
QUASIPLANAR DIAGRAMS AND SLIM SEMIMODULAR

LATTICES

GÁBOR CZÉDLI

Abstract. For elements x and y in the (Hasse) diagram D of a finite bounded
poset P , x is on the left of y, written as x λ y, if x and y are incomparable and

x is on the left of all maximal chains through y. Being on the right, written
as x % y, is defined analogously. The diagram D is quasiplanar if λ and % are

transitive and for any pair (x, y) of incomparable elements, if x is on the left of
some maximal chain through y, then x λ y. A planar diagram is quasiplanar,

and P has a quasiplanar diagram iff its order dimension is at most 2. We
are interested in diagrams only up to similarity. A finite lattice is slim if it is

join-generated by the union of two chains. The main result gives a bijection
between the set of (the similarity classes of) finite quasiplanar diagrams and

that of (the similarity classes of) planar diagrams of finite slim semimodular
lattices. This bijection allows one to describe finite posets of order dimension

at most 2 by finite slim semimodular lattices, and conversely. As a corollary,
we obtain that there are exactly (n − 2)! quasiplanar diagrams of size n.

1. Introduction

1.1. Motivation and aim. Our original goal was to describe finite slim semi-
modular lattices L by the posets (partially ordered sets) MiL = 〈MiL;≤〉 of their
meet-irreducible elements. This was motivated by three facts: there are many
results on lattices with unique meet irreducible decompositions, slim semimodu-
lar lattices have intensively been studied recently, and it is well-known that finite
distributive lattices can be described in this way.

Dilworth [21] was the first to deal with unique meet irreducible decompositions

in finite lattices. To give a brief overview, let x∗ denote the join of all covers of
x in a finite lattice L. If the interval [x, x∗] is distributive for all x ∈ L, then L
is a join-distributive lattice in current terminology. There are more than a dozen
equivalent definitions of these lattices and two equivalent concepts, antimatroids
and convex geometries. Dilworth [21], who was the first to consider these lattices,
used the (equivalent) definition that each element can be uniquely decomposed
into an irredundant meet of meet irreducible elements. The early variants were
surveyed in Monjardet [28]. Since it would wander too far if we overviewed the
rest, we only mention Adaricheva [2], Abels [1], Caspard and Monjardet [7], Avann
[6], Jamison-Waldner [26], and Ward [32] for additional sources, and Stern [31],
Adaricheva and Czédli [3], and Czédli [10] for some recent overviews. However, the
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reader is not assumed to be familiar with these sources, since the present paper is
intended to be self-contained for those who know the rudiments of lattice theory
up to, say, the Jordan-Hölder Theorem for semimodular lattices. What is mainly
important for us is that slim semimodular lattices, to be defined soon, are known
to be join-distributive, see Czédli, Ozsvárt, and Udvari [16, Corollary 2.2].

Figure 1. Di and Qi = α(Di), for i ∈ {1, 2, 3}

A finite lattice L is slim, if JiL, the set of nonzero join-irreducible elements of L,
is included in the union of two appropriate chains of L; see Czédli and Schmidt [17].
For example, it follows trivially from Czédli and Schmidt [18] that the diagrams
D1, . . . , D9 and E′ in Figures 1, 3, 4, 5, and 7 represent slim semimodular lattices.
In the semimodular case, the concept of slimness was introduced by Grätzer and
Knapp [23] in a slightly different way. The theory of slim semimodular lattices has
developed a lot recently, as witnessed by Czédli [8], [9], and [12], Czédli, Dékány,
Ozsvárt, Szakács, and Udvari [13], Czédli and Grätzer [14], Czédli, Ozsvárt, and
Udvari [16], Czédli and Schmidt [17], [18], [19], and [20], Grätzer and Knapp [23],
[24], and [25], and Schmidt [30]. In particular, [17] gives an application of these
lattices outside lattice theory while [8], [14], [18], [19], [20], and [23], partly or fully,
are devoted to their structural descriptions.

All lattices and posets in the paper are assumed to be finite, even if this conven-
tion is not repeated all the time. We have already mentioned that slim semimodular
lattices are join-distributive. This fact, combined with Dilworth’s original definition
of these lattices, and some recent propositions in Czédli [11] led to our original goal,
mentioned at the beginning of the paper. Since the poset MiL does not determine
a slim semimodular lattice L in general, the original target had to be modified.

Slim lattice are planar by Czédli and Schmidt [17, Lemma 2.1], that is, they allow
planar (Hasse) diagrams. Although the corresponding posets MiL are not planar in
general, their appropriate diagrams still have some important properties of planar
ones; we will coin the name quasiplanar for the collection of these properties. For
a first impression, note that Q1, Q2, and Q3 in Figure 1 are quasiplanar diagrams,
and they are not planar. The diagrams Q4, . . . , Q9 in Figures 3, 4, and 7 are also
quasiplanar, but Q10 in Figure 7 is not.

Now, the modified target is to describe the planar diagrams of slim semimodular
lattices by quasiplanar diagrams. Of course, diagrams are only considered up to
similarity, to be defined soon. The main result of the paper, Theorem 2.11, gives
a canonical bijection between the class of planar diagrams of slim semimodular
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lattices and that of quasiplanar diagrams. For example, for i ∈ {1, . . . , 9} in our
figures, Di corresponds to Qi under this bijection. Having the canonical bijection,
even the original goal is achieved in a weak sense, because L is described by any
of its planar diagrams D, and D is described by a quasiplanar diagram, which
is much smaller than D in general. Also, the canonical bijection given by Theo-
rem 2.11 yields a “converse” description, because it describes quasiplanar diagrams
by planar diagrams of slim semimodular lattices. This converse description is also
interesting, because slim semimodular lattices are well-studied. Its strength will be
demonstrated by Corollary 2.12, which counts quasiplanar diagrams of a given size.

1.2. Outline. After recalling or introducing the necessary concepts, Section 2 for-
mulates the main result, Theorem 2.11, which asserts that finite planar slim semi-
modular lattice diagrams and finite quasiplanar diagrams mutually determine each
other. Also, this section gives the exact number of n-element quasiplanar diagrams,
see Corollary 2.12. Section 3, which contains many auxiliary statements, is devoted
to the proof of Theorem 2.11 and that of Corollary 2.12. Finally, Section 4 contains
some comments and examples that shed more light on the main result.

1.3. Prerequisites. As mentioned already, the reader is not assumed to have deep
knowledge of semimodular lattices; a little part of any book on lattices (or on semi-
modular lattices), including Grätzer [22], Nation [29], and Stern [31], is sufficient.

2. Some concepts and the main result

2.1. Quasiplanar diagrams. The length of a poset P = 〈P ;≤〉 is the largest num-
ber n such that P has an (n+ 1)-element chain. It will be denoted by length(P ).
A (Hasse) diagram D of P consists of some points on the plane, representing the
elements of P , and edges, which are non-horizontal straight line segments connect-
ing two points and represent the covering relation in P in the usual way. Concepts
and properties originally defined for posets (and lattices if P happens to be lat-
tice) will also be used for their diagrams; for example, we can speak of a maximal
chain or the length of a diagram, and we can say that a lattice diagram is slim and
semimodular. A diagram is planar if its edges do not intersect, except possibly at
their endpoints. For a more exact definition of planarity and the concepts defined
in the next paragraph, the reader can (but need not) resort to Kelly and Rival [27].
Besides planar diagrams, a planar lattice can also have non-planar diagrams. Let
us agree that a slim semimodular lattice diagram is always assumed to be planar,
even when this is not mentioned.

Let C be a maximal chain in a diagram D. This chain cuts D into a left side and
a right side, see Kelly and Rival [27, Lemma 1.2]. This is so even if D is not planar
but bounded, because C corresponds to a polygon in the plane. The intersection
of the left and right sides of C is C. If x ∈ D is on the left side of C but not in C,
then x is strictly on the left of C. The most frequently used results of Kelly and
Rival [27] are the following three; note that the second follows easily from the first.

Lemma 2.1 (Kelly and Rival [27, Lemma 1.2]). Let D be a finite planar lattice

diagram, and let x ≤ y ∈ D. If x and y are on different sides of a maximal chain

C in L, then there exists an element z ∈ C such that x ≤ z ≤ y.

Lemma 2.2 (Kelly and Rival [27, Proposition 1.4]). Let D be a planar diagram

of a finite lattice L. If C is a maximal chain of D, then the left side of C and the

right side of C “are” (that is, correspond to) sublattices of L.
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Figure 2. Two diagrams that are not quasiplanar

Lemma 2.3 (Kelly and Rival [27, Proposition 1.6]). Let D be a finite planar

lattice diagram, and let x, y ∈ L be incomparable elements. If x is on the left of

some maximal chain (of D) through y, then x is on the left of every maximal chain

through y.

Next, we turn our attention to diagrams of posets. We will only consider bounded

diagrams, that is diagrams with 0 and 1, because otherwise the meaning of the left
or right side of a maximal chain, which is possibly a singleton, is less pictorial. As
usual, ‖ stands for the incomparability relation; x ‖ y means that x � y and y � x.
For x ‖ y in the diagram of a poset, we say that x is on the left of y, written as
x λ y (resp., x is on the right of y, written as x % y) if x is on the left (resp., right)
of all maximal chains through y. Let us agree and emphasize that x λ y ⇒ x ‖ y
and x % y ⇒ x ‖ y. The following definition is motivated by Lemma 2.3 and by
further properties that are stated for planar lattice diagrams in Kelly and Rival
[27]. However, in general, Lemma 2.1 will not be valid for quasiplanar diagrams,
which play a crucial role in the paper.

Definition 2.4. A diagram D of a finite poset is quasiplanar if it is bounded and
it satisfies the following three axioms for all x, y, z ∈ D.

(A1) If x ‖ y and x is on the left of some maximal chain through y, then x is on
the left of all maximal chains through y, that is, then x λ y.

