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Abstract—Many modern software systems come with auto-
mated tests. While these tests help to maintain code quality by
providing early feedback after modifications, they also need to be
maintained. In this paper, we replicate a recent pattern mining
experiment to find patterns on how production and test code
co-evolve over time. Understanding co-evolution patterns may
directly affect the quality of tests and thus the quality of the whole
system. The analysis takes into account fine grained changes in
both types of code. Since the full list of fine grained changes
cannot be perceived, association rules are learned from the
history to extract co-change patterns. We analyzed the occurrence
of 6 patterns throughout almost 2500 versions of a Java system
and found that patterns are present, but supported by weaker
links than in previously reported. Hence we experimented with
weighting methods and investigated the composition of commits.

Index Terms—software evolution, change analysis, machine
learning, co-evolution patterns, testing

I. INTRODUCTION

Software development produces a tremendous amount of
data about the development process and the software itself
that are recorded in software repositories, such as GitHub
and Bitbucket. They track, for instance, changes to files, in
particular which developer changed which file when and how,
and bug reports submitted by users. To extract the valuable part
of the data from the evolution point of view, repository mining
techniques are usually applied. In this research project, we em-
ployed repository mining techniques combined with machine
learning to assess the co-evolution of production and test code.
Balanced co-evolution of source code and other development
artifacts is an important factor in maintaining software quality
of evolvable systems [1], [2]. In recent years, as large amount
of test code also needs significant effort to maintain, test suite
evolution received increased interest [3]. Today test code is
treated as a first class citizen in software projects, which urges
the in depth understanding of the relation of production and
test code. This fosters traceability research [4], [5], [6] and
makes the co-evolution analysis of production and test code
an emerging topic [7], [8].

The aim of this paper is to analyze the history of production
and test code changes to reveal whether co-evolution patterns
in project history are followed in order to keep software quality
at the desired level. The research approach followed in this

work is based on a recent study by Marsavina et al. [8].
We applied repository mining, test coverage analysis and
association rule learning techniques to obtain patterns of co-
evolution. The main point of this study is the replication
of the previous experiment, with additional analysis to give
deeper insight into how co-evolution happens. We provide the
following contributions in this paper:

• Replication of Marsavina et al. [8] on one system.
• Extended analysis of project properties, experiments with

change weighting methods and analysis of composition
of commits.

II. CO-EVOLUTION ANALYSIS

A. Overview

This work is based on the study by Marsavina et al. [8] on
mining co-evolution patterns. In that study the authors iden-
tified production and test code co-evolution patterns through
aggregating fine-grained changes and applying association rule
learning on changes measured through the project history. The
direction of the analysis is from production classes to test
classes. We replicated the analysis method, in which the main
question is: When developers change production code, do they

change test classes as well (and how)?
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Fig. 1. Analysis process overview

The overview of the analysis process is shown in Figure 1.
First, fine-grained change information is extracted form the
version control system for each commit. Second, dynamic
analysis is used to obtain test coverage data for each commit.
Based on these two sources, we use association rule learning
to find regular patterns of developer behaviour, for example
whether introducing a new class in a commit implies that a
new test class in also introduced. The link between production



TABLE I
OVERVIEW OF THE ANALYZED PROJECT

Project # First version Last version # Versions # Versions
Versions # # Prod. # Test Date # # Prod. # Test Date Non-building Non-building
analyzed Classes Methods Methods Classes Methods Methods due to Test fail. due to Cov. fail.

commons-lang 2470 115 2020 1622 2009-10-13 206 3025 3880 2016-05-29 80 16

TABLE II
OVERVIEW OF THE ANALYZED PROJECT FROM MARSAVINA et al.

Project # First version Last version # Versions # Versions
Versions # # Prod. # Test Date # # Prod. # Test Date Non-building Non-building
analyzed Classes Methods Methods Classes Methods Methods due to Test fail. due to Cov. fail.

commons-lang (Mars.) 3856 31 373 318 2002-12 177 2442 2851 2014-02 54 -

and test classes is provided by the dynamic analysis, since
during the rule mining we consider only those test classes
which in fact exercise (cover) the changed production class.

