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Abstract. For bounded lattices L1 and L2, let f : L1 → L2 be a lattice

homomorphism. Then the map Princ(f) : Princ(L1) → Princ(L2), defined by
con(x, y) 7→ con(f(x), f(y)), is a 0-preserving isotone map from the bounded

ordered set Princ(L1) of principal congruences of L1 to that of L2. We prove
that every 0-preserving isotone map between two bounded ordered sets can

be represented in this way. Our result generalizes a 2016 result of G. Grätzer
from {0,1}-preserving isotone maps to 0-preserving isotone maps.

1. Introduction and our result

We assume that the reader has some familiarity with lattices and their congru-
ences; if not then Grätzer [13, 19] and the freely down-loadable Nation [33] are
recommended. Postponing some details about our motivation and a short survey
of related results to Section 2, here we are going to get to our result in a short way.

For a lattice L, let Princ(L) = 〈Princ(L);⊆〉 denote the ordered set of principal

congruences of L. A congruence of L is principal if it is of the form con(a, b) =
conL(a, b) for some elements a, b ∈ L, that is, if it is generated by a single pair
〈a, b〉. If L is bounded, which means that 0, 1 ∈ L, then so is Princ(L). In 2013,
Grätzer [14] proved the converse: up to isomorphism, every bounded ordered set is
of the form Princ(L) where L is a bounded lattice. Since no similar characterization
is known for non-bounded ordered sets in general, we study the representability of
isotone maps by principal lattice congruences only among bounded ordered sets.
For bounded lattices L1, L2 and a lattice homomorphism g : L1 → L2, it is natural
to consider the map

(1.1)
Princ(g) : Princ(L1) → Princ(L2), defined by

conL1
(x, y) 7→ conL2

(g(x), g(y)).

It was observed by Grätzer [20] that (1.1) defines indeed a map, since one can
easily show that conL1

(x1, y1) = conL1
(x2, y2) implies that conL2

(g(x1), g(y1)) =
conL2

(g(x2), g(y2)). Clearly, the map Princ(g) is 0-preserving and isotone. The
following definition is quite natural; analogous concepts have been used for (not
necessarily principal) congruences in several earlier papers including Czédli [1] and
Grätzer [20].
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2 G. CZÉDLI

Definition 1.1. Let f : P1 → P2 be a 0-preserving isotone map from an ordered set
P1 with 0 to an ordered set P2 with 0. We say that f is representable by principal

congruences of bounded lattices if there exist lattices L1 and L2, order isomorphisms
hi : Pi → Princ(Li), for i ∈ {1, 2}, and a lattice homomorphism g : L1 → L2 such

that f = h−1
2 ◦ Princ(g) ◦ h1, that is, the diagram

(1.2)

〈P1;≤P1
〉

f
−−−−→ 〈P2;≤P2

〉

h1

y h−1
2

x

〈Princ(L1);⊆〉
Princ(g)
−−−−−−→ 〈Princ(L2);⊆〉

is commutative. If we can find lattices L1 and L2 of lengths at most m and n,
respectively, such that (1.2) holds, then we say that f is representable by principal

congruences of lattices of lengths at most m and n. We also say that the lattice

homomorphism g represents f by means of principal congruences.

We say that f in (1.2) is 0-separating, 1-preserving, and 0-preserving if we have
that {x ∈ P1 : f(x) = 0} = {0}, f(1) = 1, and f(0) = 0, respectively. Of course,
the 1-preserving property assumes that both P1 and P2 have largest elements. It
was proved in Czédli [3] that if f has all the three properties listed above, then it
is representable by principal congruences of bounded lattices. Later, Grätzer [20]
proved that the first of the three conditions can be omitted, that is, whenever
f in (1.2) is 0-preserving and 1-preserving, then it is representable by principal
congruences of bounded lattices. Strengthening this result even further, our aim
is the prove that the preservation of 0 in itself guarantees representability; this is
formulated in our theorem below.

Theorem 1.2. If f : P1 → P2 is a 0-preserving isotone map from a bounded ordered

set P1 = 〈P1;≤P1
〉 to a bounded ordered set P2 = 〈P2;≤P2

〉, then f is representable

by principal congruences of bounded lattices of lengths at most 5 and 7.

Theorem 1.2 gives an affirmative answer to F. Wehrung’s question asked at the
conference SSAOS-55, Nový Smokovec, Slovakia, 2017. Related results on ordered
sets of principal congruences have recently been given in Czédli [3, 4, 6, 7, 9, 8],
Grätzer [14, 20, 21, 22, 23], and Grätzer and Lakser [28, 29].

Remark 1.3. If none of P1 and P2 is a singleton, then we can chose L1 and L2 in
Theorem 1.2 such that L1 is of length 5 while L2 is of length 7.

Outline. Section 2 contains a mini survey of earlier results that motivate our
present work. The rest of the paper is devoted to the proof of Theorem 1.2 and
Remark 1.3. Section 3 describes the construction we need; first in a pictorial and
easy-to-understand way for a concrete example, and then we expand this visual
description to a general construction. Section 4 verifies our construction, whereby
the theorem follows. Also, Section 4 points out why Remark 1.3 holds.

2. Motivation and a mini survey

There are so many results on congruence lattices of lattices which motivate the
present paper that this section, added on April 30, 2018, is restricted only to a mini
survey of them. This short section and the list of the papers referenced here are far
from being complete; a complete treatment would need a whole book. For much
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more extensive and very deep surveys up to their publication dates, the reader is
referred to the monograph Grätzer [19] and to the book chapters Grätzer [16] and
[17] and Wehrung [37], [38], and [39].

By a well-known old result of Funayama and Nakayama [12], the lattice Con(L) =
〈Con(L);⊆〉 of all congruences of a lattice L is distributive. The converse for the
finite case is due to R. P. Dilworth but, independently, it was first published in
Grätzer and Schmidt [30]. This result states that every finite distributive lattice
is (isomorphic to) the congruence lattice Con(L) of a finite lattice L. In spite of
several positive results, mile-stoned by Huhn [32] and Schmidt [35], which represent
some infinite distributive algebraic lattices as congruence lattices of lattices; it was
a real breakthrough when Wehrung [36] presented a distributive algebraic lattice D
such that D ∼= Con(L) holds for no lattice L. Later, such a distributive algebraic
lattice D of minimal cardinality was given by Růžička [34].

