
Developer Focus: Lack of Impact on

Maintainability

Csaba Faragó1 and Péter Heged¶s2

1 Department of Software Engineering, University of Szeged, Hungary
farago@inf.u-szeged.hu

2 MTA-SZTE Research Group on Arti�cial Intelligence, Szeged, Hungary
hpeter@inf.u-szeged.hu

Abstract. We were looking for evidence that a connection between
source code quality erosion and the developer focus exists. We assumed
that more focused developers, i.e. those who are concerned with a well
speci�ed part of the source code at a time are likely to commit higher
quality code compared to those who are less focused, i.e. committing to
various parts of the code. We estimated code quality with the Colum-
busQM quality model and developer focus with structural scattering.
Despite the assumption sounds quite logical, we could not �nd any sup-
porting evidence.
As structural scattering assigns a measure to a set of source �les/classes
(i.e., how close they are to each other in the package hierarchy), we
could apply it in various ways. First, we de�ned developer focus to be
the structural scattering of the set of source �les in a commit to validate
if more focused changes have better impact on maintainability than less
focused ones. Second, we calculated the structural scattering of all the
�les the developer of a commit modi�ed in the last 3 months and assigned
this measure as the developer focus to that commit. With this test we
checked if more focused developers tend to commit better quality code,
compared to less focused ones. We also performed this test for every
developer separately, considering only the subset of the commits that
were created by that particular developer.
We calculated the level of developer focus and the maintainability changes
for every commit of three open-source and one proprietary software sys-
tem. With the help of Wilcoxon rank test we compared the focus values of
commits causing a maintainability increase with those of decreasing the
maintainability. The results are non-conclusive, they do not even tend to
the same direction, therefore we did not �nd any evidence of an existing
connection between maintainability and developer focus. Therefore this
is a publication of negative results.

Keywords: developer focus, ISO/IEC 25010, source code maintainabil-
ity, Wilcoxon test, negative results

1 Introduction

Maintenance of the software consumes big e�orts, high proportion of the total
amount of software development costs are spent on this activity. Source code

maintainability is in direct connection with maintenance costs [2]. Our motiva-
tion in this work was to investigate the e�ect of the development process on
the maintainability of the code. Our goal was to explore typical patterns caus-
ing similar changes in software maintainability, which could either help to avoid
software erosion, or provide information about how to better allocate e�orts to
improve software maintainability.

We already investigated this area of research in previous works [6�11]. In
article [11] we showed that a strong connection between the version control
operations and the maintainability of the source code exists. In study [7] we
revealed the connection between the version control operations and maintain-
ability. We found that �le additions have rather positive and �le updates have
negative e�ect on maintainability. A clear e�ect of �le deletions was not iden-
ti�ed. In article [6] we presented the results of a variance analysis. We found
that �le additions and �le deletions increase the variance of the maintainabil-
ity, and operation Update decreases it. In work [9] we analyzed code churn, i.e.
the intensity of past modi�cations. We found that modifying high-churn code
is more likely to decrease the overall maintainability of a software system. In
study [8] we considered the developer and investigated how code ownership im-
pacts maintainability. We concluded that common code is more likely to erode
further than code with clear ownership. In article [10] we de�ned a few version
control history metrics and checked their connection with maintainability. Our
tests resulted that higher intensity of modi�cations, the higher number of code
modi�cations and developers, the older code and the later last modi�cation date
have lower maintainability and higher number of post-release bugs.

Up to now we published in this area of research positive results only. But
we think that publishing negative results is also very important; a negative
result can also be very helpful. In this paper presents the negative results of a
study performed but never published as part of our research investigating how
code ownership impacts maintainability [8]. That paper was motivated by works
of others [3, 4, 21] revealing an increased bug-prediction capability of models
with some form of code ownership included as a predictor. We could con�rm
that clear ownership has a positive e�ect on code maintainability (measured by
the combination of well-known source code metrics) as well. This result showed
that common code is more likely to erode than code with clear ownership. This
complements and generalizes bug-prediction studies on this topic. As part of this
work, we wanted to show that the focus of developers also has a signi�cant impact
on software maintainability. This assumption was inspired by Di Nucci et al. [5]
who investigated the impact of developer focus on post-release bugs. They found
that a bug prediction model including the structural and semantic scattering
metrics, which measure how close the modi�ed code parts are structurally and
conceptually overperforms the models not using these indicators.

