PLANAR GRADED LATTICES AND THE c_{1}-MEDIAN PROPERTY

GÁBOR CZÉDLI, ROBERT C. POWERS, AND JEREMY M. WHITE

Abstract. Let L be a lattice of finite length, $\xi=\left(x_{1}, \ldots, x_{k}\right) \in$ L^{k}, and $y \in L$. The remoteness $r(y, \xi)$ of y from ξ is $d\left(y, x_{1}\right)+\cdots+$ $d\left(y, x_{k}\right)$, where d stands for the minimum path length distance in the covering graph of L. Assume, in addition, that L is a graded planar lattice. We prove that whenever $r(y, \xi) \leq r(z, \xi)$ for all $z \in L$, then $y \leq x_{1} \vee \cdots \vee x_{k}$. In other words, L satisfies the so-called c_{1}-median property.

1. INTRODUCTION

Let L be a lattice of finite length, $\xi=\left(x_{1}, \ldots, x_{k}\right) \in L^{k}$, and $y \in$ L. The remoteness $r(y, \xi)$ of y from ξ is $d\left(y, x_{1}\right)+\cdots+d\left(y, x_{k}\right)$, where d stands for the minimum path length distance in the covering graph of L. The set of medians of ξ is $M(\xi)=\{y \in L: r(y, \xi) \leq$ $r(z, \xi)$ for all $z \in L\}$. The determination of median sets based on different types of metric spaces is an important problem in mathematics with applications in areas such as cluster analysis and social choice [2], consensus and location [4] [9], and classification theory [1].

The determination of median sets in terms of the ordering on L leads to some interesting results. For any $\xi=\left(x_{1}, \ldots, x_{k}\right) \in L^{k}$ and for any integer t such that $1 \leq t \leq k$ we let

$$
c_{t}(\xi)=\bigvee\left\{\bigwedge_{i \in I} x_{i}: I \subseteq\{1, \ldots, k\},|I|=t\right\}
$$

and

$$
c_{t}^{\prime}(\xi)=\bigwedge\left\{\bigvee_{i \in I} x_{i}: I \subseteq\{1, \ldots, k\},|I|=t\right\}
$$

In 1980, Monjardet [10] showed that if L is a finite distributive lattice, then

$$
M(\xi)=\left[c_{t}(\xi), c_{t}^{\prime}(\xi)\right]
$$

where $t=\left\lfloor\frac{k}{2}+1\right\rfloor$. The functions $c_{\left\lfloor\frac{k}{2}+1\right\rfloor}$ and $c_{\left\lfloor\frac{k}{2}+1\right\rfloor}^{\prime}$ are known as the majority rule and dual majority rule, respectively. Thus L being finite

[^0]and distributive implies that the median set for a given $\xi \in L^{k}$ is an order interval with bounds given by the majority and dual majority rule.

In 1990, Leclerc [8] proved that the converse holds. Specifically, for a finite lattice L, if the median set $M(\xi)$ is equal to $\left[c_{\left\lfloor\frac{k}{2}+1\right\rfloor}(\xi), c_{\left\lfloor\frac{k}{2}+1\right\rfloor}^{\prime}(\xi)\right]$ for any $\xi \in L^{k}$, then L is distributive. Leclerc also proved that a finite lattice L is modular if and only if $M(\xi) \subseteq\left[c_{\left\lfloor\frac{k}{2}+1\right\rfloor}(\xi), c_{\left\lfloor\frac{k}{2}+1\right\rfloor}^{\prime}(\xi)\right]$ for every $\xi \in L^{k}$. Moreover, he showed that L is upper semimodular if and only if $M(\xi) \subseteq\left[c_{\left\lfloor\frac{k}{2}+1\right\rfloor}(\xi), 1_{L}\right]$ for every $\xi \in L^{k}$ where $1_{L}=\bigvee L$. The lower bound $c_{\left\lfloor\frac{k}{2}+1\right\rfloor}(\xi)$ is tight as shown when L is distributive, but the upper bound of 1_{L} seems a bit crude and it is natural to ask for a better upper bound. Leclerc suggested the element

$$
c_{1}(\xi)=\bigvee\left\{\bigwedge_{i \in I} x_{i}: I \subseteq\{1, \ldots, k\},|I|=1\right\}=\bigvee_{i=1}^{k} x_{i}
$$

as a possible upper bound for $M(\xi)$. In 2000, Li and Boukaabar [6] gave a nontrivial example of an upper semimodular lattice L with 101 elements in which there existed a $\xi \in L^{3}$ such that $c_{1}(\xi)$ was not an upper bound for $M(\xi)$. This example leads us to ask the following question. What conditions does a lattice L have to satisfy so that $c_{1}(\xi)$ does serve as an upper bound for $M(\xi)$ for any $\xi \in L^{k}$?

