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ON Λr –STRONG CONVERGENCE OF

NUMERICAL SEQUENCES AND FOURIER SERIES

P. KÓRUS

Abstract. We prove theorems of interest about the recently given Λr -strong convergence. The
main goal is to extend the results of F. Móricz regarding the Λ -strong convergence of numerical
sequences and Fourier series.

1. Introduction

Throughout this paper let Λ = {λk : k = 0,1, . . .} be a non-decreasing sequence of
positive numbers tending to ∞ . The concept of Λ-strong convergence was introduced
in [2]. We say, that a sequence S = {sk : k = 0,1, . . .} of complex numbers converges
Λ-strongly to a complex number s if

lim
n→∞

1
λn

n

∑
k=0

|λk(sk − s)−λk−1(sk−1 − s)| = 0

with the agreement λ−1 = s−1 = 0.
It is useful to note that Λ-strong convergence is an intermediate notion between

bounded variation and ordinary convergence.
The following generalization was suggested recently in [1]. Throughout this paper,

we assume that r � 2 is an integer. A sequence S = {sk} of complex numbers is said
to converge Λr -strongly to a complex number s if

lim
n→∞

1
λn

n

∑
k=0

|λk(sk − s)−λk−r(sk−r − s)| = 0

with the agreement λ−1 = . . . = λ−r = s−1 = . . . = s−r = 0.
It was seen that these Λr -convergence notions are intermediate notions between

Λ-strong convergence and ordinary convergence. The following two basic results were
introduced in [1] as Propositions 1 and 2, synthesized from [1, Lemmas 1 and 2].

LEMMA 1. A sequence S converges Λr -strongly to a number s if and only if

(i) S converges to s in the ordinary sense, and
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(ii) lim
n→∞

1
λn

n

∑
k=r

λk−r|sk − sk−r| = 0.

LEMMA 2. A sequence S converges Λr -strongly to a number s if and only if

σn :=
1
λn

∑
0�k�n
r|n−k

(λk −λk−r)sk

converges to s in the ordinary sense and condition (ii) is satisfied.

2. Results on numerical sequences

Denote by cr(Λ) the class of Λr -strong convergent sequences S = {sk} of com-
plex numbers. Obviously, cr(Λ) is a linear space. Let

‖S‖cr(Λ) := sup
n�0

1
λn

n

∑
k=0

|λksk −λk−rsk−r|,

and consider the well-known norms

‖S‖∞ := sup
k�0

|sk|, ‖S‖bv :=
∞

∑
k=0

|sk − sk−1|.

It is easy to see that ‖.‖cr(Λ) is also a norm on cr(Λ) .
Moreover, one can easily obtain the inequality

n

∑
k=0

|λksk −λk−rsk−r| � r
n

∑
k=0

|λksk −λk−1sk−1|

and the equality

sk =
1
λn

∑
0�k�n
r|n−k

(λksk −λk−rsk−r).

These together imply the following result.

PROPOSITION 1. For every sequence S = {sk} of complex numbers we have

‖S‖∞ � ‖S‖cr(Λ) � r‖S‖c(Λ) � 2r‖S‖bv.

As a consequence, bv ⊂ c(Λ) ⊂ cr(Λ) ⊂ c.

It was seen in [2] that c(Λ) endowed with the norm ‖.‖c(Λ) is a Banach space. A
similar results holds for cr(Λ) .

THEOREM 1. The class cr(Λ) endowed with the norm ‖.‖cr(Λ) is a Banach space.
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Proof. With an analogous argument to the proof of [2, Theorem 1], we can get the
required completeness of cr(Λ) . The only needed modifications are

1
λn

n

∑
k=0

|λk(s�k − sk)−λk−r(s�,k−r − sk−r)| � ‖S�−S‖∞
1
λn

n

∑
k=0

(λk + λk−r) � ε

and

1
λn

n

∑
k=0

|λk(s jk − sk)−λk−r(s j,k−r − sk−r)|

� 1
λn

n

∑
k=0

|λk(s jk − s�k)−λk−r(s j,k−r − s�,k−r)|

+
1
λn

n

∑
k=0

|λk(s�k − sk)−λk−r(s�,k−r − sk−r)|

� ‖S j −S�‖cr(Λ) + ε � 2ε

for large enough � and j . �

Now that we saw that cr(Λ) is a Banach space, we show that it has a Schauder
basis. In fact, putting

F ( j) := (0,0, . . . ,0,

j︷︸︸︷
1 ,0,0, . . . ,0,

j+r︷︸︸︷
1 ,0,0, . . . ,0,

j+2r︷︸︸︷
1 , . . .),

j = 0,1, . . . , clearly each F( j) ∈ cr(Λ) .

THEOREM 2. {F( j) : j = 0,1, . . .} is a basis in cr(Λ) .

