Geometric Proof of the Sum of Geometric Series

Korus \mathbf{P}^{*}

Introduction

The well-known formula for the sum of the geometric series is $\sum_{k=0}^{\infty} q^{k}=\frac{1}{1-q}$
For arbitrary $-1<q<1$. Among analytic proofs, geometric proofs were also given for this formula, see [1], mostly for $0<q<1$. Now we prove that for any $0<q<1$

$$
\sum_{k=0}^{\infty} q^{k}=\frac{1}{1-q}
$$

holds in the 'Positive case' and

$$
s^{\prime}=\sum_{k=1}^{\infty}(-1)^{k-1} q^{k}=\frac{q}{1-q}
$$

in the 'Alternating case'.

Positive case

As in Figure 1, we do the following process.
Step 1: Take a unit square S_{1} and take rectangles Q_{1} with area $A_{Q_{1}}$ $=q$ and Q_{2} with $A_{Q_{2}}=q_{2}$. We also
take 'adjunct' rectangles R_{1} with $A_{R_{1}}=\frac{1-2 q}{q} A_{Q 1}$ and R_{2} with $A_{R_{2}}=\frac{1-2 q}{q} A_{Q_{2}}$.

We get a remaining square S_{2} of side length q.
Step 2: We repeat the actions of the previous step for S_{2}, but we reduce the rectangles by a scale factor of q. Then we get $Q_{3} ; Q_{4} ; R_{3}$; R_{4} with $A_{Q_{4}}=q^{4}, A_{Q_{4}}=q^{4}, A_{R_{3}}=\frac{1-2 q}{q} A_{Q_{3}}, A_{R_{3}}=\frac{1-2 q}{q} A_{Q_{3}}$ and a remaining square S_{3} of side length q^{2}.

General step k : We repeat the actions of the previous step for S_{k}, but we reduce the rectangles by a scale factor of q.

We get that the area of unit square S_{1} is
$1=\sum_{k=1}^{\infty} A_{Q_{t}}+\sum_{k=1}^{\infty} A_{R_{k}}=s+\frac{1-2 q}{q} S=\frac{1-q}{q} s$,
Hence $S=\frac{q}{1-q}$

Alternating case

As in Figure 2, we do the following process.

[^0]Received: March 28, 2018 Accepted: July 10, 2018 Published:Septembr 8, 2018

Step 1: Take a unit square S and take rectangles Q_{1}^{+}with $A_{Q_{1}^{+}}=q$ and Q_{2}^{-}with $A_{Q_{2}^{-}}=q^{2}$. We also take 'adjunct' square R_{1}^{+}of side length 1 with $A_{R_{1}^{+}}=\frac{1}{q} A_{Q_{1}^{+}}$and rectangle R_{2}^{-}of side lengths q and 1 with $A_{R_{2}^{-}}=\frac{1}{q} A_{Q_{1}^{+}}$. (Plus and minus signs indicate the signs of the areas of rectangles within the final sum.)

Step 2: We repeat the actions of the previous step for square Q_{2}^{-} of side length q , but we reduce the rectangles by a scale factor of q . Then we get $Q_{3}^{+}, R_{3}^{+}, R_{3}^{+}, R_{4}^{-}$with $A_{Q_{4}^{-}}=q^{4}, A_{Q_{4}^{-}}=q^{4}, A_{R_{3}^{+}}=\frac{1}{q} A_{Q_{3}^{+}}$, $A_{R_{4}^{-}}=\frac{1}{q} A_{Q_{4}^{-}}$.

General step \boldsymbol{k} : We repeat the actions of the previous step for $Q_{2 k-2}^{-}$, but we reduce the rectangles by a scale factor of q.

All articles published in Research and Reports on Mathematics are the property of SciTechnol, and is protected by copyright laws. Copyright © 2018, SciTechnol, All Rights Reserved.

We get that the area of unit square S_{1}^{\prime} is

$$
\begin{aligned}
& 1=\sum_{k=1}^{\infty}\left(A_{Q_{2 k-1}^{*}}-A_{Q_{2 k}}+A_{R_{2 k-1}}-A_{R_{2 k}}\right)=\sum_{k=1}^{\infty}(-1)^{k-1} q^{k}+\sum_{k=1}^{\infty}(-1)^{k-1} \frac{1}{q} q^{k} \\
& =s+\frac{1}{q} s=\frac{1+q}{q} s
\end{aligned}
$$

Hence $s^{\prime}=\frac{q}{1+q}$.

References

1. Nelsen RB (1993) Proofs without words: Exercises in visual thinking. MAA.

Author Affiliation

Submit your next manuscript and get advantages of SciTechnol

submissions
*. 80 Journals

* 21 Day rapid review process
* 3000 Editorial team
* 5 Million reader
* More than 5000 facebopk ${ }^{2}$
* Quality and quick review processing through Editorial Manager System

Submit your next manuscript at • www.scitechnol.com/submission

[^0]: *Corresponding author: Korus P, Department of Mathematics, Juhasz Gyula Faculty of Education University of Szeged, Hattyas utca 10, H-6725 Szeged, Hungary, E-mail: korpet@jgypk.u-szeged.hu

