
Towards Analyzing the Complexity Landscape of
Solidity Based Ethereum Smart Contracts

Péter Hegedűs
MTA-SZTE Research Group on Artificial Intelligence

Szeged, Hungary
hpeter@inf.u-szeged.hu

ABSTRACT
The blockchain based decentralized cryptocurrency platforms
are one of the hottest topics in tech at the moment. Though
most of the interest is generated by cryptocurrency related ac-
tivities, it is becoming apparent that a much wider spectrum
of applications can leverage the blockchain technology.
The primary concepts enabling such general use of the

blockchain are the so-called smart contracts, which are spe-
cial programs that run on the blockchain. One of the most
popular blockchain platforms that supports smart contracts
are Ethereum. As smart contracts typically handle money,
ensuring their low number of faults and vulnerabilities are
essential. To aid smart contract developers and help maturing
the technology, we need analysis tools and studies for smart
contracts.
As an initiative for this, we propose the adoption of some

well-known OO metrics for Solidity smart contracts. Further-
more, we analyze more than 10,000 smart contracts with
our prototype tool. The results suggest that smart contract
programs are short, not overly complex and either quite well-
commented or not commented at all. Moreover, smart con-
tracts could benefit from an external library and dependency
management mechanism, as more than 80% of the defined
libraries in Solidity files code the same functionalities.

KEYWORDS
static analysis, ethereum, smart contracts, metrics, complex-
ity, blockchain

ACM Reference Format:
Péter Hegedűs. 2018. Towards Analyzing the Complexity Land-
scape of Solidity Based Ethereum Smart Contracts. In WET-
SEB’18: WETSEB’18:IEEE/ACM 1st International Workshop on
Emerging Trends in Software Engineering for Blockchain (WET-
SEB 2018), May 27, 2018, Gothenburg, Sweden. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3194113.3194119

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
WETSEB’18, May 27, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5726-5/18/05. . . $15.00
https://doi.org/10.1145/3194113.3194119

1 INTRODUCTION
Decentralized cryptocurrencies have gained considerable in-
terest and adoption since Bitcoin was introduced in 2009 [8].
Users in a cryptocurrency network run a consensus protocol to
maintain and secure a shared ledger of data (the blockchain).
This means that cryptocurrencies are administered publicly
by users in the network without relying on any trusted third
parties. Blockchains were initially introduced for peer-to-peer
payments, but since than it became clear that blockchain tech-
nology can be used for much more than that. One such new
use for blockchains is to enable the so-called smart contracts.
In this paper, we focus on the static analysis of smart con-

tracts on the Ethereum network [1, 2]. Ethereum is much more
than a cryptocurrency blockchain and protocol. It defines
a Turing-complete programming platform and a run-time
environment called EVM (Ethereum Virtual Machine). EVM
can run the bytecodes of smart contracts. A smart contract
is a program that runs on the blockchain and has its correct
execution enforced by the consensus protocol [9]. Smart con-
tracts can be written in several programming languages, but
Solidity [5], a contract-oriented language is by far the most
popular one.
As smart contracts provide an entirely new platform and

paradigm for programmers, new tools helping them in code
analysis and validation has already started to roll out. Such
static analysis tools are the Manticore1 symbolic EVM byte
code execution tool, security checker tools like Mythril2
or Oyente3 [6], the solidity-coverage test coverage tool4, or
Solcheck5 and Solint6 linter tools. However, to the best of our
knowledge, there are currently no tools that would support
calculating various static source code metrics for Solidity
based smart contracts.
In the beginning of 2018, more than 10% of the jobs

advertised on one of the biggest freelancer site7 was related to
smart contracts and blockchain, thus the growing importance
of blockchain related programming is obvious. As metrics
for other languages play a very important role in various
QA activities, we anticipate that the same would be true for
Solidity smart contracts. Given the nature of the blockchain
based programs, namely that once deployed they cannot

