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Abstract
Social signal detection, that is, the task of identifying vocal-
izations like laughter and filler events is a popular task within
computational paralinguistics. Recent studies have shown that
besides applying state-of-the-art machine learning methods, it
is worth making use of the contextual information and adjust-
ing the frame-level scores based on the local neighbourhood.
In this study we apply a weighted average time series smooth-
ing filter for laughter and filler event identification, and set the
weights using a state-of-the-art optimization method, namely
the Covariance Matrix Adaptation Evolution Strategy (CMA-
ES). Our results indicate that this is a viable way of improving
the Area Under the Curve (AUC) scores: our resulting scores
are much better than the accuracy scores of the raw likelihoods
produced by Deep Neural Networks trained on three different
feature sets, and we also significantly outperform standard time
series filters as well as DNNs used for smoothing. Our score
achieved on the test set of a public English database contain-
ing spontaneous mobile phone conversations is the highest one
published so far that was realized by feed-forward techniques.
Index Terms: social signals, laughter events, filler events, time
series filter, optimization, evolution strategy

1. Introduction
In speech technology an emerging area is paralinguistic phe-
nomenon detection, which seeks to detect non-linguistic events
(laughter, emotions, conflict, etc.) in speech. One task belong-
ing to this area is the detection of social signals, from which,
perhaps laughter and filler events (vocalizations like “eh”, “er”,
etc.) are the most important. Many experiments have been per-
formed with the goal of detecting laughter (e.g. [1, 2, 3]), and
this task might prove useful in emotion recognition and general
man-machine interactions. Apart from laughter, the detection
of filler events has also become popular (e.g. [4, 5, 6]). Besides
serving to regulate the flow of interactions in discussions, it was
also shown that filler events are an important sign of hesitation;
hence their detection could prove useful during the automatic
detection of various kinds of dementia such as Alzheimer’s Dis-
ease [5, 7] and Mild Cognitive Impairment [6].

In the tasks of detecting laughter and filler events, classifi-
cation and evaluation are usually performed at the frame level
(although there exist purely segment-based approaches as well;
see e.g. [3, 8]). In this approach frames are treated as indepen-
dent examples, and although it is common to use the feature
vectors of the neighbouring frames as well, this provides only
minimal contextual information. This is a definite weakness of
this approach since these events are typically quite long; the av-
erage duration of laughter occurrences was 911 ms in the Hun-
garian BEA database [9], while in the BMR subset of the ICSI
Meeting Recorder Corpus it was 1615 ms with a standard devia-
tion of 1241 ms [10]. Therefore it might be worth making use of

the contextual information and adjusting the frame-level scores
based on the local neighborhood (see e.g. [11, 12, 13, 14]).
Actually, a number of such studies have been published on
this. Gupta et al. [11] applied probabilistic time series smooth-
ing; Brueckner et al. [12] trained a second neural network on
the output of the first, frame-level one to smooth the resulting
scores; Kaya et al. [13] used Gaussian smoothing on the out-
put of frame-level Random Forests; while Gosztolya [14] used
the Simple Exponential Smoothing method on the frame-level
posterior estimates of DNNs and AdaBoost.MH.

What is common in these studies is that first they trained
a frame-level classifier such as Random Forest (RF) or Deep
Neural Networks (DNN) to detect the given phenomena, and
then, as a second step, they aggregated the neighbouring poste-
rior estimates to get the final scores. Needless to say, the type
of smoothing applied was quite different. In this study we com-
pute the weighted mean of the neighbouring DNN output scores
as a time series smoothing filter; still, for this type of aggrega-
tion, the optimal weight values have to be determined. We shall
treat this task as an optimization one in the space of frame-level
weights, and maximize the Area Under the Curve (AUC) score
for the laughter and filler events. To find the optimal weight
values, we apply a state-of-the-art optimization method called
the Covariance Matrix Adaptation Evolution Strategy (CMA-
ES, [15]). Using the optimal filters found on the development
set, we significantly outperform both the unsmoothed (“raw”)
values and some standard time series filters on the test set of
a public English dataset containing laughter and filler events.
Furthermore, we also outperform the smoothing approach pro-
posed by Brueckner et al. [12], where a second DNN was used
to smooth the likelihoods over time. Overall, the scores we
achieved are the highest on this dataset which were realized in
a feed-forward way, allowing on-the-fly speech processing.

