ON Λ^2 -STRONG CONVERGENCE OF NUMERICAL SEQUENCES REVISITED

P. KÓRUS

Department of Mathematics, Juhász Gyula Faculty of Education, University of Szeged, Hattyas sor 10, H-6725 Szeged, Hungary e-mail: korpet@jgypk.u-szeged.hu

(Received June 8, 2015; revised June 15, 2015; accepted June 15, 2015)

Abstract. We remark the incorrectness of some recent results concerning Λ^2 -strong convergence. We give a new appropriate definition for the Λ^2 -strong convergence by generalizing the original Λ -strong convergence concept given by F. Móricz.

1. Preliminaries

We are interested in the results of [1] and [2]. In [2], several results were proved using the notion of Λ -strong convergence defined there. It is essential to remind the reader of the definition. Let $\Lambda = \{\lambda_k : k = 0, 1, ...\}$ be a nondecreasing sequence of positive numbers tending to ∞ . A sequence $X = \{x_k : k = 0, 1, ...\}$ of complex numbers converges Λ -strongly to a complex number x if

$$\lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{k=0}^n \left| \lambda_k (x_k - x) - \lambda_{k-1} (x_{k-1} - x) \right| = 0$$

with the agreement $\lambda_{-1} = x_{-1} = 0$.

The two basic results proved in [2] were the following.

LEMMA M1. A sequence X converges Λ -strongly to a number x if and only if

(i) X converges to x in the ordinary sense, and

(ii)
$$\lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{k=1}^n \lambda_{k-1} |x_k - x_{k-1}| = 0.$$

Key words and phrases: Λ -strong convergence, Λ^2 -strong convergence, numerical sequence. Mathematics Subject Classification: 40A05.

LEMMA M2. A sequence X converges Λ -strongly to a number x if and only if

$$\sigma_n := \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-1}) x_k$$

converges to x in the ordinary sense and condition (ii) is satisfied.

It is useful to note that Λ -strong convergence is an intermediate notion between bounded variation and ordinary convergence.

Now we focus on [1]. The definition of Λ^2 -strong convergence was introduced. Let $\Lambda = \{\lambda_k\}$ be a nondecreasing sequence of positive numbers tending to ∞ for which $\lambda_k - 2\lambda_{k-1} + \lambda_{k-2} \ge 0$. A sequence $X = \{x_k\}$ of complex numbers converges Λ^2 -strongly to a complex number x if

$$\lim_{n \to \infty} \frac{1}{\lambda_n - \lambda_{n-1}} \sum_{k=0}^n \left| \lambda_k (x_k - x) - 2\lambda_{k-1} (x_{k-1} - x) + \lambda_{k-2} (x_{k-2} - x) \right| = 0$$

with the agreement $\lambda_{-1} = \lambda_{-2} = x_{-1} = x_{-2} = 0$.

The first result concerning this notion was

LEMMA BM1. A sequence X converges Λ^2 -strongly to a number x if and only if condition (i) is satisfied and

(ii')
$$\lim_{n \to \infty} \frac{1}{\lambda_n - \lambda_{n-1}} \sum_{k=1}^n \lambda_{k-1} |x_k - x_{k-1}| = 0.$$

However, the proof of Lemma BM1 is not complete in the way that only the sufficiency part was proved in [1]. The necessity part, i.e. the satisfactory of (i) and (ii') for a Λ^2 -strongly convergent sequence X was not seen. In this paper, we show that the necessity part is not true. We give a counterexample here.

COUNTEREXAMPLE. Let $x_k = \frac{1}{k+1}$ and $\lambda_k = k+1$. It is obvious that Λ tends monotonically to ∞ with $\lambda_k - 2\lambda_{k-1} + \lambda_{k-2} \ge 0$ satisfied. Now X converges Λ^2 -strongly to 0 since

$$\lim_{n \to \infty} \frac{1}{(n+1) - n} \sum_{k=0}^{n} \left| (k+1) \frac{1}{k+1} - 2k \frac{1}{k} + (k-1) \frac{1}{k-1} \right| = \lim_{n \to \infty} 0 = 0,$$

but (ii') is not satisfied since

$$\lim_{n \to \infty} \frac{1}{(n+1) - n} \sum_{k=1}^{n} k \left| \frac{1}{k+1} - \frac{1}{k} \right| = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k+1} = \infty.$$

P. KÓRUS

In [1], the main goal was to extend the concept of Λ -strong convergence, moreover to obtain similar results as in [2]. We saw above that the first result is incorrect. If we consider the relation between Λ and Λ^2 -strong convergence, we have in [1]

PROPOSITION BM. Let $\sup_k \frac{\lambda_{k+1}}{\lambda_k} \leq K$. If X converges Λ -strongly, then it converges Λ^2 -strongly, but the converse is not true.