(A2) If x λ y and y λ z, then x λ z.
(A3) If x % y and y % z, then x % z.

Let us emphasize that, by definition, a quasiplanar diagram in the present paper
is always finite and has 0 and 1. (The more general concept of diagrams that can be
extended to quasiplanar diagrams by adding a bottom element and a top element
will not be used.) The first diagram in Figure 2 indicates that (A1) does not imply
(A2). The second diagram in the figure shows that (A1) and (A2) together do not
imply (A3), since (A1) and (A2) hold, x % y, and y % x, but not x % x. Note that
both diagrams in the figure determine planar lattices, that is, lattices that also have
planar diagrams. Some important properties of quasiplanar diagrams are revealed
by the following lemma. To point out a less important but interesting fact, consider
Q8 in Figure 4, and let Q−

8 be the diagram that we obtain from Q8 by deleting the
edge b ≺ e. (That is, Q−

8 is the usual diagram of the 8-element boolean lattice.)
While Q8 is quasiplanar, Q−

8 is not.

Lemma 2.5. A quasiplanar diagram D satisfies the following four properties for

all x, y, z ∈ D.

(A4) If x ‖ y and x is on the right of some maximal chain through y, then x % y.
(A5) If x ‖ y, then exactly one of x λ y and y λ x holds.
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(A6) x λ y ⇐⇒ y % x.
(A7) If x λ y and y ∦ z, then either x λ z, or x ∦ z.

Proof. Assume that there exist maximal chains C1 and C2 through y such that x
is on the left of C1 and on the right of C2. It follows from (A1) that x is also on
the left of C2. Hence, x ∈ C2, which contradicts x ‖ y. Thus, (A4) holds in D.

Next, assume x ‖ y. If x λ y and y λ x both hold, then x λ x by (A2), which
contradicts x ∦ x. Suppose that neither x λ y nor y λ x holds. Take a maximal
chain C through y. Since x λ y is excluded, x is on the right of C, and we have
x % y by (A4). Similarly, y % x. Using (A3), we obtain x % x, which contradicts
x ∦ x. Hence, D satisfies (A5) .

Next, suppose that x λ y holds but y % x fails. Since the role of left and right
is symmetric in the collection of (A1), . . . , (A4), the symmetric counterpart of
(A5) holds, and it implies x % y. If C is a maximal chain through y, then x is
on the left of C by x λ y, x is on the right of C by x % y, and x /∈ C by x ‖ y.
This contradiction proves x λ y ⇒ y % x, while the converse implication follows by
left-right symmetry. Hence, (A6) holds in D.

Finally, to prove (A7), assume x λ y and y ∦ z. Suppose, for a contradiction,
that neither x λ z, nor x ∦ z. Combining (A5) and (A6), we obtain x % z. Let C
be a maximal chain through {y, z}. Since x λ y, x is on the left of C. On the other
hand, x % z yields that x is on the right of C. Hence, x ∈ C, which contradicts
x ‖ y. �

Combining Kelly and Rival [27, Proposition 1.7 and Corollary 2.4] with Lemma 2.3
and using that the role of left and right is symmetric, we obtain the following state-
ment.

Lemma 2.6. If D is a planar diagram of a finite bounded poset P , then D is a

quasiplanar diagram and P is a lattice.

If D′ and D′′ are quasiplanar diagrams and there exists a bijection ψ : D′ → D′′

such that ψ is an order isomorphism and, for any x, y ∈ D′, x λ y in D′ iff
ψ(x) λ ψ(y) in D′′, then D′ and D′′ are similar diagrams and ψ is a similarity

map. In this way, as it follows from Lemma 2.6, we have also defined the concept
of similarity for planar lattice diagrams. Note that for planar lattice diagrams,
similarity means the same as in Kelly and Rival [27]. We consider quasiplanar
diagrams and planar lattice diagrams up to similarity; that is, similar diagrams
will always be treated as equal ones, even if this is not repeated all the time.

For a planar lattice diagram D, let C and E be maximal chains of D. If all
elements of E are on the left of C, then E is on the left of C. In this sense, we can
speak of the leftmost maximal chain of D, called the left boundary chain, and the
rightmost maximal chain, called the right boundary chain. The union of these two
chains is the boundary of D. The assumption that D is a planar lattice diagram
is important in this paragraph, because, say, the second quasiplanar diagram in
Figure 2 does not have a right boundary chain. If F is a (not necessarily maximal)
chain of the planar lattice diagram D, then the leftmost maximal chain through

F (or extending F ) and the rightmost one make sense. If F = {f1 < · · · < fn},
then the leftmost maximal chain of D through F is the union of the left boundary
chains of the subdiagrams ↓f1 = {x ∈ D : x ≤ f1}, [f1, f2], . . . , [fn−1, fn], and
↑fn = {x ∈ D : x ≥ fn}. If F = {f} is a singleton, then chains containing f are
said to be chains through f rather than chains through {f}.
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An important tool to recognize similarity is given in the following lemma, which
is taken from Czédli and Schmidt and [20, Lemma 4.7] or, more explicitly, Czédli
and Grätzer [15].

Lemma 2.7. Let D′ and D′′ be planar slim semimodular lattice diagrams. If there

exists an order-isomorphism ψ : D′ → D′′ such that ψ maps the left boundary chain

of D′ to the left boundary chain of D′′, then D′ and D′′ are similar diagrams and

ψ is a similarity map.

Figure 3. Di and Qi = α(Di), for i ∈ {4, 5, 6, 7}

2.2. The key constructions. Before formulating the main result, we have to give
the basic constructions. It is not so trivial that our constructs exist and have
the desired properties, but this will be proved later, in due time. The following
definition is illustrated by Figures 1, 3, and 4, and also by Q9 = α(D9) in Figure 7.
For i ∈ {1, . . . , 9} in these figures, MiDi consists of the black-filled elements of Di.

Definition 2.8. Let D and Q be a planar lattice diagram and a quasiplanar dia-
gram, respectively. We say that Q is the quasiplanar diagram associated with D if
the following three conditions hold.

(i) Q = {1, 0̃} ∪ MiD, where 1 ∈ D, 0̃ /∈ D. (The equality here does not mean
the equality of points in the plane, since we only consider Q up to similarity.)

(ii) For x, y ∈ Q, x ≤ y in Q iff x ≤ y in D or x = 0̃.
(iii) For any two incomparable x, y ∈ Q, we have x λ y in Q iff x λ y in D.

If Q above exists, then it is clearly unique up to similarity; it is denoted by α(D).

We do not claim that Q above exists for every D. Since λ = λQ is the relation
“on the left” on Q, x λ= y will mean that either x = y or x λ y. We define the
relations λ≤, λ≥, λ<, λ>, %=, %≤, %≥, %<, and %> analogously; for example, x λ≤ y
means that x ≤ y or x λ y, and x %> y means x > y or x % y.

Next, we start from a quasiplanar diagram, and want to define a planar slim
semimodular lattice diagram; see Figure 4 for an illustration.

Definition 2.9. For a quasiplanar diagram Q, let Q+++ = Q \ {0}, and let E(Q)
denote the relation λ= restricted to Q+++. That is,

E(Q) = {〈x, y〉 ∈ Q+++ ×Q+++ : x λ= y}.

For 〈x1, y1〉, 〈x2, y2〉 ∈ E(Q), we define

〈x1, y1〉 ≤ 〈x2, y2〉
def
⇐⇒ x1 λ

≤ x2 and y2 λ
≥ y1, and(2.1)
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Figure 4. A quasiplanar diagram Q8 and β1(Q8)

〈x1, y1〉 λ 〈x2, y2〉
def
⇐⇒ x1 λ

< x2 and y1 λ
> y2.(2.2)

(Note that y2 λ
≥ y1 in (2.1) is equivalent to y1 %

≤ y2.) Let β1(Q) be the unique
planar diagram of 〈E(Q);≤〉, where “≤” is given by (2.1), such that the “on the
left” relation of β1(Q) is described by (2.2). (We will prove that such a diagram
exists; its uniqueness is obvious.) The construction is illustrated in Figure 4, where
〈x, y〉 is written as xy. Writing 0 ∈ Q8 for 0̃, observe that α(D8) = Q8.

The advantage of Definition 2.9 is that the pairs in E(Q) are relatively simple
objects and λ in β1(Q) is quite explicitly described. However, we will also benefit
from the following approach in our proofs.

Definition 2.10. Let Q be a quasiplanar diagram, and let Q+++ = Q \ {0}.

(i) A nonempty subset X of Q+++ is called a proper horizontally convex order filter,
in short a hco-filter, of Q if

• X is an up-set, that is, x ∈ X, y ∈ Q, and x ≤ y imply y ∈ X, and
• X is horizontally convex, that is, if x λ y, y λ z, and {x, z} ⊆ X, then
y ∈ X.

(ii) For Y ⊆ Q+++, the least hco-filter including Y is denoted by ↑hcoY = ↑hco
Q Y ;

we write ↑hcoy instead of ↑hco{y}.
(iii) The set of hco-filters of Q is denoted by Fhco(Q). For X, Y ∈ Fhco(Q), let

X ≤d Y mean X ⊇ Y ; the poset 〈Fhco(Q);≤d〉 is also denoted by Fhco(Q).

(iv) We define a finite sequence of hco-filters ~F (Q) = ~F = (F0, F1, . . . , F|Q|−2) by

induction as follows. Let F0 = {1}. If Fn is defined and Q+++ \ Fn 6= ∅, then
let fn be the leftmost element in the set Max(Q \ Fn) of maximal elements of
Q \ Fn, and let Fn+1 = Fn ∪ {fn}.

(v) We also define the “left-right dual” version ~G(Q) = ~G = (G0, G1, . . . , G|Q|−2)

of ~F by induction as follows. Let G0 = {1}. While Q+++ \Gn 6= ∅, denote by
gn the rightmost element of Max(Q \Gn), and let Gn+1 = Gn ∪ {gn}.

