
A NOTE ON FINITE LATTICES WITH MANY CONGRUENCES

GÁBOR CZÉDLI

Abstract. By a twenty year old result of Ralph Freese, an n-element lattice
L has at most 2n−1 congruences. We prove that if L has less than 2n−1

congruences, then it has at most 2n−2 congruences. Also, we describe the
n-element lattices with exactly 2n−2 congruences. Finally, we point out that

if the congruence lattice of an n-element algebra A is distributive, then A has
at most 2n−1 congruences; furthermore, if this maximum number is reached,

then the congruence lattice of A is boolean.

1. Introduction and motivation

It follows from Lagrange’s Theorem that the size |S| of an arbitrary subgroup S
of a finite group G is either |G|, or it is at most the half of the maximum possible
value, |G|/2. Furthermore, if the size of S is the half of its maximum possible value,
then S has some special property since it is normal. Our goal is to prove something
similar on the size of the congruence lattice Con(L) of an n-element lattice L.

For a finite lattice L, the relation between |L| and |Con(L)| has been stud-
ied in some earlier papers, including Freese [5], Grätzer and Knapp [11], Grätzer,
Lakser, and Schmidt [12], Grätzer, Rival, and Zaguia [13]. In particular, part (i)
of Theorem 1 below is due to Freese [5]. Although Czédli and Mureşan [4] and
Mureşan [14] deal only with infinite lattices, they are also among the papers mo-
tivating the present one. We will conclude the paper with some remarks on finite
algebras distinct from lattices.

2. Our result on lattices and its proof

Mostly, we follow the terminology and notation of Grätzer [8]. In particular, the
glued sum L0+̇L1 of finite lattices L0 and L1 is their Hall–Dilworth gluing along
L0 ∩ L1 = {1L0

} = {0L1
}; see, for example, Grätzer [8, Section IV.2]. Note that +̇

is an associative operation. Our result is the following.

Theorem 1. If L is a finite lattice of size n = |L|, then the following hold.

(i) L has at most 2n−1 many congruences. Furthermore, |Con(L)| = 2n−1 if and

only if L is a chain.

(ii) If L has less than 2n−1 congruences, then it has at most 2n−1/2 = 2n−2

congruences.

(iii) |Con(L)| = 2n−2 if and only if L is of the form C1+̇B2+̇C2 such that C1 and

C2 are chains and B2 is the four-element Boolean lattice.
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For n = 8, part (iii) of this theorem is illustrated in Figure 1. Note that part
(i) of the theorem is due to Freese [5, page 3458]; however, as a by-product of our
approach leading to parts (ii) and (iii) of Theorem 1, this paper also includes a
proof of part (i).

Figure 1. The full list of 8-element lattices with exactly 64 = 28−2

many congruences

Proof of Theorem 1. We prove the theorem by induction on n = |L|. Since the case
n = 1 is clear, assume as an induction hypothesis that n > 1 is a natural number
and all the three parts of the theorem hold for every lattice with size less than n.
Let L be a lattice with |L| = n. For 〈a, b〉 ∈ L2, the least congruence collapsing a
and b will be denoted by con(a, b). A prime interval or an edge of L is an interval
[a, b] with a ≺ b. For later reference, note that

Con(L) has an atom, and every of its atoms is of
the form con(a, b) for some prime interval [a, b];

(2.1)

this follows from the finiteness of Con(L) and from the fact that every congruence
on L is the join of congruences generated by covering pairs of elements; see also
Grätzer [10, page 39] for this folkloric fact.

Based on (2.1), pick a prime interval [a, b] of L such that Θ = con(a, b) is an
atom in Con(L). Consider the map f : Con(L) → Con(L) defined by Ψ 7→ Θ ∨ Ψ.
We claim that, with respect to f ,

every element of f(Con(L)) has at most two preimages. (2.2)

Suppose to the contrary that there are pairwise distinct Ψ1, Ψ2, Ψ3 ∈ Con(L) with
the same f-image. Since the Θ ∧ Ψi belong to the two-element principal ideal
↓Θ := {Γ ∈ Con(L) : Γ ≤ Θ} of Con(L), at least two of these meets coincide. So
we can assume that Θ∧Ψ1 = Θ∧Ψ2 and, of course, we have that Θ∨Ψ1 = f(Ψ1) =
f(Ψ2) = Θ ∨ Ψ2. This means that both Ψ1 and Ψ2 are relative complements of Θ
in the interval [Θ ∧ Ψ1, Θ ∨ Ψ1]. According to a classical result of Funayama and
Nakayama [7], Con(L) is distributive. Since relative complements in distributive
lattices are well-known to be unique, see, for example, Grätzer [8, Corollary 103],
it follows that Ψ1 = Ψ2. This is a contradiction proving (2.2).