The structure of this paper is as follows. First we describe
the optimization method used. Then, in Section 3, we describe
our experimental setup: the database and feature sets used, the
way of evaluation, the way we trained our DNNs, the time series
filters used for reference, and our optimization approach. Then
we present and analyze our test results. Lastly, we draw some
conclusions and make some suggestions for future study.

2. Optimization by CMA/ES
We used the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES, [15]) to optimize our meta-parameters. Evolution
Strategies resemble Genetic Algorithms in that they mimic the
evolution of biological populations by selection and recombina-
tion, so they are able to “evolve” solutions to real world prob-
lems. CMA-ES is a method designed for difficult non-linear
non-convex black-box optimization, hence it should be suitable
for time series filter optimization for laughter and filler events.

CMA-ES is a second order approach that estimates a co-
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variance matrix within an iterative procedure. This makes the
method feasible for badly conditioned, non-smooth (i.e. noisy)
or non-continuous problems. It is viewed as a reliable and com-
petitive method for both local and global optimization [16]. It
has a further advantage in that it requires little or no meta-
parameter setting for optimal performance: it was designed to
find optimal or close-to-optimal (strategy) parameters automat-
ically; the aim was to have a well-performing algorithm as is.
This algorithm has been implemented in several programming
languages such as Matlab, Java, C++, Octave and Python. Here,
we used the Java implementation with the default settings.

3. Experimental Setup
3.1. The SSPNet Vocalization Corpus

We used the SSPNet Vocalization Corpus [4], which consists
of 2763 short audio clips extracted from the English telephone
conversations of 120 speakers, containing 2988 laughter and
1158 filler events. Each frame was labeled as one of three
classes, namely “laughter”, “filler” or “garbage” (meaning both
silence and non-filler non-laughter speech). We followed the
standard routine of dividing the dataset into training, develop-
ment and test sets, as published in [17]. The total duration of
this dataset is 8 hours and 55 minutes.

3.2. Feature Sets

We applied three different (frame-level) feature sets to train our
Deep Neural Networks. The first one was the standard 39-sized
MFCC + Δ + ΔΔ feature set, while the second one contained
40 raw mel filter bank energies along with energy and their first
and second order derivatives (123 values overall). Following
the notation of HTK [18], we will refer to the latter feature set
as FBANK. These two sets were extracted using the HTK tool.
The third feature set, referred to as the ComParE feature set,
was provided for the Interspeech 2013 Computational Paralin-
guistics Challenge [17], and was extracted with the openSMILE
tool [19]. It consisted of the frame-wise 39-long MFCC + Δ +
ΔΔ feature vector along with voicing probability, HNR, F0 and
zero-crossing rate, and their derivatives. To these 47 features
their mean and standard derivative in a 9-frame long neighbour-
hood were added, resulting in a total of 141 features [17].

3.3. Evaluation

As evaluation metrics, we used the method of evaluation which
is the de facto standard for laughter detection: we calculated the
Area Under Curve (AUC) score for the output likelihood scores
of the class of interest. As we now seek to detect two kinds
of phenomena (laughter and filler events), we calculated AUC
for both social signals; then these AUC values were averaged,
giving the Unweighted Average Area Under Curve (UAAUC)
score, just as in many previous studies on the SSPNet Vocaliza-
tion corpus [12, 13, 14, 17, 20].