Compared to the infinite case, much more results have been proved on the rep-
resentability of finite distributive lattices D by congruence lattices of finite lattices
L. There are several results in which, in addition to D ∼= Con(L), the lattice L
has some nice properties or its automorphism group is isomorphic to a given fi-
nite group; we mention Grätzer and Knapp [24] and Grätzer and Schmidt [31] as
some attracting examples of this sort. A homomorphism f : L1 → L2 between two
lattices naturally induces an isotone map from Con(L1) to Con(L2) or backwards,
and various papers represent isotone maps between two finite distributive lattices
in this way; see, for example, Grätzer and Lakser [25]. Several papers do this so
that the lattices L1 and L2 have some nice properties; see, for example, Czédli [1]
and Grätzer and Lakser [26] and [27]. Instead of representing a single map, there
is a whole theory of representing families of isotone maps; see Wehrung [39].

In a pioneering paper, Grätzer [14] proved that every bounded ordered set P =
〈P ;≤〉 is isomorphic to 〈Princ(L);⊆〉 for some lattice L. This result naturally
leads to the following general problem: find the “〈P, Princ(L)〉-type” counterparts
of the “〈D, Con(L)〉-type” results mentioned so far in this section and, in addition,
find analogous “〈P ⊆ D, Princ(L) ⊆ Con(L)〉-type” representability results. Some
concrete instances of this general problem are formulated at the end of Grätzer [17].

The present paper is motivated by and contributes to the progress outlined in
this section above and mentioned right after Theorem 1.2. In spite of this progress,
the present paper, and the very recent Czédli and Mureşan [11], we are far from
the solution of the above-mentioned general problem.

3. The construction

3.1. Decomposing f. Let P1 and P2 be bounded ordered sets. Assume that

(3.1)

f : P1 → P2 is a 0-preserving isotone map. Let P3 be
the principal ideal of P2 generated by f(1P1

), that is,
P3 = ↓f(1P1

). Then f decomposes as f = f3 ◦ f1,
where f1 : P1 → P3, defined by f1(x) := f(x), is a {0, 1}-
preserving isotone map and f3 : P3 → P2, defined by
x 7→ x, is a 0-preserving injective isotone map.

Note that the embedding f3 is necessarily 0-separating. We can use Czédli [7]
to represent f1, while some ideas of Czédli [4] can be modified to represent f3.
Finally, the composite of these two representations is what we need in order to
prove Theorem 1.2. Since Czédli [4] and [7] are long papers and it would take a lot
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of time of the reader to extract and appropriately modify ideas from them, we are
going to outline these ideas by a concrete but sufficiently general example.

From now on, we denote the bottom element and the top element of Pi by 0i and
1i, respectively, while those of Li will be denoted by the boldface symbols 000i and
111i. When no ambiguity threatens, we will often write 〈Pi,≤i〉 instead of 〈Pi,≤Pi

〉.
The least congruence and the largest congruence of a lattice L will be denoted by
∆L and ∇L, respectively. Let L be an ordered set or a lattice. For x, y ∈ L, 〈x, y〉 is
called an ordered pair of L if x ≤ y. If y covers x, then 〈x, y〉 is an edge of L. Edges
and prime intervals are essentially the same but edges are pairs of elements while
prime intervals are two-element subsets. The set of ordered pairs of L is denoted
by Pairs≤(L). As opposed to the concept of intervals [x, y], pairs and the notation

〈x, y〉 make it clear that S ⊆ L implies that Pairs≤(S) ⊆ Pairs≤(L).

Figure 1. Our gadget G2 = G2(p, q) = 〈G2; γ2, H2, ν2〉

3.2. Basic gadgets and their pictograms, the zigzag arrows. Our basic tool
is the lattice G2 = G2(p, q) given on the right of Figure 1. This lattice is taken
from Czédli [7], where it is denoted by Gup

2 (p, q), because [7] also uses its “down”
variant. Some details of Figure 1 that are not needed at this stage will be explained
later. Note that we can use G2 and G2 with parameters other than p and q, and
we often drop the parameters if they are not relevant or they are clear from the
context. The edges 〈aq , bq〉 and 〈ap, bp〉 are called the first edge and the target edge

of G2(p, q), respectively. In order to make our figures less crowded, we will often
denote G2 by a grey zigzag arrow that is directed from its first edge to its target
edge. We also say that the zigzag arrow goes from the first edge to the target edge.
Sometimes we draw a double-lined zigzag arrow to indicate that besides a zigzag
arrow some other elements (whose set will be denoted by Upq in our figures) are
also added. We will explain later why we need double-lined zigzag arrows and we
will define them exactly in (3.18); at present, it suffices to know that their role
is the same as that of the “single-lined” zigzag arrows. Zigzag arrows without
the adjective “double-lined” are always understood as single-lined ones. Observe
that con(ap, bp) collapses only the p-labeled edges, so its non-singleton blocks are
{ap, bp}, {c

pq
1 , dpq

1 }, {cpq
2 , dpq

2 }, {cpq
3 , dpq

3 }, and {epq , dpq
4 }. Similarly,

(3.2)
the non-singleton blocks of con(aq , bq) are {ap, bp}, {c

pq
1 , dpq

1 }, {cpq
2 , dpq

2 },
{cpq

3 , dpq
3 }, {cpq

4 , epq, dpq
4 }, {cpq

5 , dpq
5 }, {cpq

6 , dpq
6 }, and {aq, bq}.
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The quotient lattices G1 := G2/con(ap, bp) and G0 := G2/con(aq, bq) and the
corresponding “gadget structures” will be denoted by different kinds of grey zigzag
arrow pictograms as Figures 2 and 3 show. These arrows will have no double-lined
variants.

Figure 2. The quotient gadget G1 = G1(p, q) = 〈G1; γ1, H1, ν1〉

Figure 3. The quotient gadget G0 = G0(p, q) = 〈G0; γ0, H0, ν0〉

The zigzag arrow notation in Figure 1 and also in other figures is motivated by
the way the congruences spread: con(aq , bq) ≥ 〈ap, bp〉, that is, con(aq, bq) collapses
the p-colored edge 〈ap, bp〉. The lattice G2 and its quotient lattices G1 and G0 will
be referred to as our gadgets or zigzag arrows. Sometimes, G1 and G0 will be called
“quotient zigzag arrows”. Note that

(3.3)
con(ap, bp) and con(aq , bq) are the only
nontrivial congruences of G2(p, q),

whereby we will use only two kinds of quotient zigzag arrows. So, there are three
different zigzag arrows, the “non-quotient” G2 and two quotient ones, G1 and G0.
Now we premise our plans with them in our construction; this will hopefully help
to enlighten the basic ideas, which will be detailed later. Note, however, that these
plans will become more clear only in Subsection 3.3.

