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Step 1: Take a unit square S and take rectangles 1Q+ with 
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q− += . (Plus and minus signs indicate the signs of the areas of 

rectangles within the final sum.) 

Step 2: We repeat the actions of the previous step for square 2Q−

of side length q, but we reduce the rectangles by a scale factor of q. 

Then we get 
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General step k: We repeat the actions of the previous step for 

2 2kQ−
−

, but we reduce the rectangles by a scale factor of q.

Introduction
The well-known formula for the sum of the geometric series is
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For arbitrary -1<q<1. Among analytic proofs, geometric proofs 
were also given for this formula, see [1], mostly for 0<q<1. Now we 
prove that for any 0<q<1
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holds in the ‘Positive case’ and
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in the ‘Alternating case’.

Positive case
As in Figure 1, we do the following process. 

Step 1: Take a unit square S1 and take rectangles Q1 with area 1QA
= q and Q2 with 

2QA  = q2. We also

take ‘adjunct’ rectangles R1 with 
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1 2
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We get a remaining square S2 of side length q. 

Step 2: We repeat the actions of the previous step for S2, but we 
reduce the rectangles by a scale factor of q. Then we get Q3; Q4; R3; 

R4 with 
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=  and a 

remaining square S3 of side length q2. 

General step k: We repeat the actions of the previous step for Sk, 
but we reduce the rectangles by a scale factor of q.

We get that the area of unit square S1 is
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Alternating case

As in Figure 2, we do the following process. 

Figure 1: Positive case.

Figure 2:  Alternating case.
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We get that the area of unit square '
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