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GÁBOR CZÉDLI, ROBERT C. POWERS, AND JEREMY M. WHITE

Abstract. Let L be a lattice of finite length, ξ = (x1, . . . , xk) ∈
Lk, and y ∈ L. The remoteness r(y, ξ) of y from ξ is d(y, x1)+· · ·+
d(y, xk), where d stands for the minimum path length distance in
the covering graph of L. Assume, in addition, that L is a graded
planar lattice. We prove that whenever r(y, ξ) ≤ r(z, ξ) for all
z ∈ L, then y ≤ x1 ∨ · · · ∨ xk. In other words, L satisfies the
so-called c1-median property.

1. introduction

Let L be a lattice of finite length, ξ = (x1, . . . , xk) ∈ Lk, and y ∈
L. The remoteness r(y, ξ) of y from ξ is d(y, x1) + · · · + d(y, xk),
where d stands for the minimum path length distance in the covering
graph of L. The set of medians of ξ is M(ξ) = {y ∈ L : r(y, ξ) ≤
r(z, ξ) for all z ∈ L}. The determination of median sets based on
different types of metric spaces is an important problem in mathematics
with applications in areas such as cluster analysis and social choice [2],
consensus and location [4] [9], and classification theory [1].

The determination of median sets in terms of the ordering on L leads
to some interesting results. For any ξ = (x1, . . . , xk) ∈ Lk and for any
integer t such that 1 ≤ t ≤ k we let

ct(ξ) =
∨

{
∧

i∈I

xi : I ⊆ {1, . . . , k}, |I | = t}

and
c′t(ξ) =

∧
{

∨

i∈I

xi : I ⊆ {1, . . . , k}, |I | = t}.

In 1980, Monjardet [10] showed that if L is a finite distributive lattice,
then

M(ξ) = [ct(ξ), c
′
t(ξ)]

where t = bk
2

+ 1c. The functions cb k

2
+1c and c′

b k

2
+1c

are known as the

majority rule and dual majority rule, respectively. Thus L being finite
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and distributive implies that the median set for a given ξ ∈ Lk is an
order interval with bounds given by the majority and dual majority
rule.

In 1990, Leclerc [8] proved that the converse holds. Specifically, for a
finite lattice L, if the median set M(ξ) is equal to [cb k

2
+1c(ξ), c

′
b k

2
+1c

(ξ)]

for any ξ ∈ Lk, then L is distributive. Leclerc also proved that a finite
lattice L is modular if and only if M(ξ) ⊆ [cb k

2
+1c(ξ), c

′
b k

2
+1c

(ξ)] for

every ξ ∈ Lk. Moreover, he showed that L is upper semimodular if
and only if M(ξ) ⊆ [cb k

2
+1c(ξ), 1L] for every ξ ∈ Lk where 1L =

∨
L.

The lower bound cb k

2
+1c(ξ) is tight as shown when L is distributive, but

the upper bound of 1L seems a bit crude and it is natural to ask for a
better upper bound. Leclerc suggested the element

c1(ξ) =
∨

{
∧

i∈I

xi : I ⊆ {1, . . . , k}, |I | = 1} =
k∨

i=1

xi

as a possible upper bound for M(ξ). In 2000, Li and Boukaabar [6]
gave a nontrivial example of an upper semimodular lattice L with 101
elements in which there existed a ξ ∈ L3 such that c1(ξ) was not an
upper bound for M(ξ). This example leads us to ask the following
question. What conditions does a lattice L have to satisfy so that c1(ξ)
does serve as an upper bound for M(ξ) for any ξ ∈ Lk?

We say that the lattice L satisfies the c1-median property if
∨

M(ξ) ≤ c1(ξ)

holds for all ξ = (x1, . . . , xk) ∈ Lk. The motivation for the c1-median
property is the idea that this property may provide insight into the use
of ordinal tools to help limit the search for medians. In this note we
prove that a lattice of finite length satisfies the c1-median property if
it is graded and planar. Consequently, any planar upper semimodular
lattice satisfies the c1-median property. The class of slim semimodular
lattices, which has been of interest in this journal [3], are known to be
planar and so these lattices satisfy the c1-median property as well.