First, assume that we want to represent a single ordered set 〈P ;≤P 〉 in the
form 〈Princ(L);⊆〉. Then we have to find a lattice L and an order isomorphism
h : 〈P ;≤P 〉 → 〈Princ(L);⊆〉. It will be clear from Subsection 3.3 soon that, for
p ∈ P , we will let h(p) := con(ap, bp). Also, for p < q in P , we will extend the set
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(in fact, the six-element sublattice) {0, ap, bp, aq, bq, 1} to the zigzag arrow G2(p, q)
of Figure 1; the reason is that the zigzag arrow

(3.4) G2(p, q) forces the inequality con(ap, bp) ≤ con(aq, bq),

and this inequality is needed to guarantee that h is isotone. We do not need quotient
zigzag arrows for this purpose, because they force only that ∆L ≤ con(aq, bq) and
∆L ≤ ∆L, which automatically hold. However, even if they are superfluous at this
stage, quotient zigzag arrows can be included, since they do not disturb the job of
the “non-quotient” G2 zigzag arrows.

Second, the situation becomes more involved when we want to represent the
map f from (3.1) (with the subscript 2 changed to 3) from 〈P1;≤1〉 to 〈P3;≤3〉.
We will represent 〈P1;≤1〉 by an order isomorphism h1 : 〈P1;≤1〉 → 〈Princ(L1);⊆〉
without quotient zigzag arrows as explained in the previous paragraph. But then
we will face the problem that for 0 <1 p <1 q in P1, it may happen that, say,
03 = f1(p) <3 f1(q) in P3. Since f1 is intended to be represented as Princ(g1), see
(1.1) (but replace the subscript 2 by 3), it follows from (1.2) (after slight notational
changes) that

(3.5)
∆L3

= h3(03) = h3(f1(p)) = Princ(g1)(h1(p))

= Princ(g1)(con(ap, bp)) = con(g1(ap), g1(bp)).

This means that g1 collapses ap and bp, that is, 〈ap, bp〉 ∈ Ker(g1). On the other
hand, a calculation similar to (3.5) shows that 〈aq, bq〉 /∈ Ker(g1). Hence, it follows
from (3.3) that g1 maps the G2(p, q) sublattice of L1 onto a quotient zigzag arrow
G1. So even if G1 would not be necessary to represent 〈P3;≤3〉 in itself, some copies
of G1 has to be included in L3, because otherwise we could not define an appropriate
lattice homomorphism g1 : L1 → L3. The motivation for using G0 is similar but
it has an additional feature. Namely, if 03 = f1(p) = f1(q), then Ker(g1) has to
collapse each of the pairs 〈ap, bp〉 and 〈aq, bq〉, but it cannot collapse a pair that is
not collapsed by the congruence of G2(p, q) described in (3.2), because otherwise
〈0L1

, 1L1
〉 would belong to Ker(g1) and Ker(g1) would collapse the whole lattice

L1, so the range of Princ(g1) would be the singleton set {∆L3
}, which is clearly

not the case in general. Combining this with (3.3), it follows that g1 has to map
G2(p, q) to a copy of G0, provided that 03 = f1(p) = f1(q).

Finally, the quotient zigzag arrows that are necessarily included in L3 will not
disturb us to extend L3 to a lattice L2 in a way similar to the one used in Czédli [4].

Figure 4. An example
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3.3. Describing the construction with an example.

Example 3.1. Let P1 = {01, p, q, r, 11} and P2 = {02, s, t, u, v, 12} be the ordered
sets given in Figure 4, and let f : P1 → P2 be the isotone map indicated by dashed
arrows in the figure.

Figure 5 shows how we represent P1 as Princ(L1). We start with the eight
element simple lattice M3,3; in Figure 5, M3,3 is the sublattice of L1 formed by the
pentagon-shaped elements. One of the edges of M3,3 that is disjoint from {0, 1}
is denoted by 〈a11

, b11
〉; this edge and all thick edges in the figure are colored by

11 ∈ P1. In the next step, we add the dark-grey-filled large elements. That is, for
every x ∈ P1 \ {01, 11}, we add the thin edge 〈ax, bx〉. We often call this edge a
basic edge. Our goal is that the principal congruence con(ax, bx) should represent
x ∈ P1. That is, the map

(3.6) h1 : P1 → Princ(L1), defined by x 7→ con(ax, bx),

should be an order isomorphism. At present, we are far from this goal since the
principal congruences con(ax, bx), for x ∈ P1 \ {01, 11}, form an antichain. There-
fore, we add several copies of our gadget G2 in order to force the comparability of
con(ax, bx) and con(ay, by) whenever x, y ∈ L \ {01, 11} are comparable. We can
add a gadget going from the basic edge 〈ay, by〉 to the basic edge 〈ax, bx〉 for every

〈x, y〉 ∈ Pairs≤(P1 \ {01, 11}), but it is often sufficient to add less gadgets because
of transitivity. Note that the gadget added to 〈p, 11〉, indicated only by a (thick
grey) zigzag arrow, is superfluous in Figure 5; it is in the figure to exemplify later
how to deal with the f-preimages of 03 = 02.

Figure 5. P1
∼= Princ(L1)

As Figure 6 shows, the representation of P3 = ↓s as Princ(L3) is similar but we
need some new features: L3 has an extra element a0(p) = b0(p), it has two s-colored
thin basic edges, and there are gadgets, in both directions, between the s-colored
basic edges. Also, to guarantee that the s-colored basic edges generate ∇L3

, a zigzag
arrow goes from the basic edge 〈as(q), bs(q)〉 to the edge 〈a13

, b13
〉. Note that some

edges ending at 1113 or starting from 0003 need not indicate coverings in Figure 6; for
example, since the t-colored basic edge 〈at, bt〉 is the target edge of a zigzag arrow,
we have only that bt < 1113 but bt ⊀ 1113. This will not cause any problem in what
follows, and

(3.7) h3 : P3 → Princ(L3), defined by x 7→ con(ax, bx),
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is an order isomorphism.