Besides our base study [8], there were similar approaches
applied for co-evolution analysis. Our study goes back to
earlier works by Zaidman et al. [7], [9]. Pinto et al. provided
a large-scale study of test suite evolution emphasizing the
need for understanding how tests evolve to aid other purposes
like automatic repair techniques [3], [10]. Marinescu et al.

provided a framework that combines static and dynamic anal-
ysis of tests and their coverage throughout the version history
for C/C++ programs [11]. We apply a similar approach for
analyzing Java source code. Co-evolution analysis needs a
proper link between tests and the related production classes.
Rompaey et al. compared several test to code traceability
methods, including the use of naming conventions and var-
ious structural and conceptual methods [6]. Ghafari et al.

presented a method level traceability solution [12]. A remark-
able solution is provided by Qusef et al., which combines
program slicing and information retrieval methods [4], [13].
Telea et al. [14] used code visualization for evolution analysis
of production code. Ens et al. provided the ChronoTwigger
tool to support visual analytics of test and code evolution [15].

In our study we rely on a state of the art solution to address
the following research questions:

RQ1: Do production and test code evolve in sync?
RQ2: What kind of fine-grained co-evolution patterns be-

tween production and test code can be identified?

B. Project history

In this report we provide a detailed analysis of the
commons-lang project. Table I shows the main characteris-
tics of the analysis, while in Table II values from the original
study can be seen. The tables report project sizes in the first
and in the last analyzed versions for each study. The number
of non-building versions is slightly higher in our case, but
compared to all versions analyzed it is negligible. We also
report the number of failed builds because of failing coverage
measurements, which is a small number as well. In total 2470
versions were analyzed with more than 4 years overlap with
the original study in the project history. We did not consider
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Fig. 2. History of the number of production and test classes
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Fig. 3. History of the method level coverage

early versions since we used a more precise source code level
instrumentation, for which maven integration was necessary.

The analysis of the project history may be biased if there
are too many exceptional events or large changes in the project
workflow. In Figure 2 the history of the number of production



and test classes is shown. The addition of new production
classes is balanced; and test classes are also added in parallel.
The two curves follow each other in most of the time. There
is one huge increase in the number of test classes, but this is
a unique occasion. Another important aspect we measured is
the global coverage of all tests. In Figure 3 the method level
coverage ratio is depicted. Note that the coverage ratio was
already relatively high at the beginning of our measurements,
the scale of the y axis starts at 0.7 coverage. There is a slight
coverage increase over the time, which is the sign of increasing
effort invested in testing, since the number of production
classes also increased in that period of time. There is a small
period with no successful coverage measurements, and with a
huge decrease in method level coverage, but the developers of
tests managed to balance it out in a short period of time.

The coverage measurements were done using the
Clover tool. The test traces were processed using the
SoDA toolchain [16], which handles the per test coverage
matrix and is also able to handle test results and compute
test suite metrics. Test coverage is used as the test-to-code
traceability [6], [17] solution in our study.

C. Fine grained changes

We obtained fine grained changes using the ChangeDis-
tiller [18] through a wrapper tool. According to the
ChangeDistiller model, detailed changes belong to 10 change
categories. When processing changes we distinguish produc-
tion and test classes; both of them can contain any number
of detailed changes. Change categories are listed in Table III
divided into production and test class changes.

TABLE III
TOTAL NUMBER OF CHANGES IN PRODUCTION AND TEST CODE PER

CHANGEDISTILLER CATEGORY

ChangeDistiller category commons-lang
Prod Test

ADDED_CLASS 198 257
REMOVED_CLASS 133 153

CLASS_DECLARATION 1153 1631
METHOD_DECLARATION 644 236

ATTRIBUTE_DECLARATION 504 321
BODY_STATEMENTS 6845 9425
BODY_CONDITIONS 934 68

COMMENTS 368 349
DOCUMENTATION 1247 225

OTHERS 7 0

Total 12033 12665

Test ratio 0.512795

The distribution of changes both between categories and
between the two types of classes are similar to the data
found by Marsavina et al. Not surprisingly, changes in body
statements happen most frequently. Important to note is that
slightly more than half of the fine grained changes happened
in test classes in this project. Although the measured interval
in the project history is different, the finding of the base study
holds in our analysis as well.