Since the dataset used had distinct development and test
sets, we used the development sets to optimize the time series
filter weights; we chose the vector which maximized the AUC
on the development set. Then we evaluated the optimal vector
on the test set. Since we experimented with two vocalizations
(laughter and filler events), which did not necessarily behave in
the same way, we set the filter weights independently for the two
events, leading to two distinct series of optimization problems.

3.4. Frame-level Classification with DNNs

Before applying a time series filter, first we have to some-
how get a likelihood estimate for each class and frame of the
utterances. For this, we utilized the classification technique
that is now treated as the standard solution for the frame-level
phoneme classification (or phoneme posterior estimation) task,
namely Deep Neural Networks. We had neurons that used the
softmax function in the output layer. Based on the results of our
previous experiments (e.g. [14, 21]) and those of preliminary
tests, we utilized five hidden layers, each one consisting of 256
rectified linear units. These neurons apply the rectifier activa-
tion function max(0, x) instead of the usual sigmoid one [22].
The main advantage of deep rectifier nets is that they can be
trained with the standard backpropagation algorithm, without
any tedious pre-training (e.g. [23]). We used our custom DNN
implementation, originally developed for phoneme classifica-
tion. On the TIMIT database, frequently used as a reference
dataset for phoneme recognition, our team achieved the lowest
phonetic error rate published so far [24].

Frame-level DNN training was done on a sliding window
of the neighbouring frame-level feature vectors. We determined
the optimal value of neighbours via a grid search: we tested us-
ing 1, 5, . . . , 65 vectors at once, and chose the one that resulted
in the highest AUC score on the development set. The time se-
ries smoothing filters were optimized using these frame-level
output scores, for which we again used the development set.

3.5. Frame-level Likelihood Aggregation

After obtaining the frame-level likelihood estimates of our clas-
sifiers (the “raw” scores), in the next part we will aggregate the
values in the local neighbourhood in order to improve the AUC
scores. We chose the weighted form of the moving average
time series filter; that is, for a filter with a width of 2N + 1 we
define the weight values as w−N , w−N+1, . . . , wN ≥ 0 and∑N

i=−N
wi = 1. Afterwards, for the jth frame with the raw

likelihood estimate aj we calculate

a
′

j =

N∑

i=−N

wiaj+i. (1)

(Here we used the simplification that, for an utterance consist-
ing of k frames, aj = a1 for ∀j ≤ 0, and aj = ak for ∀j > k.)
We then optimized the wi weight values.

To test whether the (possible) improvements in the AUC
scores come from the actual weight vector and not from the
fact that we use some kind of aggregation over time, we also
tested two simple approaches. In the first one, we took the un-
weighted average of the raw likelihood estimates; that is, we
had wi = 1

2N+1
(constant filter). It is quite reasonable to ex-

pect that the middle frames are more important than those far
away from the central frame; we exploited this in our second
basic filter, resembling a triangle (triangular filter). As the last
method tested for comparison, we trained a DNN on the raw
likelihoods. To mirror the setup of the other smoothing filters,
the input of the DNNs was only the raw likelihood vector asso-
ciated with the given class (i.e. laughter or filler events) in the
given, 2N + 1 wide sliding window. These DNNs had three
hidden layers with 256 rectifier neurons each, and we used the
softmax function in the output layer.
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Development set Test set
Feature Set Filter Type Lau. Fil. Both Lau. Fil. Both

MFCC

— 93.4 96.0 94.7 90.7 86.8 88.8
Constant 96.3 97.0 96.7 92.7 87.5 90.1
Triangular 96.5 97.0 96.8 93.2 87.6 90.4
DNN 96.6 97.1 96.8 93.8 87.8 90.8
CMA-ES 96.6 97.1 96.8 94.4 88.0 91.2

FBANK

— 94.6 96.4 95.5 91.2 87.4 89.3
Constant 97.2 96.8 97.0 93.1 87.7 90.4
Triangular 97.3 96.9 97.1 93.6 87.7 90.7
DNN 97.4 96.9 97.2 94.7 87.9 91.3
CMA-ES 97.4 96.9 97.1 95.0 87.7 91.3