(vi) Let β2(Q) be the planar lattice diagram of 〈Fhco(Q);≤d〉 such that ~F and ~G
are the left boundary chain and the right boundary chain, respectively. (We
will show later that this makes sense.)

2.3. The results. In order to take Definitions 2.9 and 2.10 into account indepen-
dently, the main theorem below contains a parameter p ∈ {1, 2}.
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Theorem 2.11 (Main Theorem). Let D be a finite planar slim semimodular lattice

diagram, and let Q be a finite quasiplanar diagram. Let p ∈ {1, 2}. Then the

following hold.

(i) α(D) is a finite quasiplanar diagram.

(ii) βp(Q) is a finite planar slim semimodular lattice diagram.

(iii) Up to similarity, βp(α(D)) equals D.

(iv) Up to similarity, α(βp(Q)) equals Q.

As an application, we will prove the following corollary, which is of separate
interest. Let us emphasize that quasiplanar diagrams are bounded by definition.

Corollary 2.12. Up to similarity, the number of n-element quasiplanar diagrams

is (n − 2)!.

Next, we give an example. For a quasiplanar diagramD, let VFlip(D) denote the
vertical mirror image of D across a vertical axis. Clearly, VFlip(D) is also quasipla-
nar. If D is the same as VFlip(D) up to similarity, then D is a left-right symmetric

diagram. Armed with this notation and concept, it is easy to list all the 24 = (6−2)!
quasiplanar diagrams of size 6 (up to similarity) as follows. Let L1, . . . , L17 be
the lattices given in Figures 2 and 3 of Czédli, Ozsvárt, and Udvari [16], and

let L̂1, . . . , L̂17 denote their planar diagrams according to these figures. By [16],
L1, . . . , L17 is a (repetition free) complete list of slim semimodular lattices of length
4, up to isomorphism. Since similar diagrams define isomorphic lattices, the corre-

sponding planar diagrams, L̂1, . . . , L̂17, are pairwise non-similar. By reflecting those

that are not left-right symmetric, we define L̂18 := VFlip(L̂1), L̂19 := VFlip(L̂4),

L̂20 := VFlip(L̂5), L̂21 := VFlip(L̂6), L̂22 := VFlip(L̂8), L̂23 := VFlip(L̂11), and

L̂24 := VFlip(L̂12). It is easy to see that L̂1, . . . , L̂24 are pairwise non-similar di-
agrams. Using Lemma 3.7, see later, and the fact that L1, . . . , L17 is a complete

list, it also follows that L̂1, . . . , L̂24 is a complete list of slim semimodular lattice
diagrams of length 4 up to similarity. (This will also follow from Theorem 2.11
and Corollary 2.12.) By Definition 2.8, it is quite easy to construct the quasiplanar

diagrams α(L̂1), . . . , α(L̂24). For example, with reference to Figure 3 of the present

paper, α(L̂3) = α(D5) = Q5, α(L̂13) = α(D6) = Q6, and α(L̂21) = α(D4) = Q4.

Now, by Theorem 2.11, α(L̂1), . . . , α(L̂24) is a complete list of quasiplanar poset dia-

grams of size 6. It turns out that all 24 diagrams in the list, except for α(L̂13) = Q6,
are planar lattice diagrams.

3. Auxiliary statements and proofs

3.1. Statements on quasiplanar diagrams. Let Q be a quasiplanar diagram,
and let F ∈ Fhco(Q) be a hco-filter. The set of minimal elements of F is denoted by
MinF . It is an antichain, so it has a unique leftmost element lbe(F ), and a unique
rightmost element rbe(F ). They are the leftmost bottom element and the rightmost

bottom element of F , respectively. Clearly, lbe(F ) λ= rbe(F ). If 〈x, y〉 ∈ E(Q),
then we often use the following notation

Betw(x, y) = {z : x λ= z and z λ= y} and

Min Betw(x, y) = Min{z : x λ= z and z λ= y},
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where for an A ⊆ Q, MinA denotes the set of minimal elements of A. Since
x λ= y, the set MinBetw(x, y) is not empty. For U ⊆ Q, ↑U denotes the order filter
{z ∈ Q : z ≥ u holds for some u ∈ U} generated by U .

Lemma 3.1. If Q is a quasiplanar diagram, then for any 〈x, y〉 ∈ E(Q), we have

(i) ↑hco{x, y} = ↑Min Betw(x, y) and, in particular, ↑hcox = ↑x;
(ii) x = lbe(↑hco{x, y}) and y = rbe(↑hco{x, y});
(iii) Min(↑hco{x, y}) = Min Betw(x, y).

Proof. The “⊇” inclusion in the first equation of (i) is obvious. Assume that
u1, u2 ∈ ↑MinBetw(x, y), u ∈ Q, and u1 λ u λ u2. We want to show u ∈
↑MinBetw(x, y). There are v1, v2 ∈ Min Betw(x, y) such that v1 ≤ u1 and v2 ≤ u2.
By (A7), either u λ v2 or u 6 ‖ v2. Now u ≤ v2 would give u ≤ u2, which would
contradict u λ u2. If we had u ≥ v2, then u ∈ ↑Min Betw(x, y) would trivially
hold. Hence we can assume u λ v2. Similarly, we can also assume v1 λ u. We
know that x λ v1 and v2 λ y. Armed with the formulas x λ v1, v1 λ u, u λ v2, and
v2 λ y, (A2) yields u ∈ Betw(x, y) ⊆ ↑MinBetw(x, y). Therefore, ↑MinBetw(x, y)
is a hco-filter. Finally, it is trivial that x and y belong to {z : x λ= z and z λ= y},
and they are minimal elements in this set. That is, {x, y} ⊆ Min Betw(x, y), and
the “⊆” inclusion in (i) follows. This proves the first equation of (i); the second
one is a particular case since 〈x, x〉 ∈ E(Q).

Obviously, if A is an antichain, then Min(↑A) = A. Applying this fact to A =
MinBetw(x, y) and taking (i) into account, we conclude (ii) and (iii). �

The following lemma says that Definitions 2.9 and 2.10 are quite close to each
other.

Lemma 3.2. Given a quasiplanar diagram Q, the maps

ϕ : E(Q) → Fhco(Q), defined by 〈x, y〉 7→ ↑hco{x, y},

and

π : Fhco(Q) → E(Q), defined by F 7→ 〈lbe(F ), rbe(F )〉,

are reciprocal order isomorphisms.

Proof. Assume that 〈x1, y1〉 ≤ 〈x2, y2〉 in E(Q). This means that x1 λ
≤ x2 and

y2 λ
≥ y1. Let Fi = ↑hco{xi, yi} = ϕ(〈xi, yi〉) for i ∈ {1, 2}. To obtain F1 ≤d F2,

that is F2 ⊆ F1, we have to show x2, y2 ∈ ↑hco{x1, y1}. We can assume x1 6≤ x2

since otherwise x2 ∈ ↑hco{x1, y1} trivially holds. Thus x1 λ x2. If y2 λ y1, then
x1 λ x2 λ

= y2 λ y1, together with the horizontal convexity of F1, yields x2 ∈ F1.
If y2 ≥ y1, then y2 ∈ F1, x1 λ x2 λ

= y2, and the horizontal convexity of F1 yield
x2 ∈ F1 again. Hence, x2 ∈ F1, and y2 ∈ F1 follows by left-right duality. Therefore,
ϕ is order-preserving.

We know from Lemma 3.1(ii) that π ◦ ϕ : E(Q) → E(Q) is the identity map on
E(Q). To prove that ϕ◦π is the identity map on Fhco(Q), let F ∈ Fhco(Q). Denoting
lbe(F ) and rbe(F ) by x and y, respectively, we have π(F ) = 〈x, y〉. We also have
(ϕ ◦ π)(F ) = ϕ(π(F )) = ↑hco{x, y}. The inclusion (ϕ ◦ π)(F ) = ↑hco{x, y} ⊆ F is
trivial. To show the converse inclusion, let u ∈ F . Then there exists a v in the
antichain MinF such that u ≥ v. By the definition of x and y, we have x λ= v λ= y.
Hence v ∈ ↑hco{x, y}, which implies u ∈ ↑hco{x, y}. This proves that ϕ ◦ π is the
identity map on Fhco(Q), and thus ϕ and π are reciprocal bijections.
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Finally, to prove that π is order-preserving, assume that F1 ≤d F2 ∈ Fhco(Q).
Denoting π(Fi) by 〈xi, yi〉 and using π−1 = ϕ, this gives ↑hco{x1, y1} ⊇ ↑hco{x2, y2}.
Hence, by Lemma 3.1(i), {x2, y2} ⊆ ↑Min Betw(x1, y1). If x2 ≥ x1, then x1 λ

≤ x2 is
clear. Hence, we assume x2 6≥ x1. It follows trivially or from Lemma 3.1(iii) that x1

belongs to the set Min(↑Min Betw(x1, y1)), whence x2 6< x1. Thus x2 ‖ x1. Since
x2 ∈ ↑MinBetw(x1, y1), there exists a u ∈ Min Betw(x1, y1) such that x2 ≥ u, and
we obtain x1 λ x2 from (A7). Hence, in all cases, x1 λ

≤ x2. By left-right duality,
we obtain y2 λ

≥ y1. Therefore, π(F1) = 〈x1, y1〉 ≤ 〈x2, y2〉 = π(F2). �

The concept of antimatroids is due to Jamison-Waldner [26]. We cite the follow-
ing definition from Armstrong [5, Lemma 2.1].

Definition 3.3. A pair 〈E,F〉 is an antimatroid if it satisfies the following prop-
erties:

(i) E is a finite set, and F is a nonempty family of subsets of E.
(ii) F is a feasible set, that is, for each nonempty A ∈ F, there exists an x ∈ A

such that A \ {x} ∈ F;
(iii) F is closed under taking unions;
(iv) E =

⋃
{A : A ∈ F}.