In Figure 4 the ratio of changed production and test classes
is shown for the whole analyzed history. In the number of

classes the high intensity of test changes can also be observed,
which means that developers in this project take care of tests.

As already mentioned, the direction of the analysis is from
production classes to test classes (test-driven projects need
changes in this process). For each production class we checked
if there are any test classes that were changed in the same
commit. As Figure 5 shows in the second and third bars,
more than half of the production classes are changed without
co-changed test classes. These cases unfortunately hinder the
analysis of co-evolution patterns. Although we found many
small changes in the project history (as seen in Table III), there
are many cases when the developers do not (immediately)
initiate changes both in production and test code.
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Fig. 5. Number of co-changes from the production classes perspective

III. MINING CO-EVOLUTION PATTERNS

The aim of the mining process is to obtain association
rules between production and test classes. Association rule
learning is a well-known data mining method for discovering
regularities in large-scale transaction databases. This learning
method has been successfully applied for software engineering
problems as well [19], [9]. In our case, fine grained changes
are considered as transaction items, while commit level project



TABLE IV
ASSOCIATION RULES MINED FROM EVOLUTION DATA

Rule Production side Test side Commons-Lang

Id Rule LHS Rule RHS W1 W1’ W2 Marsavina et al.

1 ADDED_CLASS_P=YES =⇒ ADDED_CLASS_T YES
0.51 / 0.51

SOMETHING
/

YES
0.51 / 0.51

YES
412 / 0.643

2 REMOVED_CLASS_P=YES =⇒ REMOVED_CLASS_T YES
0.56 / 0.56

SOMETHING
/

YES
0.56 / 0.56

YES
569 / 0.998

3a1 CLASS_DECLARATION_P=LOW =⇒ CLASS_DECLARATION_T NONE
0.50 / 0.50

SOMETHING
/

SOMETHING
/

NONE
244 / 0.953

3a2 CLASS_DECLARATION_P=MED_LOW =⇒ CLASS_DECLARATION_T NONE
0.54 / 0.54

SOMETHING
/

SOMETHING
/

LOW
132/ 0.8

3a3 CLASS_DECLARATION_P=MED_HIGH =⇒ CLASS_DECLARATION_T NONE
0.55 / 0.55

SOMETHING
/

SOMETHING
/

SOMETHING
/

3a4 CLASS_DECLARATION_P=HIGH =⇒ CLASS_DECLARATION_T HIGH
0.64 / 0.64

HIGH
0.64 / 0.64

HIGH
0.55 / 0.55

HIGH
85 / 0.658

4a1 METHOD_DECLARATION_P=LOW =⇒ BODY_STATEMENTS_T NONE
0.55 / 0.55

SOMETHING
/

NONE
0.65 / 0.65

SOMETHING
/

4a2 METHOD_DECLARATION_P=MED_LOW =⇒ BODY_STATEMENTS_T NONE
0.53 / 0.53

SOMETHING
/

SOMETHING
/

SOMETHING
/

4a3 METHOD_DECLARATION_P=MED_HIGH =⇒ BODY_STATEMENTS_T NONE
0.67 / 0.67

NONE
0.67 / 0.67

NONE
0.75 / 0.75

SOMETHING
/

4a4 METHOD_DECLARATION_P=HIGH =⇒ BODY_STATEMENTS_T NONE
0.68 / 0.68

NONE
0.68 / 0.68

NONE
0.56 / 0.56

MED_HIGH
37 / 0.616

5a1 ATTRIBUTE_DECLARATION_P=LOW =⇒ BODY_STATEMENTS_T NONE
0.63 / 0.63

NONE
0.63 / 0.63

NONE
0.90 / 0.90

SOMETHING
/

5a2 ATTRIBUTE_DECLARATION_P=MED_LOW =⇒ BODY_STATEMENTS_T NONE
0.95 / 0.95

NONE
0.95 / 0.95

SOMETHING
/

SOMETHING
/

5a3 ATTRIBUTE_DECLARATION_P=MED_HIGH =⇒ BODY_STATEMENTS_T NONE
1.00 / 1.00

NONE
1.00 / 1.00

NONE
0.70 / 0.70

SOMETHING
/

5a4 ATTRIBUTE_DECLARATION_P=HIGH =⇒ BODY_STATEMENTS_T NONE
0.98 / 0.98

NONE
0.98 / 0.98

NONE
0.63 / 0.63

SOMETHING
/

6a1 BODY_CONDITIONS_P=LOW =⇒ CLASS_DECLARATION_T NONE
0.71 / 0.71

NONE
0.71 / 0.71

NONE
0.80 / 0.80

NONE
126/ 0.670

6a2 BODY_CONDITIONS_P=MED_LOW =⇒ CLASS_DECLARATION_T NONE
0.82 / 0.82

NONE
0.82 / 0.82

NONE
0.70 / 0.70

SOMETHING
/

6a3 BODY_CONDITIONS_P=MED_HIGH =⇒ CLASS_DECLARATION_T NONE
0.86 / 0.86

NONE
0.86 / 0.86

NONE
0.76 / 0.76

SOMETHING
/

6a4 BODY_CONDITIONS_P=HIGH =⇒ CLASS_DECLARATION_T NONE
