

Research and Reports on Mathematics

Short Communication

A SCITECHNOL JOURNAL

Geometric Proof of the Sum of Geometric Series

Korus P*

Introduction

The well-known formula for the sum of the geometric series is

$$\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$$

For arbitrary -1 < q < 1. Among analytic proofs, geometric proofs were also given for this formula, see [1], mostly for 0 < q < 1. Now we prove that for any 0 < q < 1

$$\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$$

holds in the 'Positive case' and

$$s' = \sum_{k=1}^{\infty} (-1)^{k-1} q^k = \frac{q}{1-q}$$

in the 'Alternating case'.

Positive case

As in Figure 1, we do the following process.

Step 1: Take a unit square S_i and take rectangles Q_i with area $A_{Q_1} = q$ and Q_2 with $A_{Q_2} = q_2$. We also

take 'adjunct' rectangles R_1 with $A_{R_1} = \frac{1-2q}{q} A_{Q1}$ and R_2 with $A_{R_2} = \frac{1-2q}{q} A_{Q2}$.

We get a remaining square S_2 of side length q.

Step 2: We repeat the actions of the previous step for S_2 , but we reduce the rectangles by a scale factor of q. Then we get Q_3 ; Q_4 ; R_3 ; R_4 with $A_{Q_4} = q^4$, $A_{Q_4} = q^4$, $A_{R_3} = \frac{1-2q}{q}A_{Q_3}$, $A_{R_5} = \frac{1-2q}{q}A_{Q_5}$ and a remaining square S_3 of side length q^2 .

General step *k*: We repeat the actions of the previous step for S_{k^2} but we reduce the rectangles by a scale factor of *q*.

We get that the area of unit square S_1 is

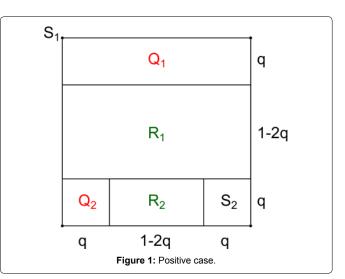
$$1 = \sum_{k=1}^{\infty} A_{Q_k} + \sum_{k=1}^{\infty} A_{R_k} = s + \frac{1-2q}{q} S = \frac{1-q}{q} s,$$

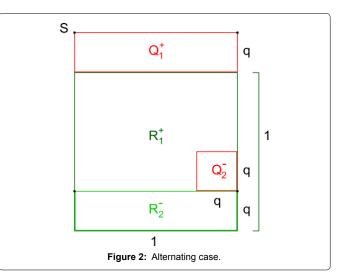
Hence $S = \frac{q}{1-q}$
Alternating case

As in Figure 2, we do the following process.

Received: March 28, 2018 Accepted: July 10, 2018 Published:Septembr 8, 2018

All articles published in Research and Reports on Mathematics are the property of SciTechnol, and is protected by copyright laws. Copyright © 2018, SciTechnol, All Rights Reserved.





Step 1: Take a unit square *S* and take rectangles Q_1^+ with $A_{Q_1^+} = q$ and Q_2^- with $A_{Q_2^-} = q^2$. We also take 'adjunct' square R_1^+ of side length 1 with $A_{R_1^+} = \frac{1}{q} A_{Q_1^+}$ and rectangle R_2^- of side lengths q and 1 with $A_{R_2^-} = \frac{1}{q} A_{Q_1^+}$. (Plus and minus signs indicate the signs of the areas of rectangles within the final sum.)

Step 2: We repeat the actions of the previous step for square Q_2^- of side length q, but we reduce the rectangles by a scale factor of q. Then we get Q^+, P^+, P^- with $A_{QP} = q^4, A_{QP} = q^4, A_{PP} = \frac{1}{2}A_{PP}$.

$$\begin{array}{l} \text{Inen we get } Q_{1}^{+}, R_{3}^{+}, R_{3}^{+}, R_{4}^{-} \text{ with } A_{\underline{Q}_{4}^{-}} - q \ , \ A_{\underline{Q}_{4}^{-}} - q \ , \ A_{\underline{R}_{5}^{+}} = -A_{\underline{Q}_{4}} \\ A_{\underline{R}_{4}^{-}} = \frac{1}{q} A_{\underline{Q}_{4}} \end{array}$$

General step *k*: We repeat the actions of the previous step for Q_{2k-2}^- , but we reduce the rectangles by a scale factor of *q*.

^{*}Corresponding author: Korus P, Department of Mathematics, Juhasz Gyula Faculty of Education University of Szeged, Hattyas utca 10, H-6725 Szeged, Hungary, E-mail: korpet@jgypk.u-szeged.hu

We get that the area of unit square $S_1^{'}$ is

$$\begin{split} &1 = \sum_{k=1}^{\infty} \left(A_{Q_{2k-1}^{+}} - A_{Q_{2k}^{-}} + A_{R_{2k-1}^{+}} - A_{R_{2k}^{-}} \right) = \sum_{k=1}^{\infty} (-1)^{k-1} q^{k} + \sum_{k=1}^{\infty} (-1)^{k-1} \frac{1}{q} q^{k} \\ &= s + \frac{1}{q} s = \frac{1+q}{q} s \end{split}$$

Hence
$$s' = \frac{q}{1+q}$$
.

References

1. Nelsen RB (1993) Proofs without words: Exercises in visual thinking. MAA.

Author Affiliation

Тор

Department of Mathematics, Juhasz Gyula Faculty of Education University of Szeged, Hungary

Submit your next manuscript and get advantages of SciTechnol submissions

80 Journals

- 21 Day rapid review process
- 3000 Editorial team

- S Million readers
 More than 5000 facebook
 Quality and quick review processing through Editorial Manager System

Submit your next manuscript at • www.scitechnol.com/submission