The relevance of this concept here is explained by the following well-known
statement; see Armstrong [5, Theorem 2.8], who attributes it to Birkhoff, Whitney
and MacLane, or Adaricheva, Gorbunov, and Tumanov [4], see also Czédli [10].

Lemma 3.4. If 〈E,F〉 is an antimatroid, then 〈F;⊆〉 is a finite join-distributive

lattice. Up to isomorphism, each join-distributive lattice can be obtained this way.

Lemma 3.5. If Q is a quasiplanar diagram, then 〈Fhco(Q);≤d〉 is a semimodular

lattice.

Proof. Let F = {Q+++ \ F : F ∈ Fhco(Q)} and E = Q \ {0, 1}. Then F is a family
of subsets of E and 〈Fhco(Q);≤d〉 ∼= 〈F;⊆〉. Since Fhco(Q) is clearly closed with
respect to intersections, F is closed under taking unions. We claim that 〈E; F〉 is an
antimatroid. This will prove Lemma 3.5, because then Lemma 3.4 applies and join-
distributive lattices are semimodular; see, for example, Monjardet [28], Jamison-
Waldner [26], and see [4], [5], and [10] mentioned a few lines above. Since E and ∅
belong to F and F is closed under taking unions, we only have to show that F is a
feasible set. By the definition of F, is suffices to prove that if Q+++ 6= F ∈ Fhco(Q),
then there exists an element u in Q+++ \ F such that F ∪ {u} ∈ Fhco(Q). To show
this, take a minimal G ∈ Fhco(Q), with respect to “⊆”, such that F ⊂ G; it is
sufficient to prove that |G \ F | = 1. By Lemma 3.2, F is of the form ↑hco{x, y} for
some 〈x, y〉 ∈ E(Q). There are three cases to discuss, but first we formulate the
following three rules.

(∀x1, x2, x3 ∈ Q+++) (∃i ∈ {1, 2, 3}) (xi ∈ ↑hco({x1, x2, x3} \ {xi}));(3.1)

(〈x1, x2〉 ∈ E(Q), and x3 < x1 or x3 < x2) ⇒ x3 /∈ ↑hco{x1, x2};(3.2)

x1 λ x2 λ x3 ⇒ (x1 /∈ ↑hco{x2, x3} and x3 /∈ ↑hco{x1, x2}).(3.3)

The validity of (3.1) is obvious if {x1, x2, x3} is not a three-element antichain,
and it follows from the fact that one of the three elements is horizontally between
the other two otherwise. To prove (3.2) by way of contradiction, suppose that
(3.2) fails. By left-right symmetry, we also assume x3 < x1. Then x1 λ x2, and
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Lemma 3.1(i) yields a t such that x1 λ
= t λ= x2 and t ≤ x3. Hence x1 > x3 ≥ t

contradicts x1 λ= t, proving (3.2). Next, it suffices to prove (3.3) only for x1,
because then the x3-part follows by left-right symmetry. By way of contradiction,
suppose x1 λ x2 λ x3 but x1 ∈ ↑hco{x2, x3}. By Lemma 3.1(i), there exists a t
such that x2 λ

= t λ= x3 and t ≤ x1. Actually, x2 λ t λ x3 since {x1, x2, x3} is an
antichain. We obtain x2 λ x1 from (A7), which contradicts x1 λ x2 by (A5). This
proves (3.3).

Case 1. Here we assume that there exists an element u ∈ G \ F such that

(3.4) u ∈ ↓Min Betw(x, y) \ Min Betw(x, y) = ↓MinBetw(x, y) \ F

and u 6≤ z for some z ∈ MinBetw(x, y). In what follows, u will stand for such an
element. The existence of z implies x 6= y, and so x λ y. We claim that u < x or
u < y. Suppose the contrary. Then x � u and y � u by (3.4), so x ‖ u, u ‖ y,
and there is a t ∈ Min Betw(x, y) such that u < t. Since x λ t λ y, (A7) and
its left-right dual combined with (A6) give u ∈ Betw(x, y) ⊆ F , a contradiction.
Hence, we can assume u < x. We claim u 6≤ y, and we prove this by way of
contradiction. Suppose u ≤ y. Since u ‖ z, either u λ z λ y and (A2) yield u λ y,
which contradicts u ≤ y, or x λ z λ u and we have x λ u, which contradicts
u < x. Thus u 6≤ y. We know u 6≥ y from u /∈ F . If we had y λ u, then we
would obtain x λ u by (A2), which would contradict u < x. Therefore, u λ y, and
〈u, y〉 ∈ E(Q). Clearly, F ⊂ ↑hco{u, y} ⊆ G, the minimality of G, and Lemma 3.1(i)
give G = ↑hco{u, y} = ↑MinBetw(u, y).

We claim MinBetw(u, y) ⊆ {u} ∪ ↑MinBetw(x, y). Suppose the contrary. Then
there exists a t ∈ MinBetw(u, y) such that u 6= t /∈ ↑MinBetw(x, y) = F . Observe
u ‖ t. We have x > t, because t /∈ F excludes x λ≤ t while t λ x would lead to
t λ u by (A7), which would contradict u λ t by (A5). Therefore, G ⊇ ↑hco{t, y} ⊃
↑hco{x, y} = F and the minimality of G imply that G = ↑hco{t, y}. Using u ∈ G
and Lemma 3.1(i), we obtain an s ∈ Betw(t, y) such that s ≤ u. Hence, (A7)
yields t λ u or t 6 ‖ u, which contradicts u λ t. Consequently, Min Betw(u, y) ⊆
{u} ∪ ↑Min Betw(x, y).

Next, we claim that, for any r ∈ Q+++,

(3.5) r > u⇒ r ∈ F .

Suppose the contrary. That is, we have an r ∈ G \ F such that r > u. The
minimality of G yields u ∈ G = ↑hco{r, x, y}. Since u /∈ F = ↑hco{x, y}, (3.1)
implies u ∈ ↑hco{r, x} or u ∈ ↑hco{r, y}. If r ‖ x, then (3.2) excludes u ∈ ↑hco{r, x}.
If r 6 ‖ x, then u ∈ ↑hco{r, x} = ↑r ∪ ↑x by Lemma 3.1(i), which is excluded by
u < r and u < x. Hence, u ∈ ↑hco{r, y}. If r 6 ‖ y, then u ∈ ↑hco{r, y} = ↑r ∪ ↑y
by Lemma 3.1(i) again, which contradicts u ‖ y and u < r. Thus r ‖ y, and
u ∈ ↑hco{r, y} contradicts (3.2). This proves (3.5).

Finally, combining Min Betw(u, y) ⊆ {u} ∪ ↑MinBetw(x, y) = {u} ∪ F , (3.5),
and G = ↑MinBetw(u, y), we obtain G = F ∪ {u}, which gives |G \ F | = 1.

Case 2. Here we assume that there exists an element u ∈ G \ F such that u ≤ z
for all z ∈ MinBetw(x, y). (In particular, u ∈ ↓MinBetw(x, y).) In what follows,
u will stand for such an element. The minimality of G and Lemma 3.1(i) give
G = ↑hcou = ↑u. We claim

(3.6) u ≺ z for all z ∈ Min Betw(x, y).
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To show this by way of contradiction, suppose the contrary. Then there is a v such
that u < v < z. Since z is a minimal element of Betw(x, y), Lemma 3.1(i) easily
implies v /∈ F . The minimality of G gives u ∈ G = ↑hco{x, y, v}. We apply (3.1) to
↑hco{x, y, v}. Since v /∈ F = ↑hco{x, y} = ↑hcoMin Betw(x, y), left-right symmetry
allows us to assume y ∈ ↑hco{x, v}. This gives u ∈ G = ↑hco{x, v}. Now if we
had x 6 ‖ v, then u ∈ ↑hco{x, v} = ↑hco{x} ∪ ↑hco{v} = ↑x ∪ ↑v would contradict
x > u and v > u. Otherwise 〈x, v〉 or 〈v, x〉 belongs to E(Q), and u ∈ ↑hco{x, v}
contradicts (3.2). This proves (3.6).

Next, we claim

(3.7) (∀z ∈ ↑u) (z > u⇒ z ∈ F ).

Suppose the contrary, and pick a v ∈ ↑u such that v > u and v /∈ F = ↑hco{x, y}.
The minimality of G yields u ∈ G = ↑hco{x, y, v}. By (3.1), v /∈ F , and left-right
symmetry, we can assume u ∈ ↑hco{x, v}. Since u ≺ x and u < v exclude x 6 ‖ v,
(3.2) yields the same contradiction as in the previous paragraph.

Finally, (3.7) and G = ↑u imply |G \ F | = 1.

Case 3. Here we assume that for all u ∈ G \ F , u /∈ ↓MinBetw(x, y). In what
follows, u will stand for such an element of G \ F . Since u /∈ F = ↑Min Betw(x, y),
the primary assumption of the present case yields that {u} ∪ MinBetw(x, y) is an
antichain and u /∈ Betw(x, y). Hence either u λ x or y λ u; we can assume the
latter by left-right symmetry. Since F = ↑hco{x, y} is a proper subset of ↑hco{x, u}
by (3.3) and ↑hco{x, u} ⊆ G, the minimality of G implies G = ↑hco{x, u}. We claim
that u is immediately on the right of y, that is,

(3.8) there is no v such that y λ v λ u.

To prove this by contradiction, suppose the contrary, and take such an element v.
Since x λ v λ u by (A2), we have v ∈ G. Also, F = ↑hco{x, y} ⊆ ↑hco{x, v}. But
v /∈ F and u /∈ ↑hco{x, v} by (3.3). Hence, F ⊂ ↑hco{x, v} ⊂ G contradicts the
minimality of G. This proves (3.8). Next, we claim

(3.9) (∀v ∈ Q) (u < v ⇒ v ∈ F ).