We say that the lattice L satisfies the c_{1}-median property if

$$
\bigvee M(\xi) \leq c_{1}(\xi)
$$

holds for all $\xi=\left(x_{1}, \ldots, x_{k}\right) \in L^{k}$. The motivation for the c_{1}-median property is the idea that this property may provide insight into the use of ordinal tools to help limit the search for medians. In this note we prove that a lattice of finite length satisfies the c_{1}-median property if it is graded and planar. Consequently, any planar upper semimodular lattice satisfies the c_{1}-median property. The class of slim semimodular lattices, which has been of interest in this journal [3], are known to be planar and so these lattices satisfy the c_{1}-median property as well.

2. Preliminaries

A lattice L is graded if any two maximal chains of L have the same number of elements. Let L be a graded lattice of finite length. For $x \in L$, the height $h(x)$ of x is equal to the length of the interval $\left[0_{L}, x\right]$ where $0_{L}=\bigwedge L$. Also, for $x, y \in L$, the classic distance between x and y in the undirected covering graph associated with L is denoted by $d(x, y)$. The graded condition imposes a structure that links $d(x, y)$,
$h(x)$, and $h(y)$. Namely, the following can be found as Lemma 2.1 in [5].

Lemma 2.1. Let L be a graded lattice of finite length and let x and y be elements of L. Then
(i) $d(x, y) \geq|h(x)-h(y)|$,
(ii) $d(x, y)=h(x)-h(y)$ if and only if $x \geq y$, and
(iii) $d(x, y) \geq|h(x)-h(y)|+2$ if $x \| y$.

Leclerc made the following observation in the conclusion of his paper [8]. Suppose that L is a finite upper semimodular lattice, $\xi \in L^{k}$, and $m \in M(\xi)$. Leclerc asserted (without proof) that $h(m) \geq h\left(c_{1}(\xi)\right)$ implies $m=c_{1}(\xi)$. The next Lemma gives a result that is similar to Leclerc's observation. However, we assume that L is a graded lattice of finite length.

Lemma 2.2. Let L be a graded lattice of finite length. For any $\xi=$ $\left(x_{1}, \ldots, x_{k}\right) \in L^{k}$ and for any $y \in L$ such that $y \neq c_{1}(\xi)$,

$$
h(y) \geq h\left(c_{1}(\xi)\right) \Rightarrow y \notin M(\xi) .
$$

Proof. Let L be a graded lattice of finite length, $\xi=\left(x_{1}, \ldots, x_{k}\right) \in L^{k}$, and let $x=c_{1}(\xi)$. Assume that $y \in L$ satisfies $h(y) \geq h(x)$ and $y \neq x$. Then, for each $x_{i} \in \xi$,

$$
\begin{equation*}
d\left(x, x_{i}\right)=h(x)-h\left(x_{i}\right) \leq h(y)-h\left(x_{i}\right) \leq d\left(y, x_{i}\right) . \tag{2.1}
\end{equation*}
$$

If $h(y)>h(x)$, then from (2.1) we get $d\left(x, x_{i}\right)<d\left(y, x_{i}\right)$ for all $x_{i} \in \xi$ and so $r(x, \xi)<r(y, \xi)$. Thus, $y \notin M(\xi)$. If $h(y)=h(x)$, then, since $y \neq x$, there exists $x_{j} \in \xi$ such that $x_{j} \not \leq y$. It follows from Lemma 2.1 that $d\left(y, x_{j}\right)>h(y)-h\left(x_{j}\right)=h(x)-h\left(x_{j}\right)=d\left(x, x_{j}\right)$. So then $d\left(x, x_{j}\right)<d\left(y, x_{j}\right)$ along with (2.1) imply that $r(x, \xi)<r(y, \xi)$. Again we have $y \notin M(\xi)$.