0.84 / 0.84

NONE
0.84 / 0.84

NONE
0.73 / 0.73

SOMETHING
/

history provides the transaction database. An example associ-
ation rule is shown in Figure 6. This rule means that when
a new production class is added to the code, then a new test
class is also added in slightly more than half of the cases
in project history. Since our question is whether changes in
production code induce changes in test code, we work with
rules where the first part is about production code changes and
the implication is about test code changes.

ADDED_CLASS_PROD = YES =⇒ ADDED_CLASS_TEST = YES

(support=0.51)

Fig. 6. Association rule for added classes

The next step in the co-evolution mining process is to use
the fine-grained change data to produce input for the asso-
ciation rule mining algorithm. For this purpose, changes are
summarized by change category for each changed production
class for each commit. Co-evolution rules are mined when
there were test class changes as well within the same commit.
To consider a changed test class it has to cover the given
production class of the same commit, which is checked using
the dynamic coverage matrix obtained using the Clover tool.
Thus we produce changed production class to changed test
class links, where change categories are computed for both
types of classes. When there are more than one changed test
classes that cover the production class, the test class changes
are summarized by change type.

Association rule mining is used to mine patterns in such
linked classes. This algorithm does not work on numeric
results, so we need to discretize the number of changes for
each change category. We compute the quartiles for the whole
project history for each change type (both production and
test classes are considered). For each class we use the NONE,

ADDED_CLASS_P = NO;

REMOVED_CLASS_P = NO;

CLASS_DECLARATION_P = HIGH;

METHOD_DECLARATION_P = NONE;

ATTRIBUTE_DECL_P = NONE;

BODY_STATEMENTS_P = HIGH;

BODY_CONDITIONS_P = MID_LOW;

ADDED_CLASS_T = NO;

REMOVED_CLASS_T = NO;

CLASS_DECLARATION_T = NONE;

METHOD_DECLARATION_T = NONE;

ATTRIBUTE_DECL_T = NONE;

BODY_STATEMENTS_T = NONE;

BODY_CONDITIONS_T = NONE;

Fig. 7. Co-change transaction example for association rule mining

LOW, MED_LOW, MED_HIGH and HIGH categories for 0, Q1,
Q2, Q3 and Q4 values respectively. In binary cases we use
only NO and YES categories. After this step we produce
the change vectors for each changed production class for
each commit as shown in Figure 7. The vector consists of
7+7 elements, one element for each of the 7 main change
categories for production (_P ) and test (_P ) classes. These
vectors correspond to transactions in association rule mining
terminology. Rules are mined using the apriori algorithm of
the arules package of the R repository. To find patterns we set
the support threshold to 0.5.

The results of co-evolution analysis are summarized in
Table IV. We reused the 6 types of rules from [8]. The
left hand side of each association rule reflects changes in
production code, while the right hand side shows whether
linked test code changes exist in the project history. For each
rule, the whole set of transactions is filtered for the given
assumption of the production code. For example Rule 3a1

checks whether LOW changes in production class declarations
implies changes of test class declarations at 0.5 support level.
The nature of the test change is given on the right hand side
of the table. When none of the change categories reaches
the desired support level, but still there is some link between
production and test changes, SOMETHING is used (otherwise
NONE would be the result).