Figure 6. P3
∼= Princ(L3)

Figure 7. P2
∼= Princ(L2)

The required homomorphism g1 : L1 → L3 is defined as follows. It maps the M3,3

sublattice, which is the collection of the pentagon-shaped elements of L1, onto the
M3,3 sublattice of L3 such that g1(a11

) = a13
and g1(b11

) = b13
. Motivated by

f(p) = 03, f maps both ap and bp to a0(p) = b0(p). The element s ∈ P3 has
two f-preimages in P1 \ {11}; this explains that L3 has two s-colored thin basic
edges. The pairs 〈aq, bq〉 and 〈ar , br〉 are mapped to the pairs 〈as(q), bs(q)〉 and
〈as(r), bs(r)〉, respectively. The left and the right grey zigzag arrows (representing
copies of G2) of L1 are mapped to the leftmost grey zigzag arrow and the rightmost
upper zigzag arrow, respectively. Since G1, the leftmost zigzag arrow in Figure 6, is
a homomorphic image of G2, it is easy to see that the map g1 we have just defined
is a lattice homomorphism. It is straightforward to see, at least for Example 3.1,
that

(3.8) g1 represents f1 by means of principal congruences;
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see Definition 1.1. Note that since con(aq, ar) = ∇L1
, it follows from (1.1) and

f = Princ(g) that g(aq) 6= g(ar); this explains why we need two s-colored basic
edges in L3. So far, we have not used any double-lined zigzag arrow.

As the last step of the construction, we extend L3 to a lattice L2 as shown in
Figure 7. In this figure, L3 is the interval [0003,1113], and

(3.9)
each of the thick dotted edges of L3 generates
a congruence that corresponds to 13 ∈ P3.

In order to take care of the comparability u ≤ v, there is a new (single-lined) zigzag
arrow in L2 with first edge 〈av, bv〉 and target edge 〈au, bu〉. (“New” means that
it is not in L3.) This is possible because at the beginning, as previously, the top
element bu of the target edge is a coatom in L2, so the new zigzag arrow lies in
L2 basically in the same way as the zigzag arrows lied in L1 and L3. However, we
use double-lined zigzag arrows in L2 to take care of the comparabilities s ≤ v and
t ≤ u; we will explain later in (3.18) what these double-lined zigzag arrows are, and
we will point out why a single-lined zigzag arrow cannot work if there is an edge r

in the filter generated by the top of its target edge such that con(r) 6= ∇L2
.

Now that the new arrows, single-lined and double-lined, take care of each of the
comparabilities u ≤ v, s ≤ v, t ≤ s, and t ≤ u, it follows that

(3.10) h2 : P2 → Princ(L2), defined by x 7→ con(ax, bx),

is an order isomorphism. Let g3 be the natural embedding

(3.11) g3 : L3 → L2, defined by x 7→ x.

It is straightforward to see, at least for Example 3.1, that

(3.12) g3 represents f3 by means of principal congruences.

Let g = g3 ◦ g1; it is a lattice homomorphism from L1 to L2. We know from
Czédli [6, 7] and it is easy to see that Princ is a functor, whereby

(3.13) Princ(g3) ◦ Princ(g1) = Princ(g3 ◦ g1) = Princ(g).

For i ∈ {1, 3}, let hi : Pi → Princ(Li) denote the order isomorphism defined by
x 7→ con(ax, bx); see (3.6), (3.7), and (3.10). By (1.2), (3.8) and (3.12) mean that

(3.14) f1 = h−1
3 ◦ Princ(g1) ◦ h1 and f3 = h−1

2 ◦ Princ(g3) ◦ h3.

Combining (3.13) and (3.14), we obtain that

f = f3 ◦ f1 = (h−1
2 ◦ Princ(g3) ◦ h3) ◦ (h−1

3 ◦ Princ(g1) ◦ h1)

= h−1
2 ◦ Princ(g3) ◦ Princ(g1) ◦ h1 = h−1

2 ◦ Princ(g) ◦ h1.

Hence, g is representable by principal congruences of lattices of lengths 5 and 7.

3.4. The construction for the general case. The construction for the general
case is almost the same as that for Example 3.1. Hence, it suffices to point out the
differences. The construction of L1 is essentially the same as in the example.

For each p ∈ f−1(02), L3 has to contain an element a0(p) = b0(p) that is an atom
and also a coatom in L2. Remember that 02 = 03. Of course, g1 maps the elements
ap and bp of L1 to the element a0(p) = b0(p) ∈ L3. Note that for p, p′ ∈ f−1(02),
if p 6= p′, then a0(p) 6= a0(p′). For each s ∈ f(P1) \ {03}, we need as many s-

colored thin basic edges in L3 as the size |f−1(s) \ {11}| of f−1(s) \ {11}. So if
f−1(s) \ {11} = {q, r, . . .}, then we include the s-colored basic edges 〈as(q), bs(q)〉,
〈as(r), bs(r)〉, . . . in L3. In order to guarantee that every s-colored edge generates
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the same congruence of L3, we let a zigzag arrow go between any two s-colored basic
edges in both directions. (Note that it often suffices to use fewer zigzag arrows; we
only need that the “reflexive and transitive closure of the zigzag arrows” is the full
relation on the set of s-colored edges of L3.) So far, we have seen what L3 is and
we have defined the action of g1 for the M3,3 sublattice of L1 and for the thin basic
edges of L1.

In the next step, we extend the action of g1 to the gadgets. For each gadget,
that is, for each zigzag arrow Z ∼= G2 of L1, we do the following. Let 〈ah, bh〉 and
〈aw, bw〉 be the target edge and the first edge of Z, respectively, and observe that
since Z is included in L1, we have that h ≤1 w in P1. Thus, f(h) ≤3 f(w) in P3

since f is isotone, and there are three cases to consider.
First, if f maps none of h and w to 03, then 〈g1(ah), g1(bh)〉 = 〈af(h), bf(h)〉

and 〈g1(aw), g1(bw)〉 = 〈af(w), bf(w)〉 are basic edges of L3 and L3 contains a zigzag
arrow Z′ ∼= G2 from 〈g1(aw), g1(bw)〉 to 〈g1(ah), g1(bh)〉 by the construction of L3.
In this case, g1 restricted to Z will be an isomorphism from Z to Z′.