Clearly, f is a retraction map onto the filter ↑Θ. It follows from (2.2) that
|↑Θ| ≥ |Con(L)|/2. Also, by the well-known Correspondence Theorem, see Burris
and Sankappanawar [2, Theorem 6.20], or see Theorem 5.4 (under the name Second
Isomorphism Theorem) in Nation [15], |↑Θ| = |Con(L/Θ)| holds. Hence, it follows
that

|Con(L/Θ)| ≥
1

2
· |Con(L)|. (2.3)
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Since Θ collapses at least one pair of distinct elements, 〈a, b〉, we conclude that
|L/Θ| ≤ n − 1. Thus, it follows from part (i) of the induction hypothesis that
|Con(L/Θ)| ≤ 2(n−1)−1 = 2n−2. Combining this inequality with (2.3), we obtain
that |Con(L)| ≤ 2 · |Con(L/Θ)| ≤ 2n−1. This shows the first half of part (i).

For later reference, note that we have not used that [a, b] is a prime interval; this
will be used only later. We only needed that con(a, b) ∈ Con(L) was an atom and
Con(L) was distributive. Hence, the same proof as above gives that

if A is an n-element algebra such that Con(A)
is a distributive lattice, then |Con(A)| ≤ 2n−1.

(2.4)

If L is a chain, then Con(L) is known to be the 2n−1-element boolean lattice;
see, for example, Grätzer [10, Corollaries 3.11 and 3.12]. Hence, we have that
|Con(L)| = 2n−1 if L is a chain. Conversely, assume the validity of |Con(L)| = 2n−1,
and let k = |L/Θ|. By the induction hypothesis, |Con(L/Θ)| ≤ 2k−1. On the other
hand, |Con(L/Θ)| ≥ |Con(L)|/2 = 2n−2 holds by (2.3). These two inequalities and
k < n yield that k = n − 1 and also that |Con(L/Θ)| = 2n−2 = 2k−1. Hence, the
induction hypothesis implies that L/Θ is a chain. For the sake of contradiction,
suppose that L is not a chain, and pick a pair 〈u, v〉 of incomparable elements of
L. The Θ-blocks u/Θ and v/Θ are comparable elements of the chain L/Θ, whence
we can assume that u/Θ ≤ v/Θ. It follows that u/Θ = u/Θ ∧ v/Θ = (u ∧ v)/Θ
and, by duality, v/Θ = (u ∨ v)/Θ. Thus, since u, v, u ∧ v and u ∨ v are pairwise
distinct elements of L and Θ collapses both of the pairs 〈u∧ v, u〉 and 〈v, u∨ v〉, we
have that k = |L/Θ| ≤ n − 2, which is a contradiction. This proves part (i) of the
theorem.

As usual, for a lattice K, let J(K) and M(K) denote the set of nonzero join-

irreducible elements and the set of meet-irreducible elements distinct from 1, re-
spectively. By a narrows we will mean a prime interval [a, b] such that a ∈ M(L)
and b ∈ J(L). Using Grätzer [9], it follows in a straightforward way that

if [a, b] is a narrows, then {a, b} is the
only non-singleton block of con(a, b).

(2.5)

Now, in order to prove part (ii) of the theorem, assume that |Con(L)| < 2n−1.
By (1), we can pick a prime interval [a, b] such that Θ := con(a, b) is an atom in
Con(L). There are two cases to consider depending on whether [a, b] is a narrows
or not; for later reference, some parts of the arguments for these two cases will be
summarized in (2.6) and (2.7) redundantly. First, we deal with the case where [a, b]
is a narrows. We claim that

if |Con(L)| < 2n−1, [a, b] is a narrows, and Θ = con(a, b)
is an atom in Con(L), then L/Θ is not a chain.