Suppose the contrary. Then F = ↑hco{x, y} ⊂ ↑hco{x, y, v} ⊆ G, and the min-
imality of G yields G = ↑hco{x, y, v}. Since v /∈ F = ↑hco{x, y}, (3.1) implies
u ∈ G = ↑hco{x, v} or u ∈ ↑hco{y, v}. If x 6 ‖ v, then ↑hco{x, v} = ↑x∪↑v, and u ‖ x
and u < v exclude u ∈ ↑hco{x, v}. If x ‖ v, then u /∈ ↑hco{x, v} by (3.2). Hence,
u ∈ ↑hco{y, v}. We can exclude y 6 ‖ v in the same way as we excluded x 6 ‖ v above.
Hence y ‖ v, and (3.2) gives a contradiction. This proves (3.9).

Now we are in the position to show that G = ↑hco{x, u} equals F ∪ {u}. The
“⊇” inclusion is clear. To prove the converse inclusion, assume t ∈ G \ {u}. By
Lemma 3.1(i), there exists a v ∈ Min Betw(x, u) such that v ≤ t. If v = u, then
t ∈ F by (3.9). If v ∈ F , in particular, if v = x, then t trivially belongs to F .
Hence, for the sake of contradiction, suppose v /∈ F and x λ v λ u. We claim
that there exists a z ∈ MinBetw(x, y) such that v < z. Suppose the contrary,
that is, v 6< z for all z ∈ MinBetw(x, y). Since v /∈ F , we also have v 6≥ z
for all z ∈ Min Betw(x, y). Hence {v} ∪ MinBetw(x, y) is an antichain. Since
v λ u, (3.8) excludes y λ v. However, y ‖ v, and we obtain v λ y. Hence,
v ∈ Betw(x, y). This yields v ∈ ↑hco{x, y} = F , which is a contradiction. Therefore,
there exists a z ∈ MinBetw(x, y) such that v < z. Thus, we have v ∈ G \ F and
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v ∈ ↓MinBetw(x, y). This is a contradiction, because we are dealing with Case 3.
This proves G = F ∪ {u} and |G \ F | = 1. �

An order filter F of a quasiplanar diagram Q is left-closed if for all x ∈ F and
y ∈ Q, y λ x implies y ∈ F . Right-closed order filters G are defined analogously
by the property (x λ y and x ∈ G) ⇒ y ∈ G. Clearly, left-closed and right-closed
order filters are hco-filters. Definition 2.10(iv)-(v) should be kept in mind.

Lemma 3.6. If Q is a quasiplanar diagram, then the definition of ~F = ~F (Q) and

that of ~G = ~G(Q) make sense. The members of ~F are left-closed order filters, those

of ~G are right-closed ones, and each element of the lattice 〈Fhco(Q);≤d〉 is of the

form Fi ∨Gj.

Proof. We prove by induction on i that Fi makes sense and it is a left-closed order
filter of size i+ 1. This is obvious for F0 = {1}. Assume that Fn is well-defined, it
is a left-closed order filter, |Fn| = n+ 1, and n + 2 ≤ |Q| − 2. Then Q+++ \ Fn 6= ∅.
Hence Max(Q \Fn) is a antichain, which has a unique leftmost element fn. We let
Fn+1 = F ∪{fn}. It is an order filter, because fn is a maximal element outside Fn.
Striving for a contradiction, suppose that Fn+1 is not left-closed. Then there is an
x ∈ Q+++ \ Fn such that x λ fn. By finiteness, there exists a u ∈ ↑x ∩ Max(Q \ Fn).
Since x ‖ fn, we have u 6= fn, which gives fn λ u by the definition of fn. It
follows from (A7) that fn λ x, which contradicts x λ fn. Consequently, Fn+1 is a

left-closed order filter. This proves that ~F consists of well-defined left-closed order

filters, and left-right duality yields that ~G consists of right-closed ones.
Next, let B ∈ Fhco(Q). By Lemma 3.2, B = ↑hco{x, y} for a unique 〈x, y〉 ∈

E(Q). Let i be the least subscript such that y ∈ Fi. Similarly, let j be the smallest
subscript such that x ∈ Gj. We claim B = Fi ∩ Gj; in the lattice 〈Fhco(Q);≤d〉,
this means B = Fi ∨Gj. Since Fi is left-closed, x ∈ Fi. Similarly, y ∈ Gj since Gj

is right-closed. Hence {x, y} ⊆ Fi ∩Gj, and we conclude B = ↑hco{x, y} ⊆ Fi ∩Gj.
In quest of a contradiction, suppose we have an element z ∈ (Fi ∩ Gj) \ B. First,
assume that {x, y, z} is an antichain. (This antichain consists of two or three
elements, depending on whether x = y or x λ y.) Since z ∈ Betw(x, y) would imply
z ∈ B, we have z λ x or y λ z. If y λ z, then z ∈ Fi implies z ∈ Fi \ {y} = Fi−1.
However, then y ∈ Fi−1 since Fi−1 is left-closed, and this contradicts the definition
of i. The case z λ x contradicts the definition of j similarly. Therefore, {x, y, z}
is not an antichain. Since x ≤ z and y ≤ z are excluded by z /∈ B, we can
assume z < y by left-right symmetry. Then z ∈ Fi \ {y} = Fi−1. Since Fi−1 is an
order-filter, we obtain y ∈ Fi−1, which contradicts the definition of i. �

3.2. Statements on planar slim semimodular lattice diagrams. Let D be
a planar lattice diagram. If a ≤ b ∈ D, then the interval [a, b] determines a
subdiagram, which is denoted by [a, b]D or, if there is no danger of confusion, by
[a, b]. An element of D is a narrows of D if it is comparable with every element of
D. The set of narrows is denoted by Nar(D). The vertical mirror image VFlip(D)
was defined right after Corollary 2.12. We need the following statement, which is
somewhat stronger than Lemma 2.7.

Lemma 3.7 (Czédli and Schmidt [20, Lemma 4.7] or, more explicitly, Czédli and
Grätzer [15]). Let D and E be finite planar slim semimodular lattice diagrams, and

let Nar(D) = {0 = d0 < d1 < · · · < dm = 1} and Nar(E) = {0 = e0 < e1 < · · · <
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Figure 5. Replacing [d2, d3] by VFlip([d2, d3])

en = 1}. Then D and E determine isomorphic lattices if and only if m = n and,

up to similarity, [di−1, di]D ∈
{
[ei−1, ei]E,VFlip([ei−1, ei]E)

}
for i = 1, . . . , n.

Next, we recall some well-known facts; see, for example, Kelly and Rival [27,
Proposition 5.2] and Czédli and Grätzer [15, Exercises 3.5 and 3.7]. The order

dimension of a poset P = 〈P ;≤〉 is the least n such that the ordering relation “≤”
is the intersection of n linear (that is, chain) orderings. Equivalently, it is the least
n such that P can be order-embedded into the direct product of n chains. By a
grid we mean a planar diagram of a direct product of two nontrivial finite chains
such that every edge is of slope 45◦ or 135◦. (A chain is nontrivial if it has at least
two elements.) A finite lattice has a planar diagram iff it is of order-dimension at
most 2. Therefore, each planar lattice has a planar diagram D that is embedded
in a grid G such that the vertices of D are also vertices of G and, in addition, for
a, b ∈ D, we have a ≤ b in D iff a ≤ b holds in G. Figures 5 and 6 give examples for
such embeddings. If D is embedded in a grid and a, b ∈ D are distinct elements,
then a < b if and only if the vector from a to b is of slope between 45◦ and 135◦.
When we deal with diagrams from the aspect of embeddability in grids, we cannot
consider similar diagrams equal. For example, while D9 in Figure 7 and also the
lattice diagrams D1, . . . , D8 in Figures 1, 3, and 4 can be embedded in grids, D10

in Figure 7 is similar to D9 but D10 cannot be embedded in a grid. We need the
following statement.

Lemma 3.8. If D is a lattice diagram embedded in a grid, then D is a planar

diagram.

Proof. The idea is taken from Kelly and Rival [27, Proposition 5.2]; see also Czédli
and Grätzer [15, Exercise 3.7]. Suppose, for a contradiction, that a1 ≺ b1 and
a2 ≺ b2 are edges of D with a forbidden “non-planar” intersection. Clearly, a1 6= a2

and b1 6= b2. Since the slope of the line through ai and bj is between 45◦ or 135◦,
we obtain ai ≤ bj for all i, j ∈ {1, 2}. Hence, a1 < a1 ∨ a2 ≤ b1 ∧ b2 < b1, which
contradicts a1 ≺ b1. �

Now we are ready to state and prove the following lemma.

Lemma 3.9. If D is a finite planar slim semimodular lattice diagram, then α(D)
defined in Definition 2.8 exists (and it is a quasiplanar diagram).

Proof. Let D′ and L′ denote the diagram and the lattice we obtain from D and L,
respectively, by adding a new bottom element 0̃. Since D has a least element, D′ is
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a planar diagram, and it is a diagram of L′. Hence, L′ is a planar lattice, so it has
a diagram E′ embedded into a grid G; see Figure 5 on the left. By Lemma 3.8, E′

is a planar diagram. The points of G are the intersections of the thin lines, and E′

consists of the little circles and the thick lines. Let Nar(L′) = {0̃ = d0 < d1 < · · · <
dm = 1} = Nar(E′). We can assume that G is large enough in the sense that the
elements of E′ are sufficiently far from the boundary of G. In order to see that we
can replace the subdiagram [di−1, di] by its vertical mirror image VFlip([di−1, di])
so that the new diagram is still a part of the same grid, see Figure 5 with i = 3
and m = 4, we do the following. First, by reflecting a square-shaped subgrid with
bottom di−1 that contains 1E′ , we reflect [di−1, dm] = [di−1, 1E′ ]. Second, we reflect
[di, dm] together with a square-shaped subgrid with bottom di similarly. Since G is
large enough, we can vertically reflect [di−1, di] for several values of i, one by one.
We know that D′ and E′ determine the same lattice, L′. Therefore, Lemma 3.7
allows us to assume that E′ = D′.