ComParE

— 93.8 96.2 95.0 91.8 88.1 89.9
Constant 97.2 96.7 96.9 94.4 88.4 91.4
Triangular 97.4 96.7 97.0 95.3 88.5 91.9
DNN 97.4 96.8 97.1 95.3 88.7 92.0
CMA-ES 97.5 96.7 97.1 96.0 90.1 93.1

DNN + Prob. time series smoothing [11] 95.1 94.7 94.9 93.3 89.7 91.5
DNN + DNN [12] 98.1 96.5 97.3 94.9 89.9 92.4
ComParE 2013 baseline [17] 86.2 89.0 87.6 82.9 83.6 83.3

Table 1: The AUC scores for the laughter and filler events achieved by using the different classification and aggregation methods.
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Figure 1: The AUC scores averaged for the two vocalization
types measured on the development set, as a function of the slid-
ing window width used during DNN training.

3.6. Optimizing the Filter Weights

We represented each time series filter by a vector of the wi

weights. The width of the filters was also determined via a grid
search: we tested 9, 17, . . . , 193 frame-wide filters (i.e. 4, 8, . . . ,
96 frames on both sides). We supposed that the optimal weights
of the neighbouring frames are not completely independent of
each other, so we only stored one weight for every four frames,
while we linearly interpolated the weight values for the interme-
diate frames. This approach resulted in a more compact weight
vector (e.g. a 193 frames wide filter was represented by only 49
values overall), which is likely to be easier to optimize. Since
we had input likelihoods got by using three feature sets, and we
optimized the filters for two types of vocalizations (i.e. laughter
and filler events), we had 144 optimization problems overall.

To keep the filter hypotheses on the same scale, we first
rejected the vectors where the sum of the weight values was
outside the range [0.8, 1.2]. The CMA-ES optimization method
allows us to set the vector where the search process is initiated;
we used the appropriate flat filter for this purpose.

4. Results
4.1. Baseline Scores

Figure 1 shows the AUC scores we obtained on the dev set, av-
eraged out for the two types of vocalizations (i.e. laughter and
filler events), without using time series filters. It is clear that
training the DNNs on a wider sliding window of input frame-
level feature vectors is beneficial for all three feature sets, al-
though the actual mean AUC scores and the optimal number
of frames used vary. In the following we used the models
trained on 61, 65 and 53 consecutive frames, MFCC, FBANK
and ComParE feature sets, respectively.

Table 1 lists the output AUC and UAAUC scores we got for
the three feature sets and the time series filter approaches. The
first thing to notice is that the raw scores (indicated by the “—
” filter type) are quite competitive, compared to the ComParE
baseline, which were not smoothed over time either. The reason
for this is probably that we used DNNs instead of SVM applied
by Schuller et al. [17], and that we exploited the feature vectors
of the neighbouring frames as well.

As regards the feature sets, we can see that the models
trained on MFCCs performed the worst among the three sets
tested. Since it is well known (see e.g. [25]) that DNNs work
better on more primitive features like mel filter bank energies,
it is not surprising that we got higher AUC values by using the
FBANK feature set. Furthermore, we can also see that utilizing
the ComParE feature set brought the highest AUC values for
both vocalization types on the test set; hence it seems to be the
most robust one among the three tested sets.

4.2. Basic Filters

Upon examining the two basic smoothing approaches used for
reference (filters “constant” and “triangular”), we can see that
applying these approaches alone brings a surprisingly large im-
provement over the raw likelihood scores. This indicates that
just by utilizing a smoothing filter of this width (which is usu-
ally over a second long) we can noticeably improve the AUC
values of the likelihood estimates. Among the two, triangular
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Figure 2: The optimal filters found by CMA-ES for laughter
events.

filters seem to consistently work better for both phenomena that
we sought to classify, which confirms our expectation that the
frame values around the middle have a much greater importance
than those at the sides.