Proof. Existence. We will show that if S = {sk} is a Λr -strongly convergent
sequence, then

lim
m→∞

‖S−
m

∑
j=0

(s j − s j−r)F ( j)‖cr(Λ) = 0. (1)

Since

S−
m

∑
j=0

(s j − s j−r)F ( j)

= (0,0, . . . ,

m︷︸︸︷
0 ,

m+1︷ ︸︸ ︷
sm+1 − sm−r+1,sm+2 − sm−r+2, . . . ,

m+ar+b︷ ︸︸ ︷
sm+ar+b − sm−r+b, . . .),
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where 0 � a , 1 � b � r , by definition,

‖S−
m

∑
j=0

(s j − s j−r)F ( j)‖cr(Λ)

= sup
n�1

1
λm+n

(
∑

1�b�r
b�n

λm+b|(sm+b − sm−r+b|

+
[n/r]

∑
a=1

∑
1�b�r
ar+b�n

|λm+ar+b(sm+ar+b − sm−r+b)

−λm+ar−r+b(sm+ar−r+b− sm−r+b)|
)

� sup
n�1

1
λm+n

( [n/r]

∑
a=0

∑
1�b�r
ar+b�n

(λm+ar+b−λm+ar−r+b)|sm+ar+b − sm−r+b|

+
[n/r]

∑
a=0

∑
1�b�r
ar+b�n

λm+ar−r+b|sm+ar+b− sm+ar−r+b|
)

� r sup
j,k>m−r

|s j − sk|+ sup
n�m+1

1
λn

n

∑
k=m+1

λk−r|sk − sk−r|.

Applying Proposition 1 and Lemma 1, respectively, results in (1) to be proved.
Uniqueness. It can be proved in basically the same way as it was seen in the proof

of [2, Theorem 2]. �

3. Results on Fourier series: C -metric

Denote by C the Banach space of the 2π periodic complex-valued continuous
functions endowed with the norm ‖ f‖C := maxt | f (t)| . Let

1
2
a0 +

∞

∑
k=1

(ak( f )coskt +bk( f )sinkt) (2)

be the Fourier series of a function f ∈C with the usual notation sk( f ) = sk( f , t) for the
k th partial sum of the series (2). Denote by U , A , and S(Λ) , respectively, the classes
of functions f ∈C whose Fourier series converges uniformly, converges absolutely and
converges uniformly Λ-strongly on [0,2π) , endowed with the usual norms, see [2].

A function f ∈C belongs to S(Λr) if

lim
n→∞

∥∥∥∥∥
1
λn

n

∑
k=0

|λk(sk( f )− f )−λk−r(sk−r( f )− f )|
∥∥∥∥∥

C

= 0.
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Set the norm

‖ f‖S(Λr) := sup
n�0

∥∥∥∥∥
1
λn

n

∑
k=0

|λksk( f )−λk−rsk−r( f )|
∥∥∥∥∥

C

,

which is finite for every for S(Λr) since

‖ f‖S(Λr) � ‖ f‖C + sup
n�0

∥∥∥∥∥
1
λn

n

∑
k=0

|λk(sk( f )− f )−λk−r(sk−r( f )− f )|
∥∥∥∥∥

C

.

The norm inequalities corresponding to the ones in Proposition 1 are formulated
below.

PROPOSITION 2. For every function f ∈C we have

‖ f‖U � ‖ f‖S(Λr) � r‖ f‖S(Λ) � 2r‖ f‖A.

As a consequence, A ⊂ S(Λ) ⊂ S(Λr) ⊂U .

The following results are the counterparts to Lemmas 1 and 2 and Theorems 1 and
2, respectively. We omit the details of the analogous proofs, except for Theorem 4.

LEMMA 3. A function f belongs to S(Λr) if and only if

(iii) lim
k→∞

‖sk( f )− f‖C = 0 , and

(iv) lim
n→∞

∥∥∥∥∥
1
λn

n

∑
k=r

λk−r|sk( f )− sk−r( f )|
∥∥∥∥∥

C

= 0.

LEMMA 4. A function f belongs to S(Λr) if and only if

(iii’) lim
n→∞

‖σn( f )− f‖C = 0

and condition (iv) is satisfied, where

σn( f ) = σn( f ,t) :=
1
λn

∑
0�k�n
r|n−k

(λk −λk−r)sk( f ,t).

THEOREM 3. The set S(Λr) endowed with the norm ‖.‖S(Λr) is a Banach space.