However the first statement of the proposition is proved correctly, the example for the second part is incorrect. Example 1 was given as: $x_k = \frac{2^k}{2^{k+1}+1}$ and $\lambda_k = 2^k$, and was stated to be Λ^2 -strongly convergent but not Λ -strongly convergent. This is not the case, since X converges increasingly to $\frac{1}{2}$, which implies that X is of bounded variation, whence X is Λ -strongly convergent. It seems to be unresolved if there is a sequence X which is Λ^2 -strongly convergent but not Λ -strongly convergent.

2. New results

The above observations show that we need to define Λ^2 -strong convergence in a different way as in [1]. Here we give an appropriate definition. Let $\Lambda = \{\lambda_k\}$ be a nondecreasing sequence of positive numbers tending to ∞ . A sequence $X = \{x_k\}$ of complex numbers converges Λ^2 -strongly to a complex number x if

$$\lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{k=0}^n \left| \lambda_k (x_k - x) - \lambda_{k-2} (x_{k-2} - x) \right| = 0$$

with the agreement $\lambda_{-1} = \lambda_{-2} = x_{-1} = x_{-2} = 0$. It is easy to see that if X converges Λ -strongly, then it converges Λ^2 -strongly, it is enough to consider

$$\sum_{k=0}^{n} \left| \lambda_k(x_k - x) - \lambda_{k-2}(x_{k-2} - x) \right| \leq 2 \sum_{k=0}^{n} \left| \lambda_k(x_k - x) - \lambda_{k-1}(x_{k-1} - x) \right|.$$

Moreover, if X converges $\Lambda^2\text{-strongly},$ then it converges in the ordinary sense since

$$x_k - x = \frac{1}{\lambda_n} \sum_{\substack{0 \le k \le n \\ 2|n-k}} \left(\lambda_k (x_k - x) - \lambda_{k-2} (x_{k-2} - x) \right).$$

Thus, Λ^2 -strong convergence is an intermediate notion between Λ -strong convergence and ordinary convergence. We also give an example for a Λ^2 -strongly convergent but not Λ -strongly convergent sequence.

EXAMPLE. Let $x_k = (-1)^{k+1} \frac{1}{k+1}$ and $\lambda_k = k+1$. Then $x = \lim_k x_k = 0$ and

$$\lim_{n \to \infty} \frac{1}{n+1} \sum_{k=0}^{n} \left| (k+1)(-1)^{k+1} \frac{1}{k+1} - (k-1)(-1)^{k-1} \frac{1}{k-1} \right| = \lim_{n \to \infty} 0 = 0,$$

but

$$\lim_{n \to \infty} \frac{1}{n+1} \sum_{k=1}^{n} \left| (k+1)(-1)^{k+1} \frac{1}{k+1} - k(-1)^k \frac{1}{k} \right| = \lim_{n \to \infty} \frac{2n}{n+1} = 2.$$

We formulate two results analogous to Lemma M1 and M2.

LEMMA 1. A sequence X converges Λ^2 -strongly to a number x if and only if condition (i) is satisfied and

(II)
$$\lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{k=2}^n \lambda_{k-2} |x_k - x_{k-2}| = 0.$$

PROOF. The representation

 $\lambda_k(x_k - x) - \lambda_{k-2}(x_{k-2} - x) = (\lambda_k - \lambda_{k-2})(x_k - x) + \lambda_{k-2}(x_k - x_{k-2})$ where both

implies both

$$\frac{1}{\lambda_n} \sum_{k=0}^n \left| \lambda_k (x_k - x) - \lambda_{k-2} (x_{k-2} - x) \right|$$
$$\leq \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-2}) |x_k - x| + \frac{1}{\lambda_n} \sum_{k=2}^n \lambda_{k-2} |x_k - x_{k-2}|$$

and

$$\frac{1}{\lambda_n} \sum_{k=2}^n \lambda_{k-2} |x_k - x_{k-2}|$$
$$\leq \frac{1}{\lambda_n} \sum_{k=0}^n |\lambda_k (x_k - x) - \lambda_{k-2} (x_{k-2} - x)| + \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-2}) |x_k - x|.$$