1https://github.com/trailofbits/manticore
2https://github.com/ConsenSys/mythril
3https://github.com/melonproject/oyente
4https://github.com/sc-forks/solidity-coverage
5https://github.com/federicobond/solcheck
6https://github.com/SilentCicero/solint
7https://www.guru.com, searched on 17th January, 2018

35

2018 ACM/IEEE 1st International Workshop on Emerging Trends in Software Engineering for Blockchain

WETSEB’18, May 27, 2018, Gothenburg, Sweden Péter Hegedűs

be altered anymore, makes it even more crucial to be able
to check and validate the code beforehand. TheDAO smart
contract is a classic example of how big damage can be caused
by a smart contract with critical vulnerabilities. An exploit
of a bug [4] in this contract led to a 60 million US dollar loss
in June 2016.
If we think of the advanced usage of source code metrics

in bug/vulnerability prediction, code review and refactoring
or anti-pattern detection in classic OO languages, it is clear
that smart contract programing would also benefit from such
easy to calculate static source code metrics. As the structure
of the Solidity language is quite similar to that of the OO
languages, the classic Chidamber & Kemerer [3] metrics can
be defined for smart contracts in a quite straightforward
manner.
In this paper we propose some well-known static source

code metrics for measuring smart contracts’ size and com-
plexity attributes. We implemented a prototype tool called
SolMet8 that is able to parse Solidity smart contracts and
calculate these metrics on them. To analyze the typical metric
landscape of the smart contracts deployed on the Ethereum
network, we collected 10,206 smart contracts with validated
Solidity source code.
According to the metric results of our prototype tool, we

can note some interesting characteristics of smart contract
programs. It seems that smart contracts are very short and
flat programs without real complexity in terms of McCabe’s
cyclomatic complexity [7] or nesting level of control struc-
tures. They contain few functions on average and are either
quite well-commented or not commented at all. Moreover,
smart contracts could benefit from an external library and de-
pendency management mechanism, as more than 80% of the
defined libraries in Solidity files code the same functionalities
(i.e. some kind of safe mathematic operations).

2 SMART CONTRACT ANALYSIS
APPROACH AND STUDY

2.1 The Solidity Language
Solidity is a contract-oriented, high-level language for imple-
menting smart contracts. It was influenced by C++, Python
and JavaScript and is designed to target the Ethereum Vir-
tual Machine (EVM). Solidity is statically typed, supports
inheritance, libraries and complex user-defined types among
other features. Using Solidity, it is possible to create contracts
for voting, crowdfunding, blind auctions, multi-signature wal-
lets and more.

2.2 Calculating Metrics for Solidity Programs
A contract in the sense of Solidity is a collection of code
(its functions) and data (its state) that resides at a specific
address on the Ethereum blockchain. Contracts also support
constructors, special functions that are run during creation
of the contract and cannot be called afterwards. Given the
obvious similarities in structure, it is easy to map contracts

8https://github.com/chicxurug/SolMet-Solidity-parser

to classes, states to attributes, and functions to member
operations in the OO world and interpret classic OO metrics
for Solidity based smart contracts.
In this paper, we propose the following source code metrics

for smart contracts:
• SLOC – number of source code lines of the contract,
library or interface

• LLOC – number of logical code lines (empty and com-
ment lines are ignored) of the contract, library or in-
terface

• CLOC – number of comment lines of the contract,
library or interface

• NF – number of functions in the contract, library or
interface

• WMC – the weighted complexity of functions in a con-
tract, library, interface, which is the sum of McCabe’s
cyclomatic complexities [7] (the number of branching
statements + 1) of the functions

• NL – the sum of the deepest nesting level of the control
structures within the functions of a contract, library
or interface