We de�ned developer focus based on their de�nition of structural scatter-
ing [5], which is the distance between the �les the developers work with at a
time: the number of steps needed to take from the package of one �le to another.
The closest ones � having distance 0 � are those located in the same package. The

focus of a set of source �les is the normalized aggregation of pairwise distances.
The study of developer focus that is developer oriented (i.e., investigates the ef-
fect of what else the developer modi�ed) would complement the code ownership
study [8], which took a source code oriented approach (i.e., studies the e�ect of
who else modi�ed the same source code).

Formally, we investigated the following research questions:
RQ1: Do more focused commits (i.e., commits a�ecting a set of source �les

with low scattering value) have better impact on maintainability compared to
those of less focused commits?

RQ2: Do developers who were more focused in the past (i.e., the scattering
value of the set of �les they changed in the past 3 months are low) tend to commit
more maintainable code, compared to less focused ones?

To answer these questions we studied the code change history of three open-
source systems and an industrial one. Our null-hypothesis was that there is
no connection between developer focus and maintainability of the source code.
Based on the statistical tests, unfortunately, we could not reject the null hypoth-
esis, therefore we could not report evidence that developer focus impacts code
maintainability.

All data for replicating our study is available as an online appendix at:
http://www.inf.u-szeged.hu/~ferenc/papers/DeveloperFocus/

The remaining of the paper is organized as follows. Section 2 provides a brief
overview of works that are related to this research. In Section 3 we present how
we collected the data and what kinds of tests we performed. In Section 4 we
present the results of the statistical tests. We conclude the paper in Section 5.

2 Related Work

Code ownership, which is very close to the topic of this paper, is widely in-
vestigated. The results are very contradictory: some researcher �nd signi�cant
correlation between code ownership and code quality, which others do not.

Nordberg and Martin [18] describe in their study four types of code own-
ership: product specialist, subsystem ownership, chief architect and collective
ownership. They discuss the advantages and disadvantages of each model.

LaToza et al. performed two surveys and eleven interviews, conducted by
software developers at Microsoft, regarding software development questions, and
presented the results in article [17]. Some of the questions were related to code
ownership, strongly related to this study. The authors formed an interesting
statement: the code ownership can also be wrong, as if a code is understood
and maintained by a single developer, it makes individuals too indispensable.
As an alternative of individual code ownership, they investigated the team code
ownership. This topic would be interesting also for us: to somehow determine
teams and de�ne team level code ownership and team level focus instead of
individual level ones.

In their work Fritz et al. [13] investigated the frequency and the elapsed
time of interactions on the code by developers. They asked questions to �nd

http://www.inf.u-szeged.hu/~ferenc/papers/DeveloperFocus/

out if the developers can recall details about the source code: types of variables,
types of parameters, method names, another method calls and methods which
calls a speci�ed method. The results supported their assumed hypothesis, the
developers know their code that was modi�ed by him/her frequently and recently
better compared to foreign code. This study is strongly related to code ownership
and developer focus, as a more focused developer might better recall source code
elements regarding to the related code, compared to less focused developers.

Weyuker et al. [21] tried to enhance their defect prediction model by includ-
ing the number of developers. They found that the achieved improvement is
negligible, which is similar to the results we present in this study.

The same authors (Bell et al. [3]) tried to improve their defect prediction
model considering the individual developers: they investigated whether �les in a
large system that are modi�ed by an individual developer consistently contain
either more or fewer faults than the average of all �les in the system. They found
negligible improvement: the study indicates that adding information to a model
about which particular developer modi�ed a �le is not likely to improve defect
predictions.

Hattori et al. [16] analyzed the problem of code ownership, especially �nding
the hidden co-authors. They considered in their model the developer interaction
information as well. This could lead to a �ner result also in case of developer
focus.

The study by Bird et al. [4] investigated the e�ects of ownership on software
quality. Under term of software quality they considered pre-release faults and
post-release failures. They performed the analysis on binary and release level of
the source code of Windows Vista and Windows 7. For a binary they de�ned
the terms minor contributor (developers who contributed at most 5% of the
total commits), major contributor (above 5%) and ownership (proportion of the
commits of the highest contributor). Among others, they found that software
components with many minor contributors had more failures than other software
components. Moreover, the high level of ownership resulted in less defects.

Rahman et al. [20] introduced a code ownership and experience based defect
prediction model, but instead of just considering the modi�cations performed
on source �le itself, they introduced a �ne-grained level by analyzing the contri-
butions to code fragments. This approach could be a good direction for future
investigation of developer focus as well: besides considering source code pack-
age, other source code elements like class or function could also be taken into
account.