2. Preliminaries

A lattice L is graded if any two maximal chains of L have the same
number of elements. Let L be a graded lattice of finite length. For
x ∈ L, the height h(x) of x is equal to the length of the interval [0L, x]
where 0L =

∧
L. Also, for x, y ∈ L, the classic distance between x

and y in the undirected covering graph associated with L is denoted by
d(x, y). The graded condition imposes a structure that links d(x, y),
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h(x), and h(y). Namely, the following can be found as Lemma 2.1
in [5].

Lemma 2.1. Let L be a graded lattice of finite length and let x and y

be elements of L. Then
(i) d(x, y) ≥ |h(x) − h(y)|,
(ii) d(x, y) = h(x) − h(y) if and only if x ≥ y, and

(iii) d(x, y) ≥ |h(x) − h(y)|+ 2 if x ‖ y.

Leclerc made the following observation in the conclusion of his paper
[8]. Suppose that L is a finite upper semimodular lattice, ξ ∈ Lk, and
m ∈ M(ξ). Leclerc asserted (without proof) that h(m) ≥ h(c1(ξ))
implies m = c1(ξ). The next Lemma gives a result that is similar to
Leclerc’s observation. However, we assume that L is a graded lattice
of finite length.

Lemma 2.2. Let L be a graded lattice of finite length. For any ξ =
(x1, . . . , xk) ∈ Lk and for any y ∈ L such that y 6= c1(ξ),

h(y) ≥ h(c1(ξ)) ⇒ y 6∈ M(ξ).

Proof. Let L be a graded lattice of finite length, ξ = (x1, . . . , xk) ∈ Lk,
and let x = c1(ξ). Assume that y ∈ L satisfies h(y) ≥ h(x) and y 6= x.
Then, for each xi ∈ ξ,

(2.1) d(x, xi) = h(x) − h(xi) ≤ h(y) − h(xi) ≤ d(y, xi).

If h(y) > h(x), then from (2.1) we get d(x, xi) < d(y, xi) for all xi ∈ ξ

and so r(x, ξ) < r(y, ξ). Thus, y 6∈ M(ξ). If h(y) = h(x), then, since
y 6= x, there exists xj ∈ ξ such that xj 6≤ y. It follows from Lemma
2.1 that d(y, xj) > h(y) − h(xj) = h(x) − h(xj) = d(x, xj). So then
d(x, xj) < d(y, xj) along with (2.1) imply that r(x, ξ) < r(y, ξ). Again
we have y 6∈ M(ξ). �

We note that the converse of Lemma 2.2 does not hold. The lattice
N5 provides an example of a lattice that satisfies the conclusion of
Lemma 2.2 that is not graded.

3. Main Result

A lattice L is planar if it has a planar Hasse diagram; see Kelly and
Rival [7]. We now give the statement and proof of our main result.

Theorem 3.1. Let L be a graded lattice of finite length. If L is planar,

then L satisfies the c1-median property.
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Proof. Let L be a graded lattice of finite length, ξ = (x1, . . . , xk) ∈ Lk,
and let x = c1(ξ). We assume that a planar diagram of L is fixed.
Suppose, for a contradiction, that y ∈ L \ [0, x] but y ∈ M(ξ). By
Lemma 2.2, h(y) < h(x). Hence, y ‖ x. Let C0 and C1 be the left

boundary chain and the right boundary chain of [0, x], respectively, in
the fixed planar Hasse diagram of L; see Kelly and Rival [7]. They
are maximal chains of [0, x]. Pick a maximal chain D in [x, 1], and let
Ci = Ci ∪ D. Since y ‖ x, we know from Propositions 1.6 and 1.7 of
Kelly and Rival [7] that either y is strictly on the left of every maximal
chain containing x, or y is strictly on the right of all these maximal
chains. Hence, by left-right symmetry, we can assume that y is strictly
on the left of C0.