Second, if f(h) = 03 6= f(w), then we modify L3 by adding a quotient zigzag
arrow G1 that goes from 〈g1(aw), g1(bw)〉 = 〈af(w), bf(w)〉 to 〈g1(ah), g1(bh)〉 =
〈a0(h), b0(h)〉. Observe that a0(h) = b0(h) and so con(a0(h), b0(h)) = ∆L3

. Hence, the
new zigzag arrow does not spoil the construction of L3 since its only effect is to
force the inequality ∆L3

≤ con(af(w), bf(w)), which holds automatically.
Third, if f(h) = 03 = f(w), then we add a quotient zigzag arrow G0 going from

the “degenerate” (singleton) edge 〈g1(aw), g1(bw)〉 = 〈a0(w), b0(w)〉 to the degenerate
edge 〈g1(ah), g1(bh)〉 = 〈a0(h), b0(h)〉; this does not spoil anything.

Finally, we extend L3 to L2 and we define g3 in the same way as in Example 3.1.
Since P3 is a (principal) order ideal in P2, there are only two sorts of comparabilities
u ≤ v in P2 that we still have to force, namely,

(3.15)
either u, v ∈ P2 \ P3 and u ≤ v,
or u ∈ P3 and v ∈ P2 \ P3 and u ≤ v.

In case of the first alternative mentioned in (3.15), every edge 〈x, y〉 with x ≥ bu is
a thick and solid edge and generates the largest congruence; as a consequence to be
clarified later, we use a (single-lined) zigzag arrow in this case. In the second case,
we use a double-lined zigzag arrow; we are going to point out a few lines later why.

Note at this point that

(3.16)
a zigzag arrow “arrives” at its target edge from
above and “departs” from its first edge upwards;

see our figures. Therefore, as it will be explained later (with reference to the present
paragraph), it needs a special attention whether all the edges above the target edge
are thick and solid or not, but it is irrelevant whether the same holds below the
target edge and below the first edge. As opposed to Czédli [4], now since all edges
above bv are thick and solid for both alternatives given in (3.15), the first edges of
the new single-lined or double-lined zigzag arrows will need no special care.

For p ∈ P3 \ {03}, let

(3.17) Up := [bp,1113], which is a filter in L3 and an interval in L2.

The element dpq
1 in Figure 1 will be called the elbow of G2(p, q). By the construction

of L3, Up consists of bp, 1113, and the elbows of the zigzag arrows in L3 with target
edge 〈ap, bp〉. (It may happen that there is no such elbow; then |Up| = 2. If |Up| > 2,
then it is a modular lattice of length 2.) For p ∈ P3 \{03} and q ∈ P2 \P3, inserting
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a double-lined zigzag arrow with first edge 〈aq, bq〉 and target edge 〈ap, bp〉 means
that

(3.18)

first we insert a (single-lined) zigzag arrow, and then we add
a new interval Upq isomorphic to Up such that [bp, 1Upq

] is
isomorphic to the direct product of Up and the two-element
chain {0, 1} such that Up corresponds to Up×{0} in [bp, 1Upq

];

see Figures 8 and 9 for illustration. In both figures, Up is the lowest grey-filled
interval and it consists of the black-filled circles and the black-filled pentagon, while
the interval Upq is also grey-filled and it consists of the grey-filled square elements.

Figure 8. Up = {black-filled elements}, a double-lined zigzag ar-
row from 〈aq, bq〉 to 〈ap, bp〉, and a part of L2 (not for Example 3.1)

Note that (3.9) is still valid; in fact, our intention to preserve its validity explains
why we cannot use (single-lined) zigzag arrows instead of double-lines ones here.
Namely, continuing the paragraph containing (3.16), remember that the bottom
element of Upq is dpq

1 , the elbow element of the zigzag arrow G2(p, q). Assume
that we delete Upq \ {dpq

1 } from Figure 8 or from Figure 9. Then the elbow dpq
1

becomes a coatom and 〈dpq
1 ,1112〉 becomes a solid thick edge, that is, it generates the

largest congruence of L2 and so it corresponds to the top 12 of P2. However, then
the dotted thick edge 〈bp, e

′〉 and the solid thick edge 〈dpq
1 ,1112〉 become transposed,

and so they generate the same congruence, which violates (3.9). Furthermore, it
remains true that any two thick dotted edges generate the same congruence, and
it turns out that no congruence of L2 corresponds to 13 ∈ P3; this is what we
surely have to avoid. It will turn out that the usage of double-lined zigzag arrows
is sufficient to keep the validity of (3.9), and our L2 does the job.
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As opposed to the top element bp of the basic edge associated with p ∈ P3 \{03},
its bottom element ap does not cause a similar difficulty. So, as opposed to Upq in-
serted above the single-lined part Z of the double-lined zigzag arrow from 〈aq , bq〉 to
〈ap, bp〉, we do not have to add extra elements below Z. In order to give a first im-
pression why this is so, note that the ideal ↓cpq

1 = {0002,0003, ap, c
pq
2 , cpq

1 } is a sublattice
isomorphic to N5; see Figures 8 and 9. Obviously, the congruence con↓c

pq

1
(0003, ap)

generated by the dotted thick edge of this sublattice does not collapse any solid
thick edge in this sublattice; much less obviously, the same will turn out to hold
for conL2

(0003, ap) in the whole lattice L2.

Figure 9. Adding the third double-lined zigzag arrow with target
edge 〈ap, bp〉 and a part of L2 (not for Example 3.1)

4. Proving that our construction works

In this section, we are going to prove that our construction has the properties
stated in Section 3; this will imply Theorem 1.2. A direct proof given in a self-
contained way with all details would result in an extremely long paper, which we
want to avoid. Therefore, we organize the proof so that it relies on very similar
considerations, even if this makes it necessary to reference some long proofs in
addition to some statements from earlier papers. First, we claim that (3.8) holds
in general, not only for our example.

Lemma 4.1. The lattice homomorphism g1 : L1 → L3 constructed in the previous

section represents f1 by means of principal congruences.

Proof. The proof of the main result in Czédli [7] yields this lemma as the particular
case where only one 0-preserving isotone map between two bounded ordered sets
has to be represented. In order to make this observation clear, note that the main
difference between the present construction and that in [7] is the following. Here
we use only one gadget G2 to force an inequality mentioned in (3.4). The same
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inequality in [7] is forced twice; once with G2 and once with the dual of G2. The
reason is that [7] constructs selfdual lattices; we do not pursue a similar target,
because that would make the rest of this section much more complicated.