Greiler et al. [14] de�ned several contributor-related metrics and used those
for defect predicting model. Their �ndings con�rm the original �nding by Bird
et al. [4] that code ownership correlates with code quality.

On the other hand, Foucault et al. [12] performed similar study as Bird et
al. [4] on open-source systems, but they found that the relationship between
ownership metrics and module faults is weak. The performed an in-depth anal-
ysis to �nd the reason of the di�erent results of open-source and closed-source

software systems, and found that the reason is the distributions of contributions
among developers and the presence of �heroes� in the open-source projects.

Di Nucci et al. [5] investigated the impact of developer focus on post-release
bugs. They de�ned structural and semantic scattering (we implemented our de-
veloper focus value based on their structural scattering de�nition), and found
that a bug predicting model including these metrics over performs models with-
out these.

We also experienced these contradictory results. Our earlier model [8] consid-
ering the number of developers resulted in a not too strong but still signi�cant
result, but this study, considering developer focus did not show signi�cant cor-
relation at all.

3 Methodology

3.1 Overview

As we wanted to analyze the connection between developer focus and maintain-
ability, we had to �nd a method to express these numerically. Neither of them are
trivial concepts, and currently there are no exact de�nitions on how to compute
them.

Considering maintainability, we performed the same calculation method that
we applied in our previous studies [6�11]. We present the maintainability esti-
mation method in detail in Section 3.3. The used quality model is capable of
analyzing certain revisions of a system, therefore we chose to work on a per
commit basis.

We calculated the developer focus values based on the de�nition of struc-
tural scattering by Di Nucci et al. [5]. We present the calculation details in
Section 3.4. Section 3.5 describes the statistical tests we used to analyze the
data. In Section 3.6, we explain our decisions made during the elaboration of the
methodology.

3.2 Preliminary Steps

As �rst step we did some data cleaning. The analyzed software systems were all
written in Java. As the used quality model considers Java source �les only, we
removed the non Java source �les (e.g., xml �les) from the input. If a commit
contained non Java �les only, then we also removed that one. So we worked on
an input commit set that contained Java source �les exclusively. Furthermore,
each analyzed revision contained at least one a�ected Java �le.

3.3 Estimation of the Maintainability Change

We used the ColumbusQM [1] probabilistic software quality model for estimating
the maintainability value of every revision. It considers the following source code
metrics: logical lines of code, the number of ancestors, the maximum nesting

level, the coupling between object classes, clone coverage, number of parameters,
McCabe's cyclomatic complexity, number of incoming invocations, number of
outgoing invocations, and number of coding rule violations. The basis of this
model is the fact that there is a negative correlation between these metrics and
software maintainability [15]. The quality mode compares these metrics of the
analyzed system with those of other systems in a benchmark, and then aggretages
the results of the comparisons by utilizing weights provided by developers.

From the study's viewpoint we treat this quality model as a black box. Details
of this model is described the work of Bakota et al. [1]. The authors validated
the model and they also revealed the correlation between the estimated quality
value and the development costs [2]. The quality model results a real number
between 0 and 1; better maintainability is indicated by higher value.

For each analyzed systems we calculated the maintainability values for every
revision available in their version control systems. As next step we calculated the
di�erence of the maintainability values of subsequent revisions, and then con-
sidered the sign of the result: positive, zero, or negative, indicating if the actual
commit increased, did not considerably change or decreased the maintainability
of the source code, respectively.

3.4 Calculation of Developer Focus

For calculating the focus of developers, we adopted the de�nition of structural
scattering, described by Di Nucci et al. (see [5], page 243).

Let CHd,p be the the set of classes changed by a developer d during a time
period p. The authors de�ned the structural scattering measure as:

StrScatd,p =
|CHd,p|(|CHd,p|

2

) × ∑
∀ci,cj∈CHd,p

[dist(ci, cj)]

where dist is the number of steps to be taken in order to go from class
ci to class cj . For example, the dist between classes pkg.entities.User and
pkg.logic.util.Convert is 3: pkg.entities → pkg → pkg.logic → pkg.

logic.util. The multiplication factor at the beginning of the formula normal-
izes the distances between the code components and assigns a higher scattering
to developers working on a higher number of code components in the given time
period.