We note that the converse of Lemma 2.2 does not hold. The lattice N_{5} provides an example of a lattice that satisfies the conclusion of Lemma 2.2 that is not graded.

3. Main Result

A lattice L is planar if it has a planar Hasse diagram; see Kelly and Rival [7]. We now give the statement and proof of our main result.

Theorem 3.1. Let L be a graded lattice of finite length. If L is planar, then L satisfies the c_{1}-median property.

Proof. Let L be a graded lattice of finite length, $\xi=\left(x_{1}, \ldots, x_{k}\right) \in L^{k}$, and let $x=c_{1}(\xi)$. We assume that a planar diagram of L is fixed. Suppose, for a contradiction, that $y \in L \backslash[0, x]$ but $y \in M(\xi)$. By Lemma 2.2, $h(y)<h(x)$. Hence, $y \| x$. Let C_{0} and C_{1} be the left boundary chain and the right boundary chain of $[0, x]$, respectively, in the fixed planar Hasse diagram of L; see Kelly and Rival [7]. They are maximal chains of $[0, x]$. Pick a maximal chain D in $[x, 1]$, and let $\bar{C}_{i}=C_{i} \cup D$. Since $y \| x$, we know from Propositions 1.6 and 1.7 of Kelly and Rival [7] that either y is strictly on the left of every maximal chain containing x, or y is strictly on the right of all these maximal chains. Hence, by left-right symmetry, we can assume that y is strictly on the left of \bar{C}_{0}.

For $i \in\{1, \ldots, k\}$, take a path of length $d\left(y, x_{i}\right)$ from y to x_{i} in the covering graph of L. Further, the work found in [7] implies that this path contains an element $z_{i} \in \bar{C}_{0}$. We can assume that $z_{i} \in C_{0}$, because otherwise $x_{i} \leq x<z_{i}$ and Lemma 2.1 allows us to modify the path so that it goes through both x and z_{i}. Since the path in question is of minimal length, $d\left(y, x_{i}\right)=d\left(y, z_{i}\right)+d\left(z_{i}, x_{i}\right)$, for $i \in\{1, \ldots, k\}$. Forming the sum of these equalities and denoting $\left(z_{1}, \ldots, z_{k}\right)$ and $d\left(z_{1}, x_{1}\right)+\cdots+d\left(z_{k}, x_{k}\right)$ by ζ and $D(\zeta, \xi)$, respectively, we obtain $r(y, \xi)=r(y, \zeta)+D(\zeta, \xi)$. Let z_{1} be one of the largest components of ζ. If $z_{1}<y$, then Lemma 2.1 and the triangle inequality give $r\left(z_{1}, \xi\right) \leq r\left(z_{1}, \zeta\right)+D(\zeta, \xi)<r(y, \zeta)+D(\zeta, \xi)=r(y, \xi)$, which contradicts $y \in M(\xi)$. So, we can assume $z_{1} \nless y$. Furthermore, since $y \not \leq x, z_{1} \| y$. Let $z \in C_{0}$ be the unique element of C_{0} with $h(z)=h(y)$, and note that $\left\{z, z_{1}, \ldots, z_{k}\right\}$ is a chain. By Lemma 2.1, $d\left(z, z_{i}\right)=\left|h(z)-h\left(z_{i}\right)\right|=\left|h(y)-h\left(z_{i}\right)\right| \leq d\left(y, z_{i}\right)$ for all $i \in\{1, \ldots, k\}$ and $d\left(z, z_{1}\right)=\left|h(z)-h\left(z_{1}\right)\right|=\left|h(y)-h\left(z_{1}\right)\right|<d\left(y, z_{1}\right)$, since $z_{1} \| y$. Combining these inequalities, $r(z, \zeta)<r(y, \zeta)$. Thus, $r(z, \xi) \leq r(z, \zeta)+D(\zeta, \xi)<r(y, \zeta)+D(\zeta, \xi)=r(y, \xi)$, contradicting $y \in M(\xi)$.

The dual of Proposition 5.1 in [8] says that if a finite lattice L is lower semimodular, then for any $\xi \in L^{k}$ and for any $m \in M(\xi)$ the inequality $m \leq c_{\left\lfloor\frac{k}{2}+1\right\rfloor}^{\prime}(\xi)$ holds. Since $c_{\left\lfloor\frac{k}{2}+1\right\rfloor}^{\prime}(\xi) \leq c_{1}(\xi)$ for any $\xi \in L^{k}$, we can combine the dual of Proposition 5.1 in [8] with our main result to get the following corollary.

