject Classification. Primary 11Y60; Secondary 11M06, 33B15.

Keywords. Retkes' identity, Zeta(3), Binomial coefficients, Alternating sums.

1. Introduction. Retkes proved in [1] the following interesting theorem as an extension of the Hermite–Hadamard inequality.

Theorem 1.1. Suppose that $\infty \le a < b \le \infty$, and let $f : [a,b) \to \mathbb{R}$ be a convex function, $x_i \in (a,b)$, $i=1,\ldots,n$, such that $x_i \ne x_j$ if $1 \le i < j \le n$. Then the following inequality holds:

$$\sum_{k=1}^{n} \frac{F^{(n-1)}(x_k)}{\prod_k (x_1, \dots, x_n)} \le \frac{1}{n!} \sum_{k=1}^{n} f(x_k)$$

where $F^{(j)}$ is the jth iterated integral of f and

$$\Pi_k(x_1, \dots, x_n) = \prod_{\substack{j=1 \ j \neq k}}^n (x_k - x_j).$$

In the concave case "\le " is changed to "\ge ".

Moreover, he showed some consequences and applications of Theorem 1.1, see [1,2]. We need the following identity [1].

Corollary 1.2. If $x_k \neq 0$, k = 1, ..., n and $x_i \neq x_j$ if $1 \leq i < j \leq n$, then

$$\sum_{k=1}^{n} \frac{1}{x_k} = (-1)^{n-1} \prod_{k=1}^{n} x_k \sum_{k=1}^{n} \frac{1}{x_k^2 \Pi_k(x_1, \dots, x_n)}.$$

2. Application. We want to investigate the application of Corollary 1.2 for certain sums. First, for the sum

$$\sum_{k=1}^{n} \frac{1}{k},$$

using the fact

$$\Pi_k(1,2,\ldots,n) = (-1)^{n-k}(k-1)!(n-k)!$$

one can easily get the well-known formula [3, p. 5]

Formula 2.1.

$$\sum_{k=1}^{n} \frac{1}{k} = \sum_{k=1}^{n} (-1)^{k-1} \frac{1}{k} \binom{n}{k}.$$

Now apply Corollary 1.2 for the sum

$$\sum_{k=1}^{n} \frac{1}{2k-1}.$$

We have that

$$\Pi_k(1,3,\ldots,2n-1) = 2^{n-1}(-1)^{n-k}(k-1)!(n-k)!$$

Hence

$$\sum_{k=1}^{n} \frac{1}{2k-1} = (-1)^{n-1} \prod_{k=1}^{n} (2k-1) \sum_{k=1}^{n} \frac{1}{(2k-1)^2 2^{n-1} (-1)^{n-k} (k-1)! (n-k)!}$$
$$= \sum_{k=1}^{n} (-1)^{k-1} \frac{(2n)!}{(2k-1)^2 2^{2n-1} n! (k-1)! (n-k)!},$$

and we obtain

Formula 2.2.

$$\sum_{k=1}^{n} \frac{1}{2k-1} = \binom{2n}{n} \sum_{k=1}^{n} (-1)^{k-1} \frac{k}{(2k-1)^2 2^{2n-1}} \binom{n}{k}.$$

Consider the sum

$$\sum_{k=1}^{n} \frac{1}{k^2}$$
.

We calculate that

$$\Pi_k(1,4,\ldots,n^2) = \Pi_k(1,2,\ldots,n) \frac{1}{2k} \prod_{j=1}^n (k+j)$$
$$= \frac{(-1)^{n-k} (k-1)! (n-k)! (n+k)!}{2k \cdot k!}$$

and

$$\sum_{k=1}^{n} \frac{1}{k^2} = (-1)^{n-1} \prod_{k=1}^{n} k^2 \sum_{k=1}^{n} \frac{2k \cdot k!}{k^4 (-1)^{n-k} (k-1)! (n-k)! (n+k)!}$$
$$= 2 \sum_{k=1}^{n} (-1)^{k-1} \frac{(n!)^2}{k^2 (n-k)! (n+k)!}.$$

Hence we proved

Formula 2.3.

$$\sum_{k=1}^{n} \frac{1}{k^2} = 2 \sum_{k=1}^{n} (-1)^{k-1} \frac{\binom{n}{k}}{k^2 \binom{n+k}{n}} = 2 \sum_{k=1}^{n} (-1)^{k-1} \frac{\binom{2n}{n+k}}{k^2 \binom{2n}{n}}.$$

Let us take a look at

$$\sum_{k=1}^{n} \frac{1}{(2k-1)^2} \, .$$

Now

$$\Pi_k(1, 3^2, \dots, (2n-1)^2) = \Pi_k(1, 3, \dots, 2n-1) \frac{1}{2(2k-1)} \prod_{j=1}^n 2(k+j-1)$$
$$= \frac{2^{n-1}(-1)^{n-k}(k-1)!(n-k)! 2^n(n+k-1)!}{2(2k-1) \cdot (k-1)!},$$

thus

$$\sum_{k=1}^{n} \frac{1}{(2k-1)^2} = (-1)^{n-1} \prod_{k=1}^{n} (2k-1)^2$$

$$\times \sum_{k=1}^{n} \frac{2(2k-1)}{(2k-1)^4 2^{n-1} (-1)^{n-k} (n-k)! 2^n (n+k-1)!}$$

$$= \sum_{k=1}^{n} (-1)^{k-1} \frac{((2n)!)^2}{(2k-1)^3 2^{2(2n-1)} (n!)^2 (n-k)! (n+k-1)!}.$$