Using the above inequalities together with the fact that for any x_k converging to x it is known that

$$\lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-2}) |x_k - x| = 0,$$

P. KÓRUS

we get the necessity and the sufficiency of the two conditions (i) and (II). \Box

LEMMA 2. A sequence X converges Λ^2 -strongly to a number x if and only if

$$\sigma_n := \frac{1}{\lambda_n} \sum_{\substack{0 \le k \le n \\ 2|n-k}} (\lambda_k - \lambda_{k-2}) x_k$$

converges to x in the ordinary sense and condition (II) is satisfied.

PROOF. Clearly,

$$x_{n} - \sigma_{n} = \frac{1}{\lambda_{n}} \sum_{\substack{0 \le k \le n \\ 2|n-k}} (\lambda_{k} - \lambda_{k-2}) (x_{n} - x_{k})$$
$$= \frac{1}{\lambda_{n}} \sum_{\substack{0 \le k \le n \\ 2|n-k}} (\lambda_{k} - \lambda_{k-2}) \sum_{\substack{k+2 \le j \le n \\ 2|n-j}} (x_{j} - x_{j-2})$$
$$= \frac{1}{\lambda_{n}} \sum_{\substack{2 \le j \le n \\ 2|n-j}} (x_{j} - x_{j-2}) \sum_{\substack{0 \le k \le j-2 \\ 2|n-k}} (\lambda_{k} - \lambda_{k-2}) = \frac{1}{\lambda_{n}} \sum_{\substack{2 \le j \le n \\ 2|n-j}} \lambda_{j-2} (x_{j} - x_{j-2})$$

Hence

$$\limsup_{n \to \infty} |x_n - \sigma_n| \leq \limsup_{n \to \infty} \frac{1}{\lambda_n} \sum_{k=2}^n \lambda_{k-2} |x_k - x_{k-2}|.$$

According to Lemma 1, for the necessity part, it is enough to see the that $\lim_n \sigma_n = x$, which comes from the above inequality, (II) and $\lim_n x_n = x$. For the sufficiency part, we only need $\lim_n x_n = x$, which comes from the above inequality, (II) and $\lim_n \sigma_n = x$. \Box

We remark that we can also define Λ^r -strong convergence for an arbitrary integer $r \geq 3$. We can say, that for a $\Lambda = \{\lambda_k\}$ nondecreasing sequence of positive numbers tending to ∞ , a sequence $X = \{x_k\}$ of complex numbers converges Λ^r -strongly to a complex number x if

$$\lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{k=0}^n \left| \lambda_k(x_k - x) - \lambda_{k-r}(x_{k-r} - x) \right| = 0$$

with the agreement $\lambda_{-1} = \ldots = \lambda_{-r} = x_{-1} = \ldots = x_{-r} = 0$. One can easily show that these convergence notions are also intermediate notions between

 Λ -strong convergence and ordinary convergence. Moreover, the following two analogous results can be shown in a similar way as above.

PROPOSITION 1. A sequence X converges Λ^r -strongly to a number x if and only if condition (i) is satisfied and

(II')
$$\lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{k=r}^n \lambda_{k-r} |x_k - x_{k-r}| = 0.$$

PROPOSITION 2. A sequence X converges Λ^r -strongly to a number x if and only if

$$\sigma_n := \frac{1}{\lambda_n} \sum_{\substack{0 \le k \le n \\ r \mid n-k}} (\lambda_k - \lambda_{k-r}) x_k$$

converges to x in the ordinary sense and condition (II') is satisfied.

Acknowledgement. The author thanks Professor Ferenc Móricz for his valuable comments and suggestions regarding this paper.

References

- N. L. Braha and T. Mansour, On Λ²-strong convergence of numerical sequences and Fourier series, Acta Math. Hungar., 141 (2013), 113–126.
- [2] F. Móricz, On Λ-strong convergence of numerical sequences and Fourier series, Acta Math. Hungar., 54 (1989), 319–327.