To calculate these metrics, we implemented a prototype
tool called SolMet in Java. For parsing the Solidity source
code, we used a generated parser based on a slightly modified
version of an existing antlr4 grammar.9 We made only few
adjustments in the antlr grammar to be able to parse older
and newer versions of the Solidity language as well. The
calculation of metrics is performed by various visitors on the
parser built AST. The source code and usage instructions of
the SolMet tool is available on GitHub.8

2.3 Collecting Ethereum Smart Contracts
To utilize SolMet, we collected 10,206 Solidity smart contracts.
We chose not to mine GitHub for smart contract codes, as we
wanted to get a picture of smart contracts already deployed on
the Ethereum network. For this, we downloaded the validated
source code of deployed smart contracts monitored by the
Etherscan10 Ethereum blockchain explorer site. Validated
source code means that the functionality of the Solidity
source code and the deployed EVM bytecode (the Ethereum
network stores only the latter one) is manually compared
and validated. Thus, we can be sure that the code we analyze
is actually the same as the contract being deployed on the
network. We ran SolMet on each Solidity file and collected
the calculated source code metrics into a comma-separated
file. All the analyzed contract source code (.sol files) as well
as the metric results are publicly available on GitHub.11

3 ANALYSIS RESULTS
Table 1 summarizes the number of analyzed Ethereum smart
contracts. In 10,206 Solidity source code files, we analyzed
nearly 45,000 contracts. The average number of contracts,
libraries, and interfaces are shown in the second column.
9https://github.com/solidityj/solidity-antlr4
10https://etherscan.io/
11https://github.com/chicxurug/wetseb-2018-data

36

Towards Analyzing the Complexity Landscape of
Solidity Based Ethereum Smart Contracts

WETSEB’18, May 27, 2018, Gothenburg, Sweden

Table 1: Statistics of the analyzed contracts

Total Avg./sol file
Contract 44,893 4.40
Library 4,260 0.42
Interface 662 0.06

On average, each Solidity source file contains 4.4 contracts
and nearly every second file defines a library. An interesting
note is that above 80% of these libraries are connected to the
same functionality, namely they define safe mathematic oper-
ations (e.g. zero division and overflow checks). Interfaces are
very rare; roughly, every 20th Solidity source code contains
one.
Table 2 displays the descriptive statistics of the calcu-

lated source code metrics for all the contracts. Although the
standard deviations are quite significant, we can draw some
general conclusions.

Table 2: Descriptive statistics of the calculated metrics

Min Max Avg. Median Std.dev.
SLOC 1 1,250 60.30 29 100.57
LLOC 1 843 38.28 18 66.07
CLOC 0 481 13.68 2 30.69
NF 0 93 5.11 3 6.43
WMC 0 522 7.58 4 14.10
NL 0 125 1.59 0 4.68
Avg. McCC 1 40.15 1.25 1 0.65
Avg. NL 0 17.86 0.17 0 0.34

On average, contracts are short (not considering empty
and comment lines). They are actually either quite well-
commented or not commented at all. Comment lines to log-
ical lines ratio is high on average, but we can see that the
median value of comment lines is only 2, thus there are many
contracts with less than or equal to 2 comment lines. On
average, each contract defines 5 functions, but the average
weighted complexity is only 7.58. This low complexity is
observable on the average McCabe’s cyclomatic complexity
values over all the functions, which is 1.25. It means that
most of the functions use sequential control flows without
too much complexity. This finding is strengthened by the
nesting level (NL) values, as on average the deepest nesting
in control structures is only 0.17. There are very few deeply
nested control structures in smart contracts.