Clearly, the above-mentioned “main difference” does not threaten the validity of
Lemma 4.1, because of two obvious reasons. First, it suffices to force an inequality
from (3.4) only once. Second, it is even safer to force it only once, because otherwise
it is more difficult to show that a different additional forcing does not force non-
desired inequalities. �

4.1. Quasi-colored lattices. In this subsection, we recall a concept, which has
been useful in Czédli [1, 4]; it will be used while proving that the lattice homomor-
phism (in fact, embedding) g3 : L3 → L2 represents f3. A quasiordered set, also
known as a preordered set, is a structure 〈H ; ν〉 where H 6= ∅ is a set and ν ⊆ H2

is a reflexive and transitive relation on H . We often use the notation x ≤ν y in-
stead of 〈x, y〉 ∈ ν . For X ⊆ H2, the least quasiorder on H that includes X is
denoted by quo(X). We write quo(x, y) instead of quo({〈x, y〉}). The advantage
of using quasiorders over partial orderings is that quo(X) always exists. This fact
is extremely useful in constructions where we modify a quasiorder by adding new
pairs to it. Since antisymmetry is inherited by smaller relations, it follows that

(4.1)

If {νi : i ∈ I} is a set of quasiorders on H such that there is
a partial order ν̂ with νi ⊆ ν̂ for all i ∈ I, then all the νi and
quo(

⋃
i∈K νi) are also partial orders on H .

Following Czédli [1, 4], a quasi-colored lattice is a structure L = 〈L; γ, H, ν〉 where

L is a lattice, 〈H ; ν〉 is a quasiordered set, γ : Pairs≤(L) → H is a surjective map,

and for all 〈u1, v1〉, 〈u2, v2〉 ∈ Pairs≤(L),

(C1) if γ(〈u1 , v1〉) ≤ν γ(〈u2 , v2〉), then con(u1, v1) ≤ con(u2, v2);
(C2) if con(u1, v1) ≤ con(u2, v2), then γ(〈u1, v1〉) ≤ν γ(〈u2, v2〉).

For example, G2 = G2(p, q) = 〈G2; γ2, H2, ν2〉 in Figure 1 is a quasi-colored lattice.
In this figure, all the thick edges are 1 = 1H2

-colored. Furthermore, if x < y, then
γ2(〈x, y〉) is the join of the colors of the edges in [x, y] in the figure; the join is taken
in the chain 〈H2, ν2〉. This quasi-colored lattice as well as the quasi-colored lattices
in Figures 2 and 3 are taken from Czédli [7]. If 〈H ; ν〉 happens to be an ordered
set, then L above is a colored lattice. As a consequence of (4.1),

(4.2)
all the quasi-colored lattices we are going construct
in this paper will be colored lattices.

The importance of (4.2) lies in the fact that we know from Czédli [7] or, less
explicitly, from [4, Lemma 2.1] that for every colored lattice L = 〈L; γ, H, ν〉, the
map

(4.3) h : H → Princ(L), defined by p 7→ con(a p-colored edge),

is an order isomorphism. Note that h above is well defined, since (C1) implies that
no matter which p-colored edge is considered in (4.3).

4.2. Completing the proof with [4]. If Pi is a singleton and Pi
∼= Princ(Li),

then Li is necessarily the 1-element lattice, which cannot be obtained by our con-
struction. However, if |Pi| = 1 for some i ∈ {1, 2}, then Theorem 1.2 follows from
Grätzer [14], which represents P3−i as Princ(L3−i) with L3−i of length at most 5.
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Hence, in what follows, we assume that none of P1 and P2 is a singleton. In order
to complete the proof of Theorem 1.2, we need to show only the following lemma.

Lemma 4.2. (3.12) holds in general, that is, g3 represents f3 by means of principal

congruences.

We present two proofs, which are close to each other; the first one is less detailed
and it is recommended only to those who are familiar not only with the statements
but also with the proofs given in Czédli [4].

First proof of Lemma 4.2. The lemma follows from straightforward modifications
of the method used in Czédli [4]. While extracting the proof of Lemma 4.2 from
[4], the following three facts have to be taken into account.

First, since [4] deals with lattices without bottom and top elements and infin-
itely many lattice homomorphisms corresponding to our g3 are constructed for an
increasing sequence of ordered sets, [4] uses wider gadgets. Analyzing the proof of
[4], one can see that G2 also works in the present particular case. There is another
possibility: after constructing L1, L3, and g1 : L1 → L3, we could change our zigzag
arrow G2 to the gadget used in [4]; see [4, Figure 2]; this would change the definition
of L2 and g3 but Lemma 4.2 would remain valid.

Second, the role of our Upq corresponds to that of U q
p in [4] and some similar

convex sublattices also occur there; see the grey-filled sublattices in [4, Figure 8].
The purpose of these convex sublattices is the generalization of (3.9), which cannot
be achieved without some auxiliary subsets; see the last two paragraphs of Section 3
here. Here the situation is easier, because some of the grey-filled convex sublattices
of [4, Figure 8] are singletons here and, as it was pointed out in the last paragraph
of Section 3, some others cause no problem.

Third, whenever we add a gadget together with new grey-filled convex sublattices
in [4], the length of the lattice can increase; this is not a problem there since at the
end of the transfinite process, a lattice of infinite length is constructed. As opposed
to [4], when we add a new double-lined zigzag arrow, then the new interval Upq is
never put above an earlier Up′q′ . Hence, the length of the lattice does not increase
when we add the second, third, etc. double-lined zigzag arrows. This is why we use
Upq rather than the set U q

p from [4]. However, this modification does not change
the argument of [4] significantly.

Taking the above-mentioned three facts into account, the method of [4] proves
Lemma 4.2. �

Second proof of Lemma 4.2. It follows from the construction of L3 that we have a
coloring γ′ : 〈H3,≤3〉 → Pairs≤(L3). Namely, for a prime interval p, γ′(p) is the
label of the edge p. If an edge is not labeled because of space considerations, then
γ′(p) is defined by the following two rules: the thick solid edges of L3 are labeled by
13, and if r and r′ are transposed edges in the same gadget G2, then γ′(r′) = γ′(r).
Of course, γ′(〈x, x〉) = 03 = 02. Furthermore, if r = 〈x, y〉 such that x < y but y
does not cover x, then take a maximal chain x = z0 ≺ z1 ≺ · · · ≺ zn = y in the
interval [x, y] and let

(4.4) γ′(r) = γ′(〈x, y〉) :=

n∨

i=1

γ′(〈zi−1, zi〉),

where the join is taken in 〈P3,≤3〉. Of course, 〈P3,≤3〉 is not a lattice and joins in
it do not make sense in general. However, the set on the right of (4.4) is a finite
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chain or it contains 13, the top element of P3, whereby the join in (4.4) always
makes sense; compare this with Lemma [4, Chain Lemma 4.6]. Furthermore, it is
easy to see from the structure of L3 that the join above does not depend on the
choice of the maximal chain in [x, y]. Compare (4.4) also with the well-known fact
that in a lattice of finite length, if x = z0 ≺ z1 ≺ · · · ≺ zn = y is a maximal chain
in an interval [x, y], then

(4.5) con(x, y) =

n∨

i=1

con(zi−1, zi) =
∨

{con(r′) : x ≤ 0r
′ ≺ 1r

′ ≤ y}.