For i ∈ {1, . . . , k}, take a path of length d(y, xi) from y to xi in
the covering graph of L. Further, the work found in [7] implies that
this path contains an element zi ∈ C0. We can assume that zi ∈ C0,
because otherwise xi ≤ x < zi and Lemma 2.1 allows us to mod-
ify the path so that it goes through both x and zi. Since the path
in question is of minimal length, d(y, xi) = d(y, zi) + d(zi, xi), for
i ∈ {1, . . . , k}. Forming the sum of these equalities and denoting
(z1, . . . , zk) and d(z1, x1) + · · · + d(zk, xk) by ζ and D(ζ, ξ), respec-
tively, we obtain r(y, ξ) = r(y, ζ)+D(ζ, ξ). Let z1 be one of the largest
components of ζ. If z1 < y, then Lemma 2.1 and the triangle in-
equality give r(z1, ξ) ≤ r(z1, ζ) + D(ζ, ξ) < r(y, ζ) + D(ζ, ξ) = r(y, ξ),
which contradicts y ∈ M(ξ). So, we can assume z1 6< y. Further-
more, since y 6≤ x, z1 ‖ y. Let z ∈ C0 be the unique element of
C0 with h(z) = h(y), and note that {z, z1, . . . , zk} is a chain. By
Lemma 2.1, d(z, zi) = |h(z) − h(zi)| = |h(y) − h(zi)| ≤ d(y, zi) for all
i ∈ {1, . . . , k} and d(z, z1) = |h(z) − h(z1)| = |h(y)− h(z1)| < d(y, z1),
since z1 ‖ y. Combining these inequalities, r(z, ζ) < r(y, ζ). Thus,
r(z, ξ) ≤ r(z, ζ) + D(ζ, ξ) < r(y, ζ) + D(ζ, ξ) = r(y, ξ), contradicting
y ∈ M(ξ). �

The dual of Proposition 5.1 in [8] says that if a finite lattice L is
lower semimodular, then for any ξ ∈ Lk and for any m ∈ M(ξ) the
inequality m ≤ c′

b k

2
+1c

(ξ) holds. Since c′
b k

2
+1c

(ξ) ≤ c1(ξ) for any ξ ∈ Lk,

we can combine the dual of Proposition 5.1 in [8] with our main result
to get the following corollary.

Corollary 3.2. If L is a finite graded lattice that is planar or lower

semimodular, then L satisfies the c1-median property.

Finally, note that Theorem 3.1 and its dual lead to the following
result.
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Corollary 3.3. Suppose L is a finite lattice. If L is both graded and

planar, then

M(ξ) ⊆ [c′
1
(ξ), c1(ξ)]

for any ξ = (x1, . . . , xk) ∈ Lk.

4. concluding remarks

In this note, we have shown that a lattice L of finite length satisfies
the c1-median property if L is both planar and graded. These condi-
tions are sufficient but not necessary. Indeed, if L is distributive and
nonplanar or if L is the ungraded and planar lattice N5, then L satis-
fies the c1-median property. On the other hand, the following simple
example shows why we can’t stray too far from the graded condition.
Let L = {0 = x1, a1, a2, a3, a4 = x2, y, 1} be the 7-element lattice with
a1 < · · · < a4 and y ‖ ai for i ∈ {1, . . . , 4}. If ξ = (x1, x2), then it
is easy to check that M(ξ) = {x1, x2, y, 1}. Since y 6≤ x1 ∨ x2 = x2

it follows that L does not satisfy the c1-median property. The sim-
plest example we know of a graded and nonplanar lattice L such that
L does not satisfy the c1-median property is the example given in [6].
Moreover, White [12] showed that if L is upper semimodular and L

does not satisfy the c1-median property, then the height of L is at least
7. Therefore, it would be interesting to uncover the precise connection
between upper semimodularity and the c1-median property.
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