Figure 6. Illustrating the proof of Lemma 3.9

According to (i) without its parenthesized part and (ii) of Definition 2.8, we
obtain a diagram Q of {1D′} ∪ MiD′ = {0̃, 1L} ∪ MiL = {0̃, 1D} ∪ MiD, which
is a subposet of D′, in the following straightforward way: keep the position of its
elements in the plane, delete the elements of D′ \ ({0̃, 1D} ∪MiD) and all edges of
D′, and add a straight line segment from a to b whenever b covers a in the subposet.
In Figure 6, D′ consists of the (empty and black-filled) circles and the thick solid
lines. The elements and the edges of Q are denoted by black-filled circles and thick
dotted lines, respectively. Only a part of D′ and a part of Q are depicted.

We have to show that Q is quasiplanar and that it satisfies (iii) of Definition 2.8.
The fact that the elements of Q \ {0Q, 1Q} are meet-irreducible in D′ will not be
used. Hence, for later reference, we note that

(3.10)
no matter which elements of G constitute Q, the proof
below (with D′ = G) will yield that Q is quasiplanar.
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Let a, b ∈ Q such that a ‖ b in G. Then a ‖ b in Q, and we claim that

(3.11)
if a λG b, then a λD′ b and a is on the left of every chain
through b in Q.

Assume a λG b, and consider a maximal chain C ′ through b in D′; it consists of
the thick solid lines. Let S = {x ∈ G : x ∦ b}; it is the grey area in the figure. We
know that a /∈ S. Furthermore, a is on the left of the grey area S, because it is on
the left of the left boundary chain of S by the definition of λG. Since C ′ ⊆ S and
D′ is a planar lattice diagram, Lemma 2.3 and the definition of λD′ yield a λD′ b.
Next, let C be an arbitrary maximal chain through b in Q; it consists of the thick
dotted lines. Since C ⊆ S, a is on the left of C in Q. This proves (3.11), and we
similarly obtain that

(3.12)
if a %G b and a, b ∈ Q, then a %D′ b and a is on the right of
every chain through b in Q.

Since G is a planar lattice diagram, it is quasiplanar by Lemma 2.6. Applying
(A5) and (A6) to G and to a, b ∈ Q with a ‖ b, we obtain that exactly one of the
possibilities a λG b and a %G b holds. Hence, (3.11) and (3.12) imply that (A1)
holds in Q. From (3.11) and (3.12) we also obtain that, for a, b ∈ Q,

(3.13) a λD′ b ⇐⇒ a λQ b and a %D′ b ⇐⇒ a %Q b.

Thus, (A2) and (A3) hold in Q since they are valid in D′ by Lemma 2.6. Therefore,
Q is a quasiplanar diagram. In (3.13), we can replace λD′ and %D′ by λD and %D ,
respectively, since a ‖ b excludes 0̃ ∈ {a, b}. With this modification, (3.13) yields
α(D) = Q. �

As a consequence of the proof above, we conclude the following statement. It
explains how the α(Di) = Qi, for i ∈ {1 . . . , 9}, were drawn in our figures.

Corollary 3.10. If a finite planar slim semimodular lattice diagram D is embedded

in a grid, then we can obtain α(D) in the following three steps:

(i) If 0D ∈ MiD, then add a new zero to obtain D′, which is also embedded in

the same grid. Otherwise, let D′ = D.

(ii) Keep the vertices belonging to {0D′ , 1D′} ∪ MiD′, which are concrete points

in the plane, and delete the rest of vertices.

(iii) Draw the edges according to the restriction of the ordering of D′.

The case 0D ∈ MiD is illustrated by D7 in Figure 3. Now we import two
statements from Czédli [11]. We say that y is horizontally between x0 and x1 if
x0 λ y λ x1 or x1 λ y λ x0. Note that {x0, x1, y} is a 3-element antichain in this
case.

Lemma 3.11 (Czédli [11, Proposition 3.13]). Let D be a finite planar lattice di-

agram, and let {x0, x1, y} be a 3-element antichain in D. Then the following two

statements hold.

(i) If y is horizontally between x0 and x1, then x0 ∧ x1 ≤ y.
(ii) If, in addition, D is slim and semimodular and x0 ∧ x1 ≤ y, then y is hori-

zontally between x0 and x1.

Lemma 3.12 (Czédli [11, Proposition 3.14]). If L is a finite semimodular lattice,

a ∈ MiL, b, c ∈ L, a < c, and b ∧ c ≤ a, then b ≤ a.
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The following lemma is a particular case of Czédli and Schmidt [17, Lemma 2.2].
The left boundary chain and the right boundary chain of a planar lattice diagram
D are denoted by Cl(D) and Cr(D), respectively.

Lemma 3.13 ([17]). Let C1 and C2 be maximal chains in a finite slim semimodular

lattice L such that JiL ⊆ C1∪C2. Then L has a planar diagram D such that C1 =
Cl(D) and C2 = Cr(D). Furthermore, this diagram is unique (up to similarity).

3.3. Join and meet representations in slim semimodular lattices.

Definition 3.14. For x in a planar lattice diagram D, the largest element of
↓x∩Cl(D) and that of ↓x∩Cr(D) are the left support of x, denoted by lsp(x), and
the right support of x, denoted by rsp(x), respectively.

It follows from the definition of slimness that

(3.14) x = lsp(x) ∨ rsp(x), for all x ∈ D,

provided D is a planar slim lattice diagram.

Lemma 3.15. For x ‖ y in a planar slim semimodular lattice diagram D, we

have x λ y iff lsp(x) > lsp(y) and rsp(x) < rsp(y). Furthermore, x ≤ y iff

lsp(x) ≤ lsp(y) and rsp(x) ≤ rsp(y)

Proof. If lsp(x) = lsp(y), then rsp(x) 6 ‖ rsp(y) since Cr(D) is a chain and (3.14)
gives x 6 ‖ y. Hence, x ‖ y implies lsp(x) 6= lsp(y) and rsp(x) 6= rsp(y).

Assume x λ y. Striving for a contradiction, suppose lsp(x) 6> lsp(y). We know
that lsp(x) and lsp(y) are comparable, since Cl(D) is a chain, and they are distinct,
since x ‖ y. Hence, lsp(x) < lsp(y). By the definition of lsp(x), we have lsp(y) 6≤ x.
On the other hand, x ‖ y ≥ lsp(y) implies lsp(y) 6≥ x. That is, lsp(y) ‖ x. Since
x, like any element, is on the right of Cl(D) and lsp(y) ∈ Cl(D), the left-right
dual of Lemma 2.3 yields x % lsp(y), that is, lsp(y) λ x. Since D is quasiplanar
by Lemma 2.6 and x λ y, (A2) yields lsp(y) λ y. This contradicts lsp(y) ≤ y.
Therefore, x λ y implies lsp(x) > lsp(y). By left-right duality, it also implies
rsp(x) < rsp(y). This proves the “only if” part of the lemma.

To prove the “if” part, assume lsp(x) > lsp(y) and rsp(x) < rsp(y). Clearly,
x ‖ y. We cannot have y λ x since it would contradict the “only if” part. Thus,
x λ y. Finally, the second statement of the lemma is obvious. �

As a counterpart of Definition 3.14, we present the following concept.

Definition 3.16. Let D be a finite planar slim semimodular lattice diagram, and
let b ∈ D \ {1}. The left upper support and the right upper support of b, de-
noted by blus and brus, are the leftmost and the rightmost element of the antichain
Min(↑b ∩ MiD), respectively.

A meet x1 ∧ · · · ∧ xn in a lattice is irredundant if

x1 ∧ · · · ∧ xi−1 ∧ xi+1 ∧ · · · ∧ xn 6= x1 ∧ · · · ∧ xn

for i = 1, . . . , n.

Lemma 3.17. Let D be a finite planar slim semimodular lattice diagram, and let

b ∈ D \ {1}. Then b = blus ∧ brus. Furthermore, if X ⊆ MiL such that b =
∧
X is

an irredundant meet representation of b, then X = {blus, brus}.



18 G. CZÉDLI

Proof. Obviously, b =
∧

Min(↑b ∩ MiD). Lemma 3.11(i) implies b = blus ∧ brus.
If blus 6= brus, then blus ‖ brus and b = blus ∧ brus is an irredundant meet repre-
sentation. Hence, with the notation Y = {blus, brus}, b =

∧
Y is an irredundant

meet-representation, even if blus = brus. Since slim semimodular lattices are join-
distributive, see Czédli, Ozsvárt, and Udvari [16, Corollary 2.2], and the irredun-
dant meet-representations in a join-distributive lattice are unique by Dilworth [21],
the rest of the lemma follows. �

As a counterpart of Lemma 3.15, we have the following.

Lemma 3.18. Let x and y be elements of a planar slim semimodular lattice diagram

D. Then the following two assertions hold.

(i) x ≤ y iff xlus λ≤ ylus and xrus %≤ yrus ;

(ii) x λ y iff xlus λ< ylus and xrus λ> yrus.

Proof. We shall often use the identity b = blus∧ brus of Lemma 3.17 without further
reference.

To prove the “only if” part of (i), assume x ≤ y. By left-right symmetry, it
suffices to prove xlus λ≤ ylus . If xlus = xrus, then xlus = x ≤ y ≤ ylus gives that
xlus λ≤ ylus. Hence, we also assume xlus λ xrus. We claim that

(3.15) ylus 6< xlus, ylus 6< xrus, yrus 6< xlus, yrus 6< xrus.