We get

Formula 2.4.

$$\sum_{k=1}^{n} \frac{1}{(2k-1)^2} = \binom{2n}{n} \sum_{k=1}^{n} (-1)^{k-1} \frac{n+k}{(2k-1)^3 2^{2(2n-1)}} \binom{2n}{n+k}.$$

It is interesting to consider the infinite series converging to $\zeta(3)$,

$$\zeta(3) = \sum_{k=1}^{\infty} \frac{1}{k^3} \,.$$

For the partial sums $\sum_{k=1}^{n} \frac{1}{k^3}$, we need

$$\Pi_k(1, 8, \dots, n^3) = \Pi_k(1, 2, \dots, n) \frac{1}{3k^2} \prod_{j=1}^n (k^2 + kj + j^2)$$
$$= (-1)^{n-k} k! (n-k)! \frac{1}{3k^3} \prod_{j=1}^n (k^2 + kj + j^2).$$

Then we have

$$\begin{split} \sum_{k=1}^{n} \frac{1}{k^3} &= (-1)^{n-1} \prod_{k=1}^{n} k^3 \sum_{k=1}^{n} \frac{3k^3}{k^6 (-1)^{n-k} k! (n-k)! \prod_{j=1}^{n} (k^2 + kj + j^2)} \\ &= 3 \sum_{k=1}^{n} (-1)^{k-1} \frac{(n!)^3}{k^3 k! (n-k)! \prod_{j=1}^{n} (k^2 + kj + j^2)} \end{split}$$

and

Formula 2.5.

$$\sum_{k=1}^{n} \frac{1}{k^3} = 3 \sum_{k=1}^{n} (-1)^{k-1} \frac{\binom{n}{k} (n!)^2}{k^3 \prod_{j=1}^{n} (k^2 + kj + j^2)}.$$

Before our formula for $\zeta(3)$, we study the terms in Formula 2.5. First one can see that for an arbitrarily fixed k,

$$\frac{\binom{n}{k}(n!)^2}{\prod_{j=1}^{n}(k^2+kj+j^2)} \to k \cdot B\left(\frac{1}{2}k + \frac{\sqrt{3}}{2}ki, \frac{1}{2}k - \frac{\sqrt{3}}{2}ki\right) \quad \text{as} \quad n \to \infty$$
(2.1)

where B(x, y) is the Euler beta function [3, p. 909]

$$B(x,y) = \frac{x+y}{xy} \prod_{j=1}^{\infty} \frac{j(x+y+j)}{(x+j)(y+j)} \quad (x,y \neq 0, -1, \ldots).$$

Indeed, for a fixed k,

$$\frac{\binom{n}{k}(n!)^2}{\prod_{j=1}^n (k^2 + kj + j^2)} = k \cdot \frac{k}{k^2} \prod_{j=1}^n \frac{j(j+k)}{k^2 + kj + j^2} \prod_{j=1}^k \frac{n-j+1}{n+j} \to kB(x_k, y_k)$$

as $n \to \infty$, where x_k and y_k are such that $x_k + y_k = k$ and $x_k y_k = k^2$. Second, for any n and $k \le n$, we have

$$\frac{\binom{n}{k}(n!)^2}{\prod_{j=1}^n (k^2 + kj + j^2)} = \prod_{j=1}^n \frac{j(j+k)}{k^2 + kj + j^2} \prod_{j=1}^k \frac{n-j+1}{n+j} \le 1.$$
 (2.2)

Then we will prove the following formula.

Formula 2.6.

$$\zeta(3) = 3 \sum_{k=1}^{\infty} (-1)^{k-1} \frac{B(\frac{1}{2}k + \frac{\sqrt{3}}{2}ki, \frac{1}{2}k - \frac{\sqrt{3}}{2}ki)}{k^2} \,.$$