THEOREM 4. If f ∈ S(Λr) , then

lim
m→∞

‖sm( f )− f‖S(Λr) = 0. (3)
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Proof. Since the sequence of partial sums of the Fourier series of the difference
f − sm( f ) is

(0,0, . . . ,

m︷︸︸︷
0 ,

m+1︷ ︸︸ ︷
sm+1( f )− sm( f ),sm+2( f )− sm( f ), . . .),

then

‖sm( f )− f‖S(Λr)

= sup
n�1

1
λm+n

∥∥∥∥ ∑
1�b�r
b�n

λm+b|(sm+b( f )− sm( f )|

+
[n/r]

∑
a=1

∑
1�b�r
ar+b�n

|λm+ar+b(sm+ar+b( f )− sm( f ))

−λm+ar−r+b(sm+ar−r+b( f )− sm( f ))|
∥∥∥∥

C

� sup
n�1

1
λm+n

∥∥∥∥
[n/r]

∑
a=0

∑
1�b�r
ar+b�n

(λm+ar+b−λm+ar−r+b)|sm+ar+b( f )− sm( f )|

+
[n/r]

∑
a=0

∑
1�b�r
ar+b�n

λm+ar−r+b|sm+ar+b( f )− sm+ar−r+b( f )|
∥∥∥∥

C

� r sup
j,k>m−r

‖s j( f )− sk( f )‖C + sup
n�m+1

∥∥∥∥ 1
λn

n

∑
k=m+1

λk−r|sk( f )− sk−r( f )|
∥∥∥∥

C
,

where 0 � a , 1 � b � r . Applying Proposition 2 and Lemma 3, respectively, results in
(3) to be proved. �

In the following, our goal is to extend the well-known Denjoy–Luzin theorem
presented below (see [3, p. 232]).

THEOREM 5. (Theorem of Denjoy–Luzin) If

∞

∑
k=1

(ak coskt +bk sinkt) (4)

converges absolutely for t belonging to a set A of positive measure, then
∞

∑
k=1

(|ak|+ |bk|)
converges.

This theorem was extended for Λ-strongly convergent trigonometric series by
Móricz in [2].
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THEOREM 6. If the nth partial sums sn(t) of the series (4) converge Λ-strongly
for t belonging to a set A of positive measure or of second category, then

lim
n→∞

1
λn

n

∑
k=1

λk−1(|ak|+ |bk|) = 0. (5)

Consequently, if f ∈ C and the nth partial sums sn( f , t) of the Fourier series (2)
converge uniformly Λ-strongly to f (t) everywhere, then coefficients ak = ak( f ) and
bk = bk( f ) satisfy (5).

First, we extend Theorem 5 for single sine and cosine series.

THEOREM 7. If

∞

∑
k=1

|a2k−1 cos(2k−1)t +a2k cos2kt| and
∞

∑
k=1

|a2k−1 sin(2k−1)t +a2k sin2kt|

converge for t belonging to a set A of positive measure, then
∞

∑
k=1

|ak| converges.

Proof. We follow the proof of the Denjoy–Luzin theorem as in [3, pp. 232] with
necessary modifications. We calculate

a2k−1 cos(2k−1)t +a2k cos2kt

= (a2k−1 +a2k cost)cos(2k−1)t− (a2k sin t)sin(2k−1)t

and

a2k−1 sin(2k−1)t +a2k sin2kt

= (a2k−1 +a2k cost)sin(2k−1)t +(a2k sin t)cos(2k−1)t,

whence

a2k−1 cos(2k−1)t +a2k cos2kt = ρk(t)cos((2k−1)t + fk(t))

and
a2k−1 sin(2k−1)t +a2k sin2kt = ρk(t)sin ((2k−1)t + fk(t))

where
ρk(t) =

√
a2

2k−1 +a2
2k +2a2k−1a2k cost

and fk(t) is from

cos fk(t) =
a2k−1 +a2k cost

ρk(t)
, sin fk(t) =

a2k sin t
ρk(t)

.

Now, we need that

ρk(t) � C(|a2k−1|+ |a2k|) (6)
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is satisfied on a set E ⊆ A of positive measure where the constant C is independent of
k and t . Inequality (6) can be obtained from

(1−C2)(a2
2k−1 +a2

2k) � 2|a2k−1a2k|(C2 + |cost|), (7)

since it implies

ρ2
k (t) � a2

2k−1 +a2
2k−2|a2k−1a2k cost| � C2(|a2k−1|+ |a2k|)2.

Hence we just need to define C small enough so that the set E ⊆ A on which

|cost| � 1−2C2

and consequently (7) and (6) hold is of positive measure. We set C and thereby E that
way. Since E ⊆ A , there is a set F ⊆ E of positive measure such that

∞

∑
k=1

αk(t) =
∞

∑
k=1

(|a2k−1 cos(2k−1)t +a2k cos2kt|+ |a2k−1 sin(2k−1)t +a2k sin2kt|)

is bounded on F , say by bound M . Hence we obtain the required estimation

∞

∑
k=1

(|a2k−1|+ |a2k|) � 1
C

∞

∑
k=1

∫
F

ρk(t)

=
1
C

∞

∑
k=1

∫
F

ρk(t)(cos2 ((2k−1)t + fk(t))+ sin2 ((2k−1)t + fk(t)))dt

� 1
C

∞

∑
k=1

∫
F

ρk(t)(|cos((2k−1)t + fk(t))|+ |sin((2k−1)t + fk(t))|)dt

=
1
C

∞

∑
k=1

∫
F

αk(t)dt � M
C
|F |. �

Second, we extend Theorem 7 for Λ2 -strong convergent sine or cosine series.