3.5 Comparison Tests

Once we had a maintainability change direction and a developer focus value for
every commit in the revision history, we could check if there is any connection
between the maintainability change direction and the focus of the developers.
For this we performed several comparison tests, which fall into three categories:
commit-based, developer-based, and individual-based tests. In all cases the basic
setup of the tests was the same. First, we divided the commits into 3 subsets

based on the sign of maintainability changes, and analyzed their calculated de-
veloper focus values. How we de�ned the set of source code elements to which the
developer focus should be calculated is described below. We omitted the neutral
maintainability changes (i.e., no change in maintainability values happened),
therefore we ended up with 2 sets of numbers:

� developer focus values of the commits with positive maintainability change,
i.e. code quality increase, and

� developer focus values of the commits with negative maintainability change,
i.e. code quality decrease.

The null hypothesis was that there is no signi�cant di�erence between these
values. The alternative hypothesis was that the developer focus values related
to commits with positive maintainability changes are signi�cantly lower than
those related to negative maintainability changes, meaning that more focused
commits (i.e., commits with low scattering value) are more likely to increase the
maintainability.

We performed the Wilcoxon rank correlation test on the data, as this one
is suitable for kind data we have (e.g., it is not normally distributed, or it has
outliers). This test compares all the elements of the �rst data set with all the
elements of the other one, taking all the possible combinations into consideration.
According to our null hypothesis the number of �greater� elements should be
roughly the same as the number of �less� elements. The alternative hypothesis
expresses that the elements of one of the sets should be signi�cantly higher than
the elements of the other.

We used the R statistical program [19] for performing the tests, using the
wilcox.test() function. As a result, we got p-values for all software systems
we performed the test on. We ran tests with 3 di�erent setups: 1) for answering
RQ1; 2) and 3) for answering RQ2:

Commit-based Comparison Tests In this case we used every commit for
the developer focus calculation, and calculated the focus value considering all
the �les a�ected by that commit, as described in Section 3.4. As a result we got
developer focus values for every commit.

Developer-based Comparison Tests In this case �rst we calculated a run-
ning developer focus value for every developer. For every commit we considered
the developer who performed that commit and took all the �les the developer
changed in the previous 3 months. Therefore we simulated the process of for-
getting. Furthermore, we omitted the commits containing more than 20 �les,
because that would have caused a big bias. For example, a directory rename
could a�ect a large amount of source �les, which would drastically increase the
focus value of that developer for the next 3 months, but in the reality that
developer has not lost the focus.

We de�ned the commit related focus value to be the focus value of the actual
developer who performed the commit.

Individual-based Comparison Tests In this case we considered the version
control history individually for every developer, considering commits performed
only by that developer. This results in the same number of version control sub-
histories as many developers contributed to the source code. We applied the
methodology in every case as described in the developer-based comparison tests.

In order to avoid the non-explanatory results we excluded the developers
who contributed too little, i.e. whose sub-history was too short to analyze. We
considered only those developers who contributed at least 5 commits resulting
a maintainability increase and at least 5 commits resulting a maintainability
decrease.

3.6 Discussion

The commit-based comparison test is a rough approach, however our expecta-
tion was that if connection between maintainability change and developer focus
existed, this could have been observed even by this method. In this case we did
not consider earlier modi�cations of the developer, just the actual commit (i.e.,
we did not consider past focus).

On the other hand, developer based comparison tests are more �ne-grained,
and we thought of this as the main outcome of our study. The focus value
calculation would be the same as in the commit-based case if we considered the
union of all the contributions of the actual developer in the past 3 months (with
the exception of huge commits). Our expectation was that considering this focus
value the comparison tests would yield signi�cant results.

In case of individual-based comparison tests we practically sliced the whole
version control history to as many pieces as many developers contributed to
that project, and kept only those that contained enough number of commits.
This resulted in several tests per analyzed system (i.e., a separate test for every
developer). With this test we wanted to ensure that we �nd per developer pat-
terns even if we cannot �nd a general connection between developer focus and
maintainability.

4 Results

4.1 Examined Software Systems

We executed the tests on four independent software systems. Our selection cri-
teria for the subject systems were the following: availability of at least 1000
commits and at least 200% code increase during the analyzed period. We per-
formed the analysis of the following 4 systems:

� Ant � a command line tool for building Java applications (http://ant.
apache.org). All together 37 developers contributed at least once. The total
number of available commits was more than 6000.

� Gremon � a proprietary greenhouse work-�ow monitoring system (http:
//www.gremonsystems.com). 13 programmers took part in the development.

http://ant.apache.org
http://ant.apache.org
http://www.gremonsystems.com
http://www.gremonsystems.com

� Struts 2 � a framework for creating enterprise-ready Java web applications
(http://struts.apache.org/). The number of developers was 26.