Proof. Set $\varepsilon > 0$ arbitrarily. There exists $m(\varepsilon)$ for which any $n > m(\varepsilon)$ satisfies

$$\sum_{k=n}^{\infty} \frac{1}{k^3} < \varepsilon.$$

Now fix $n > m(\varepsilon)$ arbitrarily. By (2.1), there exists an $N \geq n$ such that

$$\left|\frac{\binom{N}{k}(N!)^2}{\prod_{j=1}^{N}(k^2+kj+j^2)} - k \cdot B\left(\frac{1}{2}k + \frac{\sqrt{3}}{2}ki, \frac{1}{2}k - \frac{\sqrt{3}}{2}ki\right)\right| < \varepsilon$$

for any $1 \le k \le n$. Then using (2.2), we get

$$\left| 3\sum_{k=1}^{n} (-1)^{k-1} \frac{B(\frac{1}{2}k + \frac{\sqrt{3}}{2}ki, \frac{1}{2}k - \frac{\sqrt{3}}{2}ki)}{k^{2}} - 3\sum_{k=1}^{N} (-1)^{k-1} \frac{\binom{N}{k}(N!)^{2}}{k^{3} \prod_{j=1}^{N} (k^{2} + kj + j^{2})} \right|$$

$$< 3\sum_{k=1}^{n} \frac{\varepsilon}{k^{3}} + 3\sum_{k=n+1}^{N} \frac{1}{k^{3}} < (3\zeta(3) + 3)\varepsilon.$$

Moreover, by Formula 2.5,

$$\left| 3 \sum_{k=1}^{N} (-1)^{k-1} \frac{\binom{N}{k} (N!)^2}{k^3 \prod_{j=1}^{N} (k^2 + kj + j^2)} - \zeta(3) \right| = \left| \sum_{k=1}^{N} \frac{1}{k^3} - \zeta(3) \right| < \varepsilon,$$

hence

$$\left| 3 \sum_{k=1}^{n} (-1)^{k-1} \frac{B\left(\frac{1}{2}k + \frac{\sqrt{3}}{2}ki, \frac{1}{2}k - \frac{\sqrt{3}}{2}ki\right)}{k^2} - \zeta(3) \right| < (3\zeta(3) + 4)\varepsilon,$$

which is the required result.

It is a natural question what happens if we apply Corollary 1.2 for the sums

$$\sum_{k=1}^{n} \frac{1}{k^r}$$

if r is an integer greater than 3, since these sums are the partial sums of the appropriate Riemann zeta function values

$$\zeta(r) = \sum_{k=1}^{\infty} \frac{1}{k^r} \,.$$

We calculate like we did in the previous cases.

$$\Pi_k(1, 2^r, \dots, n^r) = \Pi_k(1, 2, \dots, n) \frac{1}{rk^{r-1}} \prod_{j=1}^n \left(\sum_{\ell=1}^r j^{\ell-1} k^{r-\ell} \right)$$
$$= (-1)^{n-k} k! (n-k)! \frac{1}{rk^r} \prod_{j=1}^n \left(\sum_{\ell=1}^r j^{\ell-1} k^{r-\ell} \right).$$

Then we have

Formula 2.7.

$$\begin{split} \sum_{k=1}^{n} \frac{1}{k^{r}} &= (-1)^{n-1} \prod_{k=1}^{n} k^{r} \sum_{k=1}^{n} \frac{rk^{r}}{k^{2r} (-1)^{n-k} k! (n-k)! \prod_{j=1}^{n} (\sum_{\ell=1}^{r} j^{\ell-1} k^{r-\ell})} \\ &= r \sum_{k=1}^{n} (-1)^{k-1} \frac{\binom{n}{k}}{k^{r} \prod_{j=1}^{n} \left(\sum_{\ell=0}^{r-1} (j/k)^{\ell}\right)} = r \sum_{k=1}^{n} (-1)^{k-1} a(n,k,r) \,. \end{split}$$

To produce an identity for $\zeta(r)$ similar to Formula 2.6, with a similar argumentation as in the proof of Formula 2.6, we can write

$$\zeta(r) = r \sum_{k=1}^{n} (-1)^{k-1} a(k, r),$$

where $a(k,r) = \lim_{n\to\infty} a(n,k,r)$. For a fair result we need to calculate the values a(k,r). We can do this by using the software *Mathematica* [4]. The more interesting case is when r is odd since for even r, the value $\zeta(r)$ is well-studied. After calculating the limits a(k,r) for r=5,7,9, we conjecture the following formula for odd integers r>3:

$$\zeta(r) = r \sum_{k=1}^{\infty} (-1)^{k-1} \frac{\prod_{j=1}^{r-1} \Gamma\left(1 + (-1)^{j-1} (-1)^{j/r} k\right)}{k^r \Gamma(1+k)}.$$

where $\Gamma(z)$ is the Euler gamma function [3].

References

- [1] Z. Retkes, An extension of the Hermite-Hadamard inequality, Acta Sci. Math. (Szeged) 74 (2008), 95–106.
- [2] Z. Retkes, Applications of the extended Hermite-Hadamard inequality, Journal of Inequalities in Pure and Applied Mathematics (JIPAM) 7 (2006), article 24.
- [3] A. Jeffrey and D. Zwillinger, Table of Integrals, Series, and Products, Seventh Edition, Academic Press, 2007.
- [4] Wolfram Research, Inc., Mathematica, Version 10.0, Champaign, IL, 2014.

PÉTER KÓRUS
Department of Mathematics,
Juhász Gyula Faculty of Education,
University of Szeged,
Hattyas sor 10, H-6725 Szeged, Hungary
e-mail: korpet@jgypk.u-szeged.hu

Received: 26 March 2014