Since 〈Princ(L3);⊆〉 represents 〈P3,≤3〉, it is straightforward to derive from its
construction that γ′ is a quasi-coloring; in fact, it is a coloring.

The construction of L2 begins with adding some new edges to L3 that are either
labeled or their thick solid style means that their labels are 12; the earlier 13-labeled
edges become dotted and thick; see Figures 7–9 without the zigzag arrows; at this
stage, we have an “initial” lattice L2,0 whose edges are labeled by the elements
of P2. For syntactical reasons, we will often denote ≤3 and ≤2 by ν3 and ν2,
respectively; for example, 〈P3, ν3〉 = 〈P3,≤3〉. Letting

(4.6) ν2,0 := quo(ν3 ∪ ({02}×P2) ∪ (P2 × {12})),

〈P2; ν2,0〉 turns out to be a quasiordered set with bottom element 02 = 03 and top
element 12. In fact, it is an ordered set; see (4.1) and (4.2). Since each edge of L2,0

is either labeled, or thick and dotted (corresponding to the label 13), or thick and
solid (corresponding to 12), or transposed to other edges in the same gadget, we
can uniquely define a quasi-coloring

(4.7) γ∗
0 : Pairs≤(L2,0) → 〈P2; ν2,0〉

analogously to (4.4). By construction, it is straightforward to see that γ∗
0 is a

coloring and it extends γ′; let us remind to (4.2) at this point. Let

(4.8) {〈uι, vι〉 : 1 ≤ ι < κ} := ν2 \ (ν3 ∪ {〈x, x〉 : x ∈ P2} ∪ {〈02, x〉 : x ∈ P2})

be the set of the comparabilities we intend to force by zigzag arrows; see (3.15)
and (3.16). (Note that any smaller set whose union with ν3 generates ν2 as a
quasiorder would do.) In (4.8), κ is an ordinal number, that is, we have chosen
a well-ordered index set. We let ν2,ι := quo(ν2,0 ∪ {〈uµ, vµ〉 : 1 ≤ µ < ι}). By
transfinite induction, we define lattices L2,ι, quasiordered (in fact, ordered) sets
〈P2; ν2,ι〉 and quasi-colorings (in fact, colorings)

(4.9) γ∗
ι : Pairs≤(L2,ι) → 〈P2; ν2,ι〉

in the following way. The case ι = 0 is settled by (4.6) and (4.7). If ι is a limit
ordinal, then the ordering ν2,ι is the directed union of {ν2,µ : µ < ι}. Let the
lattice L2,ι and the coloring γ∗

ι be the directed union of {L2,µ : µ < ι} and that of
{γ∗

µ : µ < ι}, respectively; it is straightforward to see that γ∗
ι is a (quasi-) coloring.

So the real task is to step from an ordinal ι to the next ordinal, µ := ι+1. In order
to accomplish this step, assume as an induction hypothesis that γ∗

ι from (4.9) is a
coloring. Then νµ = quo(νι ∪{〈uι, vι〉}) and we obtain Lµ from Lι by adding, from
the vι-colored basic edge 〈avι

, bvι
〉 to the uι-colored basic edge 〈auι

, buι
〉,

(A) a zigzag arrow if uι ∈ P3 \ P2, or
(B) a double-lined zigzag arrow if uι ∈ P2 \ {03}.
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In both cases, the purpose of the arrow we add is to force the inequality in

(4.10) γ∗
µ(〈auι

, buι
〉) = con(auι

, buι
) ≤ con(avι

, bvι
) = γ∗

µ(〈avι
, bvι

〉).

Hence, it is straightforward to check the validity of (C1) for γ∗
µ as follows. Assume

that r := γ∗
µ(〈x1, x2〉) ≤νµ

γ∗
µ(〈x3, x4〉) =: r′ for 〈x1, x2〉, 〈x3, x4〉 ∈ Pairs≤(Lµ).

Since νµ = quo(νι ∪ {〈uι, vι〉}), there is a finite sequence r = s0, s1, . . . , sn = r′ of
elements in P2 such that for each i ∈ {1, . . . , n},

(4.11) si−1 ≤νι
si or 〈si−1, si〉 = 〈uι, vι〉.

Since γ∗
ι : Pairs≤(Lι) → P2 is a surjective map by the definition of quasi-colorings,

we can pick pairs 〈ci, di〉 ∈ Pairs≤(Lµ) such that 〈c0, d0〉 = 〈x1, x2〉, 〈cn, dn〉 =
〈x3, x4〉, γ∗

ι (〈ci, di〉) = si for all i ∈ {0, . . . , n}, and, in addition, 〈ci, di〉 = 〈auι
, buι

〉
if si = uι and 〈ci, di〉 = 〈avι

, bvι
〉 if si = vι. Observe that for all i ∈ {1, . . . , n}, we

have that conLµ
(ci−1, di−1) ≤ conLµ

(ci, di) either because (4.11) and the validity
of (C1) for γ∗

ι , or because the (single-lined or double-lined) zigzag arrow forces that
conLι

(ci−1, di−1) = conLι
(auι

, buι
) ≤ conLι

(avι
, bvι

) = conLι
(ci, di). Therefore, by

transitivity, we conclude that

conLµ
(x1, x2) = conLµ

(c0, d0) ≤ conLµ
(cn, dn) = conLµ

(x3, x4).

Thus, γ∗
µ satisfies (C1).