� Tomcat � an implementation of the Java Servlet and Java Server Pages tech-
nologies http://tomcat.apache.org). 15 developers contributed at least
once.

4.2 Results of the Statistical Tests

Table 1 contains the results of the commit-based and the developer-based com-
parison tests. The results are very sporadic, and the only signi�cant p-value
(0.003 in case of Gremon) seems to be rather casual than valid.

Similarly, the individual tests resulted sporadic results (each p-value is related
to a particular developer but we ommited user names):

� Ant: 0.048, 0.082, 0.256, 0.373, 0.454, 0.485, 0.516, 0.576, 0.646, 0.673, 0.722,
0.762, 0.781, 0.830, 0.853, 0.883, 0.905, 0.933, 0.949, 0.991 (17 omitted)

� Gremon: 0.002, 0.038, 0.199, 0.211, 0.251, 0.410, 0.765, 0.787, 0.886, 0.940
(3 omitted)

� Struts2: 0.030, 0.100, 0.104, 0.144, 0.409, 0.434, 0.442, 0.600, 0.618, 0.651,
0.687, 0.774, 0.920, 0.950 (14 omitted)

� Tomcat: 0.020, 0.855, 0.872 (12 omitted)

Table 1. Resulting p-values of the Commit-based and Developer-based comparison
tests (bold means signi�cant p-value)

System Commit Developer

Ant 0.943 0.214
Gremon 0.208 0.003

Struts 2 0.571 0.687
Tomcat 0.921 0.951

4.3 Discussion

According to these results not just that we could not reject the null-hypothesis,
but sporadic values did not even show us another possible direction with the
research. For example, if the resulting p-values would have been close to 1, then
we could perform the execution of the opposite tests, meaning that the more
focused commits tend to result in maintainability erosion. Although it sounds
counter-intuitive a possible explanation for this could be for example, that a
more focused developer might be new on that project, and a lead developer's
commits a�ect di�erent parts of the code. But even that was not the case.

http://struts.apache.org/
http://tomcat.apache.org

A bug in our software could also lead to negative results. To minimize
the risk of this, we added unit tests to our implementation. Furthermore, we
played around with di�erent �forgetting� intervals (instead of the actually used
3 months) and huge commit threshold values (instead of the actually used 20),
without relevant change in the results.

For omitting the too little contributions we performed the individual based
comparison tests only for those who contributed at least 5 commits causing
maintainability increase and same number for decrease. Using another value in-
stead of 5 just changes the number of omitted values, but the actually calculated
values will not change. We did not experience any relevant changes in the dis-
tribution of the resulting p-values by modifying this threshold (i.e., there is no
such threshold value that would �lter out only the high p-value results).

5 Conclusions and Future Work

As we already stressed in the introduction this is a publication of negative results.
According to the statistic tests we performed we could not reject any of the null-
hypotheses, either that more focused developers tend to contribute better quality
code, or that more focused commits tend to improve code quality.

Out of the 8 main test (commit-based and developer-based tests for 4 sys-
tems) we performed, only one turned out to be signi�cant: the developer-based
comparison for the Gremon project, which is our only closed-source subject sys-
tem. It would be worthwhile to investigate this in more detail because in an
industrial environment a developer typically works on one singe project at a
time, while in open-source environments a developer might contribute to several
projects simultaneously. Bird et al. [4] and Greiler et al. [14] investigated some
of their industrial products at Microsoft, and concluded that considering focus
improve their fault prediction model, while Foucault et al. [12] could not achieve
signi�cant improvement by adding developer focus to an analysis of open-source
systems. Do the open versus closed-source di�erences cause the contradictory
results? This could be a topic of further investigations, however, it is hard to
obtain the whole version control history, including the source code, for industrial
software systems.

Acknowledgment

This research was supported by the project "Integrated program for training
new generation of scientists in the �elds of computer science", no EFOP-3.6.3-
VEKOP-16-2017-0002. The project has been supported by the UNKP-17-4 New
National Excellence Program of the Ministry of Human Capacities, Hungary and
the European Union and co-funded by the European Social Fund.