TABLE V
CO-EVOLUTION PATTERNS

Pattern Id Description Presence

1/2 When a new production class is added/deleted, an associated test class is also created/deleted X/X
3 When a new production method is created, one or more test cases addressing it are also developed X

4 When method-related changes occur in the production code, the tests are updated accordingly Weak
5 When a field is added in the production code, the existing test cases are updated in order to address Weak
6 Upon modifying conditional statements in methods from the production code, new test cases are created ?

We conducted several experiments adjusting the parameters
of the transaction generation and rule mining. The W1 column
reports the results of measurements where the volume of the
changes are not bound to quartiles, but represent local values
within the commit. In case of W1’ the confidence level is set
to 0.6 as in the base study. The W2 column shows the results of
the quartile-based measurements, while the last column shows
the base values from [8]. We also experimented with a rule
mining method using only binary YES/NO values for all rules
instead of the quartiles to double check the results.

Overall, we found weaker links than it was reported in
the previous study. Table V shows the identified co-evolution
patterns: 3 patterns confirmed, 2 patterns present but weakly
supported and one pattern is missing. The W1 column in
Table IV gives insights into the co-change data, and our
observation is that in these cases the NONE rules is too high to
reproduce the base study. On the other hand, in the base study
there were only SOMETHING results in these cases, indicating
weak links as well. Thus, we consider the replication of the
base study successful.

IV. DISCUSSION

To understand more details about the volume of the rules,
we analyzed the change frequencies of fine-grained changes by
change types provided by ChangeDistiller as seen in Figure 8.
Except body statement changes, which is far the most frequent
change type that occurs, even the median of change count is
one. Higher numbers are mostly outliers. Not surprisingly, this
causes that most of the quartiles are around 1 (see Table VI).
Consequently, for our subject program, the binary approach
(NO and YES categories) may be a good approximation.