(2.6)

By (2.5), |L/Θ| = n − 1. By the already proved part (i), L is not a chain, whence
there are u, v ∈ L such that u ‖ v. We claim that u/Θ and v/Θ are incomparable
elements of L/Θ. Suppose the contrary. Since u and v play a symmetric role, we
can assume that u/Θ ∨ v/Θ = v/Θ, i.e., (u ∨ v)/Θ = v/Θ. But u ∨ v 6= v since
u ‖ v, whereby (2.5) gives that {v, u ∨ v} = {a, b}. Since a < b, this means that
v = a and u∨ v = b. Thus, u∨ v ∈ J(L) since [a, b] is a narrows. The membership
u ∨ v ∈ J(L) gives that u ∨ v ∈ {u, v}, contradicting u ‖ v. This shows that
u/Θ ‖ v/Θ, whence L/Θ is not a chain. We have shown the validity of (2.6). Using

part (i) and |L/Θ| = n−1, it follows that |Con(L/Θ)| < 2(n−1)−1. By the induction
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hypothesis, we can apply (ii) to L/Θ to conclude that |Con(L/Θ)| ≤ 2(n−1)−2. This
inequality and (2.3) yield that |Con(L)| ≤ 2 · |Con(L/Θ)| ≤ 2n−2, as required.

Second, assume that [a, b] is not a narrows. Our immediate plan is to show that

if a prime interval [a, b] of L is not a narrows
and Θ = con(a, b), then |L/Θ| ≤ n − 2.

(2.7)

By duality, we can assume that a is meet-reducible. Hence, we can pick an element
c ∈ L such that a ≺ c and c 6= b. Clearly, c 6= b∨ c and Θ = con(a, b) collapses both
〈a, b〉 and 〈c, b ∨ c〉, which are distinct pairs. Thus, we obtain that |L/Θ| ≤ n − 2,
proving (2.7). Hence, Con(L/Θ) ≤ 2n−3 by part (i) of the induction hypothe-
sis. Combining this inequality with (2.3), we obtain the validity of the required
inequality Con(L) ≤ 2n−2. This completes the induction step for part (ii).

Figure 2. Illustrations for the proof

Next, in order to perform the induction step for part (iii), we assume that
|Con(L)| = 2n−2. Again, there are two cases to consider. First, we assume
that there exists a narrows [a, b] in L such that Θ := con(a, b) is an atom in
Con(L). Then |L/Θ| = n − 1 by (2.5) and L/Θ is not a chain by (2.6). By
the induction hypothesis, parts (i) and (ii) hold for L/Θ, whereby we have that
|Con(L/Θ)| ≤ 2(n−1)−2 = 2n−3. On the other hand, it follows from (2.3) that
|Con(L/Θ)| ≥ |Con(L)|/2 = 2n−3. Hence, |Con(L/Θ)| = 2n−3 = 2|L/Θ|−2. By the
induction hypothesis, L/Θ is of the form C1+̇B2+̇C2. We know from (2.5) that
{a, b} = [a, b] is the unique non-singleton Θ-block. If this Θ-block is outside B2,
then L is obviously of the required form. If the Θ-block {a, b} is in C2 ∩ B2, then
L is of the required form simply because the situation on the left of Figure 2 would
contradict the fact that [a, b] is a narrows. A dual treatment applies for the case
{a, b} ∈ C1 ∩ B2. If the Θ-block {a, b} is in B2 \ (C1 ∪ C2), then L is of the form
C1+̇N5+̇C2, where N5 is the “pentagon”; see the middle part of Figure 2. For an
arbitrary bounded lattice K and the two-element chain 2, it is straightforward to
see that

Con(K+̇2) ∼= Con(2+̇K) ∼= Con(K) × 2. (2.8)

A trivial induction based on (2.8) yields that |Con(C1+̇N5+̇C2)| is divisible by
5 = |Con(N5)|. But 5 does not divide |Con(L)| = 2n−2, ruling out the case that
the Θ-block {a, b} is in B2 \ (C1 ∪ C2). Hence, L is of the required form.