References

1. Bakota, T., Heged¶s, P., Körtvélyesi, P., Ferenc, R., Gyimóthy, T.: A probabilistic
software quality model. In: 2011 27th IEEE International Conference on Software
Maintenance. pp. 243�252. IEEE (2011)

2. Bakota, T., Heged¶s, P., Ladányi, G., Körtvélyesi, P., Ferenc, R., Gyimóthy, T.:
A cost model based on software maintainability. In: 2012 28th IEEE International
Conference on Software Maintenance (ICSM). pp. 316�325. IEEE (2012)

3. Bell, R.M., Ostrand, T.J., Weyuker, E.J.: The limited impact of individual de-
veloper data on software defect prediction. Empirical Software Engineering 18(3),
478�505 (2013)

4. Bird, C., Nagappan, N., Murphy, B., Gall, H., Devanbu, P.: Don't touch my code!:
examining the e�ects of ownership on software quality. In: Proceedings of the 19th
ACM SIGSOFT symposium and the 13th European conference on Foundations of
software engineering. pp. 4�14. ACM (2011)

5. Di Nucci, D., Palomba, F., Siravo, S., Bavota, G., Oliveto, R., De Lucia, A.: On the
role of developer's scattered changes in bug prediction. In: Software Maintenance
and Evolution (ICSME), 2015 IEEE International Conference on. pp. 241�250.
IEEE (2015)

6. Faragó, C.: Variance of source code quality change caused by version control op-
erations. Acta Cybernetica 22, 35�56 (2015)

7. Faragó, C., Heged¶s, P., Ferenc, R.: The impact of version control operations on the
quality change of the source code. In: Computational Science and Its Applications
(ICCSA), pp. 353�369. Springer (2014)

8. Faragó, C., Heged¶s, P., Ferenc, R.: Code ownership: Impact on maintainability.
In: Computational Science and Its Applications�ICCSA 2015, pp. 3�19. Springer
(2015)

9. Faragó, C., Heged¶s, P., Ferenc, R.: Cumulative code churn: Impact on maintain-
ability. In: 15th IEEE International Working Conference on Source Code Analysis
and Manipulation�SCAM 2015 (2015)

10. Faragó, C., Heged¶s, P., Ladányi, G., Ferenc, R.: Impact of version history metrics
on maintainability. In: Proceedings of the 8th International Conference on Ad-
vanced Software Engineering & Its Applications (ASEA). pp. 30�35. IEEE Com-
puter Society (2015)

11. Faragó, C., Heged¶s, P., Végh, Á.Z., Ferenc, R.: Connection between version con-
trol operations and quality change of the source code. Acta Cybernetica 21, 585�
607 (2014)

12. Foucault, M., Falleri, J.R., Blanc, X.: Code ownership in open-source software. In:
Proceedings of the 18th International Conference on Evaluation and Assessment
in Software Engineering. p. 39. ACM (2014)

13. Fritz, T., Murphy, G.C., Hill, E.: Does a programmer's activity indicate knowledge
of code? In: Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations of
software engineering. pp. 341�350. ACM (2007)

14. Greiler, M., Herzig, K., Czerwonka, J.: Code ownership and software quality: a
replication study. In: Proceedings of the 12th Working Conference on Mining Soft-
ware Repositories. pp. 2�12. IEEE Press (2015)

15. Gyimóthy, T., Ferenc, R., Siket, I.: Empirical validation of object-oriented metrics
on open source software for fault prediction. Software Engineering, IEEE Transac-
tions on 31(10), 897�910 (2005)

16. Hattori, L., Lanza, M.: Mining the history of synchronous changes to re�ne code
ownership. In: Mining Software Repositories, 2009. MSR'09. 6th IEEE Interna-
tional Working Conference on. pp. 141�150. IEEE (2009)

17. LaToza, T.D., Venolia, G., DeLine, R.: Maintaining mental models: a study of
developer work habits. In: Proceedings of the 28th international conference on
Software engineering. pp. 492�501. ACM (2006)

18. Nordberg III, M.E.: Managing code ownership. Software, IEEE 20(2), 26�33 (2003)
19. R Core Team: R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria (2015), http://www.R-

project.org/

20. Rahman, F., Devanbu, P.: Ownership, experience and defects: a �ne-grained study
of authorship. In: Proceedings of the 33rd International Conference on Software
Engineering. pp. 491�500. ACM (2011)

21. Weyuker, E.J., Ostrand, T.J., Bell, R.M.: Do too many cooks spoil the broth? using
the number of developers to enhance defect prediction models. Empirical Software
Engineering 13(5), 539�559 (2008)

http://www.R-project.org/
http://www.R-project.org/

	Developer Focus: Lack of Impact on Maintainability