Corollary 3.2. If L is a finite graded lattice that is planar or lower semimodular, then L satisfies the c_{1}-median property.

Finally, note that Theorem 3.1 and its dual lead to the following result.

Corollary 3.3. Suppose L is a finite lattice. If L is both graded and planar, then

$$
M(\xi) \subseteq\left[c_{1}^{\prime}(\xi), c_{1}(\xi)\right]
$$

for any $\xi=\left(x_{1}, \ldots, x_{k}\right) \in L^{k}$.

4. CONCLUDING REMARKS

In this note, we have shown that a lattice L of finite length satisfies the c_{1}-median property if L is both planar and graded. These conditions are sufficient but not necessary. Indeed, if L is distributive and nonplanar or if L is the ungraded and planar lattice N_{5}, then L satisfies the c_{1}-median property. On the other hand, the following simple example shows why we can't stray too far from the graded condition. Let $L=\left\{0=x_{1}, a_{1}, a_{2}, a_{3}, a_{4}=x_{2}, y, 1\right\}$ be the 7 -element lattice with $a_{1}<\cdots<a_{4}$ and $y \| a_{i}$ for $i \in\{1, \ldots, 4\}$. If $\xi=\left(x_{1}, x_{2}\right)$, then it is easy to check that $M(\xi)=\left\{x_{1}, x_{2}, y, 1\right\}$. Since $y \not \leq x_{1} \vee x_{2}=x_{2}$ it follows that L does not satisfy the c_{1}-median property. The simplest example we know of a graded and nonplanar lattice L such that L does not satisfy the c_{1}-median property is the example given in [6]. Moreover, White [12] showed that if L is upper semimodular and L does not satisfy the c_{1}-median property, then the height of L is at least 7. Therefore, it would be interesting to uncover the precise connection between upper semimodularity and the c_{1}-median property.

References

[1] Barthélemy, J.P., Leclerc, B., Monjardet, B.: On the use of ordered sets in problems of comparison and consensus of classifications. J. Classification 3, 187-224 (1986)
[2] Barthélemy, J.P., Monjardet, B.: The median procedure in cluster analysis and social choice theory, Math. Social Sci. 1, 235-268 (1981)
[3] Czédli, G., Schmidt, E. T.: Slim semimodular lattices. I. A visual approach. Order 29, 481-497 (2012)
[4] Cook, W.D., Kress, M.: Ordinal information and preference structures: decision models and applications, Prentice-Hall, Englewood Cliffs (1992)
[5] Duffus, D., Rival, I.: Path length in the covering graph of a lattice. Discrete Math., 19, 139-158 (1977)
[6] Li, J., Boukaabar, K.: Singular points and an upper bound of medians in upper semimodular lattices. Order 17, 287-299 (2000)
[7] Kelly, D., Rival, I.: Planar lattices. Can. J. Math 27 636-665 (1975)
[8] Leclerc, B.: Medians and majorities in semimodular lattices. SIAM J. Disc. Math. 3, 266-276 (1990)
[9] Mirchandani, P.B., Francis, F.L. eds.: Discrete Location Theory. John Wiley and Sons, NY, (1990)
[10] Monjardet, B.: Théorie et applications de la médiane dans les treillis distributifs finis. Annals Discrete Math. 9, 87-91 (1980)
[11] Stern, M.: Semimodular Lattices: Theory and Applications. Encyclopedia of Mathematics and its Applications 73, Cambridge University Press (2009)
[12] White, J.: Upper semimodular lattices and the c_{1}-median property. Ph.D. Thesis, University of Louisville, Louisville (2007)
E-mail address: czedli@math.u-szeged.hu URL: http://www.math.u-szeged.hu/~czedli/

University of Szeged, Bolyai Institute, Szeged, HUNGARY 6720
E-mail address: rcpowe01@louisville.edu
Department of Mathematics, University of Louisville, Louisville, Kentucky 40292 USA

E-mail address: jwhite07@spalding.edu
School of Natural Science, Spalding University, Louisville, KenTUCKY 40203 USA

[^0]: Key words and phrases. Median property, graded lattice, planar lattice. 2010 Mathematics Subject Classification. Primary 06B99, secondary 05C12 .