●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●●

●●●●●●●

●

●

●

●

●●●

●●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●●

●●●●

●

●●

●

●●

●

●●

●

●

●

●

●

●●●

●

●●●●●●●●●●●●

●

●●●

●

●

●

●●

●●

●

●●

●

●

●

●●●●

●●

●

●●●●

●

●●

●

●

●●●●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●●

●●

●●●

●

●

●●

●

●

●

●

●

●●

●

●●●

●

●●

●●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●●

●

●

●

●

●●

●

●●●

●

●

●●●●●●●

●

●

●●●●

●●●

●

●●●●●●

●

●

●

●●

●

●●

●

●●●

●

●●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●●●●●●

●●

●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●●●

●

●●

●

●

●●

●

●

●●●●●●●●

●

●

●

●

●●

●●

●

●●

●●●●●

●●●

●

●

●●

●

●

●

●●

●

●

●

●

●●●

●●

●

●

●●●●●

●

●●

●

●

●

●

●●●

●

●●●●

●

●

●●

●●

●●

●●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●●●

●

●

●●

●

●

●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●●●●●●●●●

●

●●●

●

●●

●●●

●

●●

●●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●●●●●●

●

●

● ●●

●

●

●●

●●

●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●●●●●

●

●

●

●

●

●

●●

●●●

●

●●

●

●

●●

●

●●●

●●●

●

●●●

●

●

●

●

●

●

●●

●●●

●

●●●

●

●

●●

●

●●

●

●

●●

●

●●●

●●

●

●

●●●

●

●

●

●

●●●

●●●●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●

●

●

●

●

●●●●●

●

●

●

●●●

●

●●

●●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●●

●●

●

●

●

●●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●●●●●●●

●

●

●

●

●

●

●●

●●●

●

●

●●

●

●

●●●●●●

●

●●●

●●

●

●●

●●

● ●

●

●●

●

●

●

●●

●●●

●●

●

●

●●

●

●●●

●●

●

●●

●

●

●

●

●

●●

●●

●

●●●

●

●

●●●

●

●

●

●●

●

●●

●

●

●●

●●

●

●●

●●

●●

●

●

●●

●

●

●●●

●

●

●

●●●●

●

●

●

●

●●

●

●●●

●

●●●

●

●

●

●

●●

●●

●

●●

●

●

●●●

●●

●

●●●●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●●

●

●

●●●

●

●●

●●

●●●

●

●

●

●●

●

●

●●●●●●

●

●

●●

●

●●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●●●

●

●

●●

●

●●●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●●●●●●

●

●

●●

●

●●●●

●

●●●●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●●●

●

●

●●

●

●

●

●●●●●●●●

●

●

●

●●●

●

●●

●

●

●

●●●

●

●●

●

●●

●●

●●●●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●●

●

●

●●●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●●●

●

●●●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●●●●

●

●●●●

●

●●

●

●

●

●●

●

●●●●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●●●●

●●

●

●

●

●

●●

●●●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●●

●

●●●●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●

●●●●●●

●

●●●●

●

●

●● ●●

●

A
D

D
_
C

L

R
E

M
_
C

L

C
L
_
D

E
C

L

M
E

T
H

_
D

E
C

L

A
T

T
R

_
D

E
C

L

B
O

D
Y

_
S

T
M

T

B
O

D
Y

_
C

O
N

D

C
O

M
M

E
N

T
S

D
O

C
S

O
T

H
E

R
S

0

2

4

6

8

10

Statistics of the number of occurrences
 of each change category

Fig. 8. Change frequency quartiles

TABLE VI
QUARTILES USED AS THRESHOLDS PER CHANGEDISTILLER CATEGORY

ChangeDistiller category Q1 Q2 Q3

ADDED_CLASS 1 1 1
REMOVED_CLASS 1 1 1

CLASS_DECLARATION 1 2 3
METHOD_DECLARATION 1 2 3

ATTRIBUTE_DECLARATION 1 1 3
BODY_STATEMENTS 2 4 11
BODY_CONDITIONS 1 2 3

COMMENTS 1 2 3
DOCUMENTATION 1 1 3

OTHERS 1 1 1

Binary weighting analysis and the analysis of the change
quartiles showed that in many cases there is no link between
production and test class changes. We further analyzed the
commit level co-change data since our analysis method can
reason based on commits that contain both production and
test classes.

Table VII and Figure 9 show details about the composition
of commits from the co-change point of view. Test only
commits (29%) are totally out of scope of our analysis, since
our starting point is a changed production class. There is a
similarly large set of commits that touches only production
code. These are used in the association rule mining process,
but contribute towards the NONE patterns. The large amount
of production only commits can be the main reason of the
weak links we found in the previous section. Finally, only 32%
of commits are mixed, thus contain both production and test
code changes. A proper aggregation of commits is a promising
direction to avoid separated production and test changes.

TABLE VII
OVERVIEW OF SIZE AND COMPOSITION OF COMMITS

Project Prod + Test Avg Max Prod Mixed Test
commits size size only only

commons-lang 1360 1.87132 65 532 428 395

We identified several threats to validity of this initial
research. The difference between the history time frame
considered may contribute towards the weak links (initial
development phase vs stable development phase). We applied
a source code based instrumentation in obtaining coverage
links. The whole process depends on some thresholds (e.g.
filtering) and we experienced uncertainty in specific steps of
the original study. Despite these differences, we acknowledge



previous results and extend it with additional analysis. The
analysis is production-code centric, due to the replication
nature of the study; and we measured one system initially.
These latter threats, together with the commit level analysis
will be addressed in future work.

commons−lang

Composition of commits
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Fig. 9. Composition of commits

V. CONCLUSIONS

In this work association rule learning is applied to extract
co-evolution patterns of production and test code. The analysis
used fine-grained change data and dynamic coverage infor-
mation of the project history to find out whether developers
modify test code when they touch production code. We answer
to the research questions as follows:

Answer to RQ1: Production and test code is developed
in sync in the analyzed project. We provided detailed data
on project history including coverage data. We investigated
the composition of commits, where we found that in many
cases production and test code are separately changed. Thus,
aggregation of commits into logical units (like issues) could
improve the co-evolution analysis.

Answer to RQ2: We successfully replicated the base study
on the commons-lang project. We found weaker links than
reported before – so we also provided analysis of change
weighting – but we found that five of the six production to test
code co-evolution patterns are present in the project history.

Several future research directions were identified during the
analysis. There is an ongoing work in analyzing additional
projects as well. Our main observation is that commit level
separation may introduce bias in co-evolution analysis. We
plan to introduce issue-level analysis in the near future.
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