Figure 10. Prime perspectivities

Next, in order to prove the validity of (C2) for γ∗
µ, we begin with a weaker

statement; namely, we are going to show that for every x1, . . . , x4 ∈ Lµ,

(4.12)
if x1 ≺ x2, x3 ≺ x4, and conLµ

(x1, x2) ≤ conLµ
(x3, x4),

then γ∗
µ(〈x1, x2〉) ≤νµ

γ∗
µ(〈x3, x4〉).

Following Grätzer [18] and using the definition given in Czédli, Grätzer, and Lakser
[10], we say that the edge 〈x1, x2〉 is prime-perspective down to the edge 〈x3, x4〉, in

notation 〈x1, x2〉
p-dn
−→ 〈x3, x4〉, if x2 = x1∨x4 and x1∧x4 ≤ x3; see Figure 10, where

the double-lined edges denote coverings, and observe the role of the black-filled

elements in this definition. The upward prime perspectivity 〈x1, x2〉
p-up
−→ 〈x3, x4〉

is defined dually. Since its proof uses induction on length, the Prime Projectivity
Lemma of Grätzer [18] is valid for every lattice of finite length; this lemma asserts
that conLµ

(x1, x2) ≤ conLµ
(x3, x4) if and only if there exists a finite sequence

p0 = 〈x3, x4〉, p1, . . . , pk−1, pk = 〈x1, x2〉 of edges such that, for each i ∈ {1, . . . , k},

pi−1
p-dn
−→ pi or pi−1

p-up
−→ pi. Hence, by the transitivity of νµ, the required (4.12)

would follow if we proved that

(4.13) if 〈x3, x4〉
p-dn
−→ 〈x1, x2〉 or 〈x3, x4〉

p-up
−→ 〈x1, x2〉,

then γ∗
µ(〈x1, x2〉) ≤νµ

γ∗
µ(〈x3, x4〉).
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If x1, . . . , x4 ∈ Lι, then the premise of (4.13) gives conLι
(x1, x2) ≤ conLι

(x3, x4),
whereby γ∗

µ(〈x1, x2〉) = γ∗
ι (〈x1, x2〉) ≤νµ

γ∗
ι (〈x3, x4〉) = γ∗

µ(〈x3, x4〉) since (C2)
holds for γ∗

ι and νι ⊆ νµ. So (4.13) holds if x1, . . . , x4 ∈ Lι. It also holds if x1, . . . , x4

belong to the last added (single-lined or double-lined) zigzag arrow, because G2 is a
colored lattice and Upq is isomorphic to Up. We are left with the case where exactly

one of the edges 〈x1, x2〉 and 〈x3, x4〉 belongs to Pairs≤(Lι). There are a lot of cases

depending on the position of the edge not belonging to Pairs≤(Lι) but, similarly
to Czédli [4], each of these cases can be settled in a straightforward way. Figures 8
and 9 reflect these cases satisfactorily but the rather tedious further details are
omitted even if the present task based on the Prime Projectivity Lemma is slightly
easier than the method used in Czédli [4]. After settling the above-mentioned cases,
(4.13) follows, and it implies the validity of (4.12).

Next, for 〈x1, x2〉, 〈x3, x4〉 ∈ Pairs≤(Lµ) that are not necessary edges, assume
that conLµ

(x1, x2) ≤ conLµ
(x3, x4). Clearly, we can assume that x1 < x2 and

x3 < x4. Let x1 = y0 ≺ y1 ≺ · · · ≺ ym = x2 and x3 = z0 ≺ z1 ≺ · · · ≺ zn = x4

be maximal chains in the corresponding intervals. The structure of Lµ makes it
clear that in every chain of Lµ, the set of γ∗

µ-colors of the edges of this chain has a
largest element. Hence, it follows from Czédli [4, Lemma 4.6], which says that (4.4)
holds in every quasi-colored lattice with coloring map γ′, that there are subscripts
i ∈ {1, . . . , m} and j ∈ {1, . . . , n} such that

(4.14) γ∗
µ(〈x1, x2〉) = γ∗

µ(〈yi−1, yi〉) and γ∗
µ(〈x3, x4〉) = γ∗

µ(〈zj−1, zj〉).

Larger colors mean larger generated congruences since γ∗
µ satisfies (C1). Using this

fact together with (4.5), it follows that

(4.15) conLµ
(x1, x2) = conLµ

(yi−1, yi) and conLµ
(x3, x4) = conLµ

(zj−1, zj).

Combining (4.12), (4.14), and (4.15), it follows immediately that the assumption
conLµ

(x1, x2) ≤ conLµ
(x3, x4) implies that γ∗

µ(〈x1, x2〉) ≤νµ
γ∗

µ(〈x3, x4〉). Thus, γ∗
µ

satisfies (C2). This completes the induction, whence we know that 〈Lι; γ
∗
ι , P2, νι〉 is

a quasi-colored lattice for all ι ≤ κ. In particular, 〈L2; γ2, P2,≤2〉 := 〈Lκ; γ∗
κ, P2, νκ〉

is a colored lattice and the map h2 : 〈P2;≤2〉 → 〈Princ(L2);⊆〉 defined in (3.10) is
an order isomorphism by (4.3). Finally , for x ∈ P3,

Princ(g3)(h3(x))
(3.7)
= Princ(g3)(conL3

(ax, bx))
(1.1)
= conL2

(g3(ax), g3(bx))

(3.11)
= conL2

(ax, bx)
(3.1)
= conL2

(af3(x), bf3(x))
(3.10)
= h2(f3(x)).

Hence, Princ(g3) ◦ h3 = h2 ◦ f3. Multiplying both sides by h−1
2 from the left, we

obtain that f3 = h−1
2 ◦ Princ(g3) ◦ h3. This means that g3 represents f3 by means

of principal congruences, completing the second proof of Lemma 4.2. �

Now, we are in the position to complete the paper with two easy proofs as follows.

Proof of Theorem 1.2. Armed with Lemmas 4.1 and 4.2, the argument between
(3.13) and Subsection 3.4 applies. �

Proof of Remark 1.3. Let M3,3,3,3 be one of the lattices that we can obtain from two
copies of M3,3 by means of a Hall–Dilworth gluing over a two-element intersection.
If we replace M3,3 by the simple lattice M3,3,3,3 of length 5, then our construction
yields L1 and L2 such that they are of lengths 5 and 7, respectively. �
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Cham (2014)

[38] Wehrung, F.: Congruence lattices and ideals of rings. In: Grätzer, G., Wehrung, F (eds)
Lattice theory: special topics and applications. Vol. 1, pp. 297–335. Birkhäuser/Springer,
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