THEOREM 8. If

s1
n(t) =

n

∑
k=1

ak coskt and s2
n(t) =

n

∑
k=1

ak sinkt (8)

converge Λ2 -strongly for t belonging to a set A of positive measure, then

lim
n→∞

1
λn

n

∑
k=1

λk−1|ak| = 0. (9)

Consequently, if f ,g ∈C has single Fourier series
1
2
a0 +

∞

∑
k=1

ak coskt and
∞

∑
k=1

ak sinkt ,

respectively, which partial sums converge uniformly Λ2 -strongly to f (t) and g(t) ev-
erywhere, then coefficients ak satisfy (9).
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Proof. By Lemma 1 (in the second case Lemma 3 is used), Λ2 -strong convergence
implies for example, in the cosine case that

lim
n→∞

1
λn

n

∑
k=2

λk−2|s1
k − s1

k−2| = lim
n→∞

1
λn

n

∑
k=2

λk−2|ak−1 cos(k−1)t +ak coskt| = 0,

and the proof is analogous to the one of the previous theorem, Theorem 7. �

4. Results on Fourier series: Lp -metric

The results of Section 3 can be reformulated if we substitute Lp -metric for C -
metric. Here and in the sequel 1 � p < ∞ . Along with the usual notations let us call a
function f ∈ Lp to be in Sp(Λr) if

lim
n→∞

∥∥∥∥∥
1
λn

n

∑
k=0

|λk(sk( f )− f )−λk−r(sk−r( f )− f )|
∥∥∥∥∥

p

= 0,

and introduce the norm

‖ f‖Sp(Λr) := sup
n�0

∥∥∥∥∥
1
λn

n

∑
k=0

|λksk( f )−λk−rsk−r( f )|
∥∥∥∥∥

p

,

which is finite for every for Sp(Λr) .
The norm inequalities corresponding to the ones in Proposition 2 are the following.

PROPOSITION 3. For every function f ∈ Lp and r � 2 integer we have

‖ f‖Up � ‖ f‖Sp(Λr) � r‖ f‖Sp(Λ) � 2r‖ f‖A.

As a consequence, A ⊂ Sp(Λ) ⊂ Sp(Λr) ⊂U p .

The next results are analogous to Lemmas 3 and 4 and Theorems 3 and 4, respec-
tively.

LEMMA 5. A function f belongs to Sp(Λr) if and only if

(v) lim
k→∞

‖sk( f )− f‖p = 0 , and

(vi) lim
n→∞

∥∥∥∥∥
1
λn

n

∑
k=r

λk−r|sk( f )− sk−r( f )|
∥∥∥∥∥

p

= 0.

LEMMA 6. A function f belongs to Sp(Λr) if and only if

(v’) lim
n→∞

‖σn( f )− f‖p = 0

and condition (vi) is satisfied.
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THEOREM 9. The set Sp(Λr) endowed with the norm ‖.‖Sp(Λr) is a Banach space.

THEOREM 10. If f ∈ Sp(Λr) , then

lim
m→∞

‖sm( f )− f‖Sp(Λr) = 0.

Finally, we obtain the Lp -metric version of Theorem 8.

THEOREM 11. If the sums in (8) converge Λ2 -strongly in the Lp -metric restricted
to a set of positive measure, then (9) holds true.

Consequently, if f ,g∈Lp , 1 < p < ∞ , has single Fourier series
1
2
a0+

∞

∑
k=1

ak coskt

and
∞

∑
k=1

ak sinkt , respectively, then the partial sums of both series converge Λ2 -strongly

to f (t) and g(t) in the Lp -metric if and only if coefficients ak satisfy (9).

Proof. The first statement and the necessity part of the second statement is ob-
tained in the same way as in the proof of Theorem 7.

The sufficiency part of the second statement follows from two facts. First, by the
theorem of M. Riesz [3, p. 266], (v) in Lemma 5 holds. Second, (vi) is also satisfied
since

lim
n→∞

∥∥∥∥∥
1
λn

n

∑
k=2

λk−2|sk( f )− sk−2( f )|
∥∥∥∥∥

p

� 2 lim
n→∞

1
λn

n

∑
k=1

λk−1|ak| = 0. �

PROBLEM. Can we prove similar statements to the above proved theorems about
the Λr -strong convergence in the case r > 2 as well?
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