Second, we assume that no narrows in L generates an atom of Con(L). By (2.1),
we can pick a prime interval [a, b] such that Θ := con(a, b) is an atom of Con(L).
Since [a, b] is not a narrows, (2.7) gives that |L/Θ| ≤ n− 2. We claim that we have
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equality here, that is, |L/Θ| = n− 2. Suppose to the contrary that |L/Θ| ≤ n − 3.
Then part (i) and (2.3) yield that

2n−2 = |Con(L)| ≤ 2 · |Con(L/Θ)| ≤ 2 · 2(n−3)−1 = 2n−3,

which is a contradiction. Hence, |L/Θ| = n − 2. Thus, we obtain from part (i)
that |Con(L/Θ)| ≤ 2n−3. On the other hand, (2.3) yields that |Con(L/Θ)| ≥
|Con(L)|/2 = 2n−3, whence |Con(L/Θ)| = 2n−3 = 2|L/Θ|−1, and it follows by part
(i) that L/Θ is a chain. Now, we have to look at the prime interval [a, b] closely. It
is not a narrows, whereby duality allows us to assume that b is not the only cover of
a. So we can pick an element c ∈ L \ {b} such that a ≺ c, and let d := b∨ c; see on
the right of Figure 2. Since 〈c, d〉 = 〈c∨a, c∨b〉 ∈ con(a, b) = Θ, any two elements of
[c, d] are collapsed by Θ. Using 〈a, b〉 ∈ Θ, 〈c, d〉 ∈ Θ, and |L/Θ| = n− 2 = |L| − 2,
it follows that there is no “internal element” in the interval [c, d], that is, c ≺ d.
Furthermore, [a, b] = {a, b} and [c, d] = {c, d} are the only non-singleton blocks of
Θ. In order to show that b ≺ d, suppose to the contrary that b < e < d holds for
some e ∈ L. Since d = b ∨ c ≤ e ∨ c ≤ d, we have that e ∨ c = d, implying e � c.
Hence, c ∧ e < e. Since 〈c ∧ e, e〉 = 〈c ∧ e, d ∧ e〉 ∈ Θ, the Θ-block of e is not a
singleton. This contradicts the fact that {a, b} and {c, d} are the only non-singleton
Θ-blocks, whereby we conclude that b ≺ d. The covering relations established so
far show that S := {a = b∧c, b, c, d = b∨c} is a covering square in L. We know that
both non-singleton Θ-blocks are subsets of S and L/Θ is a chain. Consequently,
L \ S is also a chain.

Hence, to complete the analysis of the second case when [a, b] is not a narrows,
it suffices to show that for every x ∈ L \ S, we have that either x ≤ a, or x ≥ d.
So, assume that x ∈ L \ S. Since L/Θ is a chain, {a, b} and {x} are comparable in
L/Θ. If {x} < {a, b}, then {x} ∨ {a, b} = {a, b} gives that x ∨ a ∈ {a, b}. If x ∨ a
happens to equal b, then x � a leads to x∧a < x and 〈x∧a, x〉 = 〈x∧a, x∧ b〉 ∈ Θ,
contradicting the fact the {a, b} and {c, d} are the only non-singleton Θ-blocks. So
if {x} < {a, b}, then x ∨ a = a and x < a, as required. Thus, we can assume that
{x} > {a, b}. If {x} > {c, d}, then the dual of the easy argument just completed
shows that x ≥ d. So, we are left with the case {a, b} < {x} < {c, d}. Then the
equalities {a, b} ∨ {x} = {x} and {x} = {x} ∧ {c, d} give that b ∨ x = x = d ∧ x,
that is, b ≤ x ≤ d. But x /∈ S, so b < x < d, contradicting b ≺ d. This completes
the second case of the induction step for part (iii) and the proof of Theorem 1. �

3. Remarks and problems on other finite algebras

We conclude the paper with some remarks and problems on finite algebras that
are not necessarily lattices. Part (a) below has been pointed out in (2.4).

Remark 2. If A is an n-element algebra such that Con(A) is distributive, then the
following two statements hold.

(a) |Con(A)| ≤ 2n−1.
(b) If |Con(A)| = 2n−1, then Con(A) is a boolean lattice.

First proof of Remark 2. As mentioned above, part (a) follows from (2.4). With
straightforward changes, the same argument is appropriate to prove part (b); we
outline this possibility as follows. Again, we use induction on n. If |Con(A)| = 2n−1,
then the induction hypothesis together with (2.3) yield that ↑Θ is a boolean lattice
and |↑Θ| = 2n−2, whence the “at most” in (2.2) turns into “exactly”. Hence, for