4.3. DNNs and CMA-ES

Utilizing DNNs as time series smoothing filters led to further
improvements over the basic filter types: we experienced an
improvement on the test set in the range 0.2 − 1.1% over the
values got by triangular filters, depending on the vocalization
type and feature set. Surprisingly, though, on the development
set the difference was usually much smaller.

By using the CMA-ES optimization method, for the
FBANK feature set we got quite similar results on the test set;
on the MFCC and ComParE feature sets, however, we signifi-
cantly outperformed the DNN filter (and, with little surprise, the
other kinds of filters as well). This, in our opinion, confirms that
simply calculating the weighted mean of the frame-wise likeli-
hood scores is a viable way of improving Area-Under-Curve
values, and optimizing the weights of the filter via the CMA-ES
method works well in practice. (Of course, other optimization
methods such as Particle Swarm Optimization [26] or Bacterial
Foraging [27] might also be used for this kind of optimization.)
A further advantage of our approach is that it is computation-
ally very cheap, especially compared to using Deep Neural Net-
works or bidirectional Recurrent Neural Networks; while it still
allows feed-forward utterance processing.

5. The Time Series Filters Found
Figures 2 and 3 show the time series smoothing filters found by
using CMA-ES for the laughter and filler events, respectively.
The weight values were scaled up to have a mean of one for
better readability (i.e. a weight value of 1 means average im-
portance for the given frame). The large straight sections are
due to the linear interpolation of the intermediate frames. It can
be seen that the filters are not really smooth themselves, which
is probably due to the optimization technique used. Despite this,
the filters obtained on the three different feature sets are quite
similar to each other for both types of vocalizations.

The filters found for the laughter events have slightly higher
weight values around the central frame than those further away
(although this tendency is spoiled by the noise present in the
weight vectors, which is probably due to the random popula-
tion initialization of GA). However, what is quite interesting
is that the last weight values are quite high, being 2-4 times
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Figure 3: The optimal filters found by CMA-ES for filler events.

the average weight. (This, to a lesser extent, also holds for the
first frame of the filter found for the ComParE feature set.) For
an explanation of this phenomenon, recall that our DNNs were
trained using the feature vectors of 26-32 neighbouring frames
on both sides. This means that the posterior estimate provided
by a DNN for the first frame in the smoothing filter already in-
cludes some information about the preceding frames, and using
the likelihood estimate of the last frame we can “peek” into the
following frames. This makes the first and last frames in the
averaged filter more important than the inner ones, while the
values of the inner frames are redundant to some extent.

Examining the filler events, we can see that they are also
quite similar to each other. Furthermore, the middle frames
seem to be very important, having a relative importance of
about 3-7 times that of an average frame. Another clear differ-
ence among the two phenomena is that much wider filters were
needed for the two vocalization types for optimal performance
on the development set: for laughter events, all the three opti-
mal filters had the maximal length, being almost two seconds
long, while for filler events this value was only between 41 and
129. This is probably due to the difference in the typical length
of the two vocalization types: in this database, laughter events
have a mean duration of 942 milliseconds, while filler events
are 502 ms long on average.

6. Conclusions
In this study, we investigated the task of laughter and filler de-
tection. As was shown earlier, after performing some frame-
level posterior estimation step via some machine learning
method, it is worth smoothing the output likelihood scores of
the consecutive frames. This was why we applied a weighted
averaging time series smoothing filter. To set the weights in
the filter, we applied the state-of-the-art optimization method
of CMA-ES, using the development sets of a public English
dataset. Our AUC scores got on the test set significantly out-
performed both the unsmoothed likelihood values and standard
time series filters of the same size, while we also got better re-
sults than by just utilizing DNNs. Overall, we report the highest
average AUC score on the test set achieved by a feed-forward
technique. It would be interesting to see the amount of language
independence of the filters found; this, however, is the subject
of future works.
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