Suppose, for a contradiction, that ylus < xlus. Then ylus 6= x since x is meet-
reducible. Hence, x < ylus , and x = ylus∧xrus is an irredundant meet representation
of x, different from x = xlus ∧ xrus. This is impossible by Lemma 3.17. This proves
ylus 6< xlus, and the rest of (3.15) follows similarly.

If ylus = yrus and {xlus, y, xrus} is a 3-element antichain, then we obtain xlus λ≤

y = ylus from Lemma 3.11(ii). So, if ylus = yrus , then we can assume that
{xlus, y, xrus} is not a 3-element antichain. By (3.15), if xlus ∦ y = ylus , then
xlus λ≤ ylus trivially holds. Hence, taking (3.15) into account, we may assume
that xlus ‖ y and y = yrus ≥ xrus. Since xlus λ xrus and since (3.15) excludes
y = ylus < xlus, (A7) yields xlus λ≤ ylus .

Therefore, we may assume that ylus 6= yrus, so ylus λ yrus . We know that
xlus ∧ xrus ≤ y ≤ ylus . If {xlus, ylus, xrus} is a 3-element antichain, then xlus λ≤ ylus

follows from Lemma 3.11(ii). If xlus ∦ ylus , then we obtain xlus λ≤ ylus from (3.15).
Finally, if xrus ∦ ylus , then (A7) and (3.15) imply xlus λ≤ ylus . We have proved the
“only if” part of (i).

To prove the “if” part, assume xlus λ≤ ylus and xrus %≤ yrus . If xlus λ ylus

and xrus % yrus, then xlus λ ylus λ= yrus λ xrus and Lemma 3.11(i) imply x =
xlus ∧ xrus ≤ ylus and x ≤ yrus, and we obtain x ≤ y. If xlus ≤ ylus and xrus ≤ yrus ,
then x ≤ y trivially follows. There are two more cases; we only deal with one of
them, because the other one will follow by left-right duality. Assume xlus ≤ ylus

and xrus % yrus . If xlus 6 ‖ yrus, then ylus 6> yrus excludes xlus > yrus, so we have
xlus ≤ yrus, and thus x ≤ xlus ≤ ylus ∧ yrus = y. If xlus ‖ yrus , then yrus cannot be
on the left of a maximal chain through {xlus, ylus}, because otherwise yrus λ ylus by
(A1), and so yrus = ylus ≥ xlus is a contradiction. Hence, yrus is on the right of this
chain, and we have yrus % xlus, that is, xlus λ yrus. Since we also have yrus λ xrus,
we obtain x = xlus ∧ xrus ≤ yrus from Lemma 3.11(ii). Therefore, we conclude
x = xlus ∧ x ≤ ylus ∧ yrus = y again. This proves (i).
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Next, to prove the “only if” part of (ii), assume x λ y. By left-right duality, it
suffices to prove xlus λ< ylus . Assume first that xlus = xrus = x. Suppose, for a
contradiction, that x = xlus λ< ylus fails. We have x � ylus and x � yrus, because

x � y. Hence, the failure of x λ< ylus means that ylus λ x. If x ∦ yrus or yrus λ x,
then we can apply Lemma 2.2 to a maximal chain C0 through {x, yrus} or through
x to conclude that y = ylus ∧ yrus is on the left of C0. However, y is also on the
right of this chain, because of y % x ∈ C0. Hence, y ∈ C0, which contradicts x ‖ y.
Thus, neither x ∦ yrus , nor yrus λ x. Hence, yrus % x, and we have ylus λ x λ yrus .
Applying Lemma 3.11(i), we obtain y = ylus ∧ yrus ≤ x, which contradicts x λ y.
Consequently, if xlus = xrus, then xlus λ< ylus holds. Therefore, we may assume
xlus λ xrus.

Striving for a contradiction, suppose xlus ≥ ylus . Extend the chain {y ≤ ylus ≤
xlus} to a maximal chain C1. Since x λ y, x is on the left of C1. On the other
hand, xrus % xlus ∈ C1 and Lemma 2.2 give that x = xlus ∧ xrus is on the right of
C1. Hence, x ∈ C1, which contradicts x ‖ y. Therefore, xlus � ylus.

Next, for the sake of a contradiction, suppose ylus λ xlus. Extend {x, xlus} to a
maximal chain C2. Since ylus λ xlus, ylus is on the left of C2, while x λ y yields that
y is on the right of C2. Hence Lemma 2.1 applies, and we obtain an element z ∈ C2

such that y ≤ z ≤ ylus . Since z 6 ‖ x, as both belong to C2, and x 6> y, we have
x < z, and thus x < ylus . Therefore, the set ↑x ∩ ↓ylus ∩ MiD is nonempty, since
it contains ylus . Let t be a minimal element of this set. Clearly, t belongs to the
antichain Min(↑x ∩ MiD). Since xlus is the leftmost element of this antichain, we
have xlus λ= t. We cannot have xlus = t, because otherwise xlus = t ≤ ylus would
contradict ylus λ xlus. Hence xlus λ t. Now extend {t, ylus} to a maximal chain C3.
Then xlus is on the left of C3 since xlus λ t, and xlus is also on the right of C3 since
ylus λ xlus. Therefore, xlus ∈ C3 and so xlus 6 ‖ ylus, which contradicts ylus λ xlus.
This proves that ylus λ xlus is impossible.

Now that we have excluded the other two possibilities, we conclude that x λ y
implies xlus λ< ylus. This proves the “only if” part of (ii).

Finally, to prove the ““if” part of (ii), assume xlus λ< ylus and xrus λ> yrus . Part
(i) excludes x 6 ‖ y, and the “only if” part of (ii) excludes y λ x. Hence, x λ y. �

3.4. Further auxiliary statements.

Lemma 3.19. If Q is a quasiplanar diagram, then

Mi 〈Fhco(Q);≤d〉 = {↑x : x ∈ Q \ {0, 1}}.

Proof. Let F ∈ Fhco(Q). By Lemma 3.2, F is of the form F = ↑hco{x, y}, where
x = lbe(F ), y = rbe(F ), and x λ= y ∈ Q+++. First, assume x = y. Then F = ↑x by
Lemma 3.1(i). Clearly, F \ {x} ∈ Fhco(Q), and it is the unique lower cover of F
with respect to set inclusion. Hence, F \ {x} is the unique upper cover of F in the
lattice 〈Fhco(Q);≤d〉. That is, F ∈ Mi 〈Fhco(Q);≤d〉, proving the “⊇” part of the
lemma. Next, assume x 6= y. Obviously, F 6= ↑x and F 6= ↑y. By Lemma 3.1(i),
↑x, ↑y ∈ Fhco(Q). Clearly, F = ↑x ∨ ↑y in the dual lattice 〈Fhco(Q);⊆〉. Thus
F = ↑x∧ ↑y in 〈Fhco(Q);≤d〉, and F /∈ Mi 〈Fhco(Q);≤d〉. This proves 6⊃. �

Lemma 3.20. For a quasiplanar diagram Q, β2(Q) makes sense, it is uniquely

defined, and it is a planar diagram of a slim semimodular lattice.
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Proof. We know from Lemma 3.5 that 〈Fhco(Q);≤d〉 is a semimodular lattice.
We obtain from Lemma 3.6 that the join-irreducible elements of this lattice be-

long to ~F (Q) ∪ ~G(Q). By Lemma 3.13, there exists a planar diagram D of the

lattice 〈Fhco(Q);≤d〉 such that Cl(D) = ~F (Q) and Cr(D) = ~G(Q). According
to Definition 2.10(vi), this D is β2(Q). The uniqueness of β2(Q) follows from
Lemma 3.13. �

Lemma 3.21. Let Q be a quasiplanar diagram, and let x, y ∈ Q. Then x λ y in Q
iff ↑x λ ↑y in β2(Q).

Proof. To prove the “only if” part, assume x λ y, and let n be the smallest subscript
such that y ∈ Fn. Note that y ∈ Fn iff ↑y ⊆ Fn iff Fn ≤d ↑y. Note also that n > k

iff Fn ≤d Fk. Therefore, since Cl(β2(Q))) = ~F (Q) and Cr(β2(Q))) = ~G(Q) by
Definition 2.10(vi), Fn = lsp(↑y); see Definition 3.14. Also, if m is the smallest
subscript such that x ∈ Fm, then Fm = lsp(↑x). Since Fn is left-closed, x ∈ Fn,
which implies m ≤ n. In fact, m < n since x 6= y yields m 6= n. Thus lsp(↑x) =
Fm >d Fn = lsp(↑y). Left-right duality yields rsp(↑x) <d rsp(↑y). Therefore,
Lemma 3.15 yields ↑x λ ↑y in β2(Q). This proves the “only if” part.

Conversely, assume ↑x λ ↑y in β2(Q). Then, in particular, ↑x ‖ ↑y. Clearly,
u ≤ v in Q iff ↑u ⊇ ↑v iff ↑u ≤d ↑v in 〈Fhco(Q);≤d〉. In particular, u ‖ v in Q iff
↑u ‖ ↑v in 〈Fhco(Q);≤d〉. This yields x ‖ y. Hence x λ y or y λ x in Q. Since y λ x
would give a contradiction by the “only if” part, we obtain x λ y. �

Lemma 3.22. For a quasiplanar diagram Q, β1(Q) makes sense, it is uniquely

defined, it is a planar diagram of a slim semimodular lattice, and the diagrams

β1(Q) and β2(Q) are the same, up to similarity. Furthermore, π from Lemma 3.2

is a similarity map.

Proof. If β1(Q) exists, its uniqueness is evident from Definition 2.9. First, as a
preparation to use Lemma 3.18, we show that if X ∈ Fhco(Q), then

(3.16) Xlus = ↑lbe(X) and Xrus = ↑rbe(X).