6 G. CZÉDLI

each Ψ ∈ ↑Θ, there is exactly one g(Ψ) ∈ Con(A) such that g(Ψ) 6= Ψ = f(g(Ψ)).
Using that |Con(A)| = 2n−1 = 2 · |↑Θ|, it follows that g(↑Θ) = {g(Ψ) : Ψ ∈ ↑Θ} is
disjoint from ↑Θ and so Con(A) is the disjoint union of ↑Θ and g(↑Θ). Furthermore,
g and the restriction feg(↑Θ) of f to the subset g(↑Θ) = Con(A)\ ↑Θ are reciprocal
bijections. For Ψ ∈ g(↑Θ), we have that feg(↑Θ)(Ψ) = Θ ∨ Ψ, whereby it follows
from distributivity that feg(↑Θ) is a lattice homomorphism from g(↑Θ) onto ↑Θ, so
it is an isomorphism. Since Ψ < feg(↑Θ)(Ψ) for every Ψ ∈ g(Θ), we conclude that
Con(A) is the direct product of the two-element chain and the boolean lattice ↑Θ.
Consequently, Con(A) is also boolean, proving part (b). �

As a preparation for another remark, we also give an alternative proof.

Second proof of Remark 2. The equivalence lattice Equ(A) is semimodular by Ore [16];
see also Grätzer [8, Theorem 404]. Let ∅ ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn = A be a max-
imal chain of subsets of A and denote by ∆A the equality relation on A. Then
{∆A ∪ (Xi × Xi) : 1 ≤ i ≤ n} is a maximal chain of length n − 1 in Equ(A). By
semimodularity, Equ(A) has no longer chain, and neither has Con(A) since it is
a sublattice of Equ(A). Finally, we know, say, from Grätzer [8, Lemma 170 and
Corollaries 169 and 171] that a distributive lattice of length n−1 has at most 2n−1

elements and we have equality only in the boolean case. �

It follows easily from Freese and Nation [6] that parts (a) and (b) above hold
even if A is an n-element semilattice, where Con(A) is not distributive in general;
see also Czédli [3]. This fact and the second proof above raise the problem how to
relax the assumption that Con(A) is distributive if we want to ensure the validity
of parts (a) and (b) of Remark 2.

Denote by B(n) = |Equ({1, 2, . . . , n})| the n-th Bell number ; see Bell [1] and
Rota [17]. For example, B(5) = 52 and B(6) = 203; see [1, page 540]; these equali-
ties show that B(n) is much larger than 2n−1. Hence, any meaningful generalization
of Remark 2 must exclude that Con(A) = Equ(A). Since, for n large enough, ev-
ery element of Equ(A) is meet reducible or join-reducible with high multiplicity,
we cannot leave only few elements from Equ(A) to get a proper sublattice. This
means that the difference B(n)−|Con(A)| cannot be too small. This difference can
be even larger than what the lattice theoretical analysis of Equ(A) gives, because
many sublattices of Equ(A) cannot be congruence lattices of A; this follows easily
from Zádori [18]. As a second problem, we are far from finding the largest number
m(n) in the set {|Con(A)| : A is an n-element algebra and Con(A) 6= Equ(A)}.
All we know is a lower bound given in the following remark; this remark and the
inequality 1 + B(6 − 1) = 53 > 26−1 will show that m(n) is much larger than 2n−1

in general.

Remark 3. For every integer n ≥ 2, there exists an n-element algebra 〈A; F 〉 such
that Con(〈A; F 〉) 6= Equ(A) and |Con(〈A; F 〉)| = 1 + B(n − 1).

Proof. Fix an element u ∈ A and let H := A \ {u}. A pair 〈a, b〉 is nontrivial if
a 6= b. For each nontrivial pair 〈a, b〉 ∈ H2, define the following unary operation:

fa,b : A2 → A, , x 7→

{

a if x 6= u

b if x = u.
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Let F := {fa,b : 〈a, b〉 ∈ H2 is a nontrivial pair}. We claim that

for each Ψ ∈ Equ(H), {〈u, u〉} ∪ Ψ ∈ Con(〈A; F 〉), and (3.1)

if Θ ∈ Con(〈A; F 〉) and the Θ-block of
u is not a singleton, then Θ = A2.

(3.2)

Every operation fa,b is constant on H and every nontrivial pair from 〈u, u〉 ∪ Ψ
belongs to H2, whence (3.1) follows trivially. Assuming the premise of (3.2), pick
an element x 6= u in the Θ-block of u. Then 〈a, b〉 = 〈fa,b(x), fa,b(u)〉 ∈ Θ for every
nontrivial pair 〈a, b〉 ∈ H2, implying Θ = A2 and (3.2). Finally, Remark 3 follows
from (3.1) and (3.2). �
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