It follows from Lemmas 3.1 and 3.2 that X = ↑Min Betw(lbe(X), rbe(X)). We
know from Lemma 3.19 that the meet-irreducible elements of β2(Q) are exactly the
↑x where x ∈ Q \ {0, 1}. We have to consider the minimal ones above X, with
respect to “≤d”. That is, the maximal ones below X, with respect to set inclusion.
Clearly, they are the members of A = {↑x : x ∈ MinBetw(lbe(X), rbe(X))}. By
definition, Xlus is the leftmost member of A with respect to λ defined in β2(Q).
Hence, by Lemma 3.21, Xlus = ↑lbe(X). The rest of (3.16) follows similarly.

Next, consider the order-isomorphism π : 〈Fhco(Q);≤d〉 → 〈E(Q);≤〉, defined
by X 7→ 〈lbe(X), rbe(X)〉 in Lemma 3.2. By Lemma 3.20, β2(Q) exists, it is
uniquely defined, and it is a planar diagram of 〈Fhco(Q);≤d〉. Hence, 〈E(Q);≤〉
has a unique diagram D′ such that π : β2(Q) → D′ is a similarity map. We know
that π is an order isomorphism. Therefore, it suffices to show that D′ is a diagram
of 〈E(Q);≤〉 that satisfies (2.2). Let X1, X2 ∈ Fhco(Q), and let 〈xi, yi〉 = π(Xi) =
〈lbe(Xi), rbe(Xi)〉, for i ∈ {1, 2}. According to (2.2), the concrete task is to show
that

(3.17) X1 λ X2 in β2(Q) ⇐⇒ x1 λ
< x2 and y1 λ

> y2 in Q.

To prove the implication “⇒”, assume X1 λ X2. By Lemma 3.2, we have
Xi = ↑hco{xi, yi} for i ∈ {1, 2}. Using the notation introduced in Definition 2.10
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and arguing similarly as in the previous proof, we claim that

(3.18) lsp(Xi) = Fni
⇐⇒ ni = min{k : yi ∈ Fk}.

To see this, we can argue as follows: lsp(Xi) = Fk ⇐⇒ Fk ≤d Xi and Fk is
maximal with respect to ≤d ⇐⇒ Fk ⊇ Xi and Fk is minimal with respect to
set inclusion ⇐⇒ yi ∈ Fk and k is minimal; in the last step we used that Fk is
left-closed by Lemma 3.6 and xi λ

= yi, and so yi ∈ Fk implies xi ∈ Fk. This proves
(3.18).

From Lemma 3.15, we obtain lsp(X1) >
d lsp(X2). This and (3.18) yield that

Fn1
:= lsp(X1) ⊂ lsp(X2) =: Fn2

, y1 ∈ Fn1
, y2 ∈ Fn2

, and y2 /∈ Fn1
since we have

n1 < n2 by Fn1
⊂ Fn2

. Since y2 /∈ F1, we have y1 6= y2. Hence, either y1 λ
> y2, or

y2 λ
> y1. However, if y2 λ

> y1, then y2 belongs to Fn1
since y1 ∈ Fn1

and Fn1
is

a left-closed order filter by Lemma 3.6, and this is a contradiction. Consequently,
y1 λ

> y2. The left-right dual of the argument above gives x1 λ
< x2. This proves

“⇒” in (3.17).
Finally, to prove the converse implication, assume that x1 λ

< x2 and y1 λ
> y2

hold in Q. If X1 ≤ X2, then (2.1) yields x1 λ
≤ x2 and y2 λ

≥ y1 since π is an order-
isomorphism, and this contradicts y1 λ

> y2. We obtain similarly that X2 ≤ X1

contradicts x1 λ
< x2. Therefore, X1 ‖ X2. If X2 λ X1 , then the ⇒ direction of

(3.18) yields x2 λ
< x1, which contradicts x1 λ

< x2. The only remaining possibility
is X1 λ X2. This proves the implication “⇐” in (3.17). �

3.5. The end of the proof. Armed with the auxiliary statements presented so
far, now we are in the position to accomplish our goal.

Proof of Theorem 2.11. By Lemma 3.22, β1(Q) equals β2(Q), up to similarity.
Hence, in each part of the proof, it suffices to deal with one of β1 and β2.

Part (i) is Lemma 3.9, while Part (ii) follows from Lemmas 3.5, 3.6, and 3.13.
To prove Part (iii), letD be a finite planar slim semimodular lattice diagram, and

let Q = α(D). Define a map κ : D → β1(Q) by x 7→ 〈xlus, xrus〉 ∈ E(Q). (Here, for
technical reasons, we extend the definition of xlus and xrus by letting 1lus = 1rus = 1;
this will cause no problem and makes the definition of κ meaningful.) Since x =
xlus∧xrus by Lemma 3.17, κ is injective. Assume 〈y, z〉 ∈ E(Q) such that y 6= z, and
define x by x = y∧z. This is an irredundant meet representation since y ‖ z. By the
uniqueness part of Lemma 3.17 and y λ z, we obtain 〈y, z〉 = 〈xlus, xrus〉 = κ(x).
Also, if 〈x, x〉 ∈ E(Q), then κ(x) = 〈xlus, xrus〉 = 〈x, x〉. Hence, κ is surjective.
Finally, comparing Lemma 3.18(i) to (2.1) and Lemma 3.18(ii) to (2.2), we conclude
that κ is similarity map. This proves Part (iii).

To prove Part (iv), let Q be a quasiplanar diagram. Combining Lemmas 3.19
and 3.22, we conclude Mi (β1(Q)) =

{
〈x, x〉 : x ∈ Q \ {0, 1}

}
. To form α

(
β1(Q))

)
,

we have to add a bottom and a top to Mi (β1(Q)); denote them by 〈0, 0〉 and
〈1, 1〉, respectively. Then we have α

(
β1(Q)

)
= {〈x, x〉 : x ∈ Q}. We claim that

γ : Q → α
(
β1(Q)

)
, defined by x 7→ 〈x, x〉, is a similarity map. Obviously, γ is a

bijection. Since the position of a top or bottom element in a diagram is unique up to
similarity, it suffices to deal with the elements of Q\{0, 1}. Assume x, y ∈ Q\{0, 1}.
Based on (2.1), we have

〈x, x〉 ≤ 〈y, y〉 ⇐⇒ x λ≤ y and y λ≥ x ⇐⇒ x ≤ y,
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which shows that γ is an order-isomorphism. Based on (2.2), we obtain

〈x, x〉 λ 〈y, y〉 ⇐⇒ x λ< y and x λ> y ⇐⇒ x λ y.

Therefore, γ is a similarity map, completing the proof of Part (iv). �

Proof of Corollary 2.12. Besides Theorem 2.11, the proof is based on two facts.
First, let X(k) denote the set of planar slim semimodular lattice diagrams of length
k, understood up to similarity. We know from Czédli and Schmidt [19], see also
Czédli and Grätzer [15], that there exists a bijection between X(k) and the set Sk

of permutations acting on {1, . . . , k}. Second, it follows easily from Dilworth [21] or
Adaricheva, Gorbunov and Tumanov [4, Theorem 1.7.(1-2)] and, furthermore, it is
explicitly stated in Czédli and Schmidt [19, Corollary 2.4] that for every slim semi-
modular lattice K, |MiK| = length(K). So if D is a planar semimodular lattice
diagram, then |MiD| = length(D). Taking Definition 2.8 into account, we obtain
that |Q| = |α(D)| = 2 + |MiD| = 2 + length(D). Therefore, Theorem 2.11 gives a
bijective correspondence between the set of n-element quasiplanar diagrams, under-
stood up to similarity, and X(n − 2). Thus, the number of n-element quasiplanar
diagrams, understood up to similarity, is |X(n− 2)| = |Sn−2| = (n − 2)!. �

4. Comments and examples

One may ask which finite bounded posets have quasiplanar diagrams.

Proposition 4.1. A finite bounded partially ordered set P has a quasiplanar dia-

gram iff its order dimension is at most two.

Proof. Assume that P has a quasiplanar diagram. By Theorem 2.11, P can be
order-embedded into a finite slim semimodular lattice L. Since L has a planar
diagram by Lemma 3.13, cited from Czédli and Schmidt [17], it is of order-dimension
at most two. Hence, L has an order embedding into the direct product of two chains;
see the paragraph after Lemma 3.7. Thus, P also has an embedding into this direct
product, and it is of order-dimension at most two.

Next, assume that P is of order-dimension at most two. Then P has a diagram
Q that is a subdiagram of a grid G. By (3.10), Q is a quasiplanar diagram. �

Figure 7. D9 = D10 and Q9 = α(D9), but Q10 6= α(D10)

We conclude the paper with some additional examples and comments. Figure 3,
where Qi = α(Di) for i ∈ {4, . . . , 7}, explains why we deal with diagrams rather
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than lattices and posets: Q4 and Q5 show that order-isomorphic quasiplanar dia-
grams can determine non-isomorphic lattices. Also, D6 is the smallest planar slim
semimodular lattice diagram such that Q6 = α(D6) is not planar, and there is no
planar diagram order-isomorphic to α(D6). Figure 7 illustrates that Lemma 3.9
is not as obvious as it may look. In the figure, D9 and D10 are equal, up to
similarity. For i ∈ {9, 10}, Qi is obtained from Di by omitting vertices and con-
necting the remaining ones, without changing their position in the plane. We have
Q9 = α(D9) = α(D10). However, Q10 6= α(D10), because Q10 is not a quasiplanar
diagram since c ‖ a, c is on the left of the chain {0, a, f, 1} through a, but c is on
the right of the chain {0, a, d, 1} through a. Figure 7 explains the parenthesized
comment in Definition 2.8(i). Finally, Figure 1 indicates how α acts in case of ver-
tical decompositions (into so-called glued sums), provided the bottom element of
the upper lattice diagram, D2, is meet-reducible. The idea suggested by the figure
was used in an earlier proof of Lemma 3.9.
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