3.1 Metrics Distributions
We plotted also the distributions of the metric values using
histograms. Figure 1 shows the logical code lines metric dis-
tribution. Although the maximum value is 843, the 25%, 50%
and 75% quartiles are only 10, 18, and 37, respectively. The
maximum and quartile values for the comment lines metrics
(Figure 2) are 481, 0, 2, and 13, respectively. Regarding the

Figure 1: Distribution of the logical code lines metric values
across contracts

Figure 2: Distribution of the comment lines metric values
across contracts

number of functions (Figure 3), the maximum is 93; the
quartiles are only 2, 3, and 6.
As for the complexity measures, Figure 4 shows the weighted

complexity of the functions and Figure 5 displays the nesting
level histogram. The maximum of WMC is 522, but quar-
tiles are 2, 4, and 7, respectively. The sum of the deepest
nesting levels in a contract is 125, but quartiles are 0, 0, and
1. NL maximum is a very outlying value, thus we manually
checked what caused this extreme. Our current implementa-
tion counts each else-if statement as an additional depth and
the contract in question12 contains a function with a huge
if-else-if structure. In the forthcoming versions of SolMet we
will add the NLE metric, which is similar to NL, but without
counting the else-if statements.
12Contract named WinMatrix with the address
0xDA16251B2977F86cB8d4C3318e9c6F92D7fC1A8f

37

WETSEB’18, May 27, 2018, Gothenburg, Sweden Péter Hegedűs

Figure 3: Distribution of the number of functions metric val-
ues across contracts

Figure 4: Distribution of the WMC metric values across con-
tracts

Figure 5: Distribution of the NL metric values across contracts

All the detailed numbers and charts of the presented results
are available online as well.13

13https://github.com/chicxurug/wetseb-2018-data/tree/master/
study-results

3.2 Discussion
What we can observe is that except several extreme high
values for each metrics, most of the smart contracts share
some common properties. Most of them are short, defines
only a few functions with sequential control structures. There
is no common trend in using comments; the contracts are
either well-commented or not commented at all. The fact
that above 80% of the defined libraries implements similar
safe mathematical operations cries for a better solution at the
level of Solidity language. Some kind of common dependencies
management system would be desirable.

4 CONCLUSION
In this paper, we proposed the usage of well-known static
OO metrics to the smart contracts written in the Solidity
contract-oriented language. To the best of our knowledge,
there are no tools for calculating such metrics. Given the fact
that these metrics developed together with the programming
languages themselves and many papers showed their efficient
applications in QA activities, we believe the new era of
blockchain programming could benefit from them as well.
We implemented several size and complexity metrics in

our SolMet tool and calculated them for more than 45,000
contracts from 10,206 Solidity smart contract source code
files. We were able to get a quick overview about the typi-
cal structure of smart contracts in terms of their sizes and
complexity. However, our tool is very immature in its current
state, thus all the presented results should be handled with
appropriate care.
We continuously add new metrics to SolMet and expect

that inheritance and coupling style metrics will provide even
more thoughtful insights of smart contract structures. Once
a proper metric suite is defined and implemented, we can
start utilizing them in various forms that worked very well
for other languages, for example to build bug or vulnerability
prediction models, to aid code review and guide refactoring
activities or detect common anti-patterns in the code before
being deployed and becoming permanent.

ACKNOWLEDGMENTS
This research was supported by the UNKP-17-4 New National
Excellence Program of the Ministry of Human Capacities,
Hungary.

REFERENCES
[1] Vitalik Buterin et al. 2013. Ethereum white paper. GitHub repos-

itory (2013).
[2] Vitalik Buterin et al. 2014. A next-generation smart contract and

decentralized application platform. white paper (2014).
[3] Shyam R Chidamber and Chris F Kemerer. 1994. A metrics suite

for object oriented design. IEEE Transactions on software engi-
neering 20, 6 (1994), 476–493.

[4] Phil Daian. 2016. Analysis of the DAO exploit. http://
hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/.
(2016).

[5] Chris Dannen. 2017. Solidity Programming. In Introducing
Ethereum and Solidity. Springer, 69–88.

38

Towards Analyzing the Complexity Landscape of
Solidity Based Ethereum Smart Contracts

WETSEB’18, May 27, 2018, Gothenburg, Sweden

[6] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and
Aquinas Hobor. 2016. Making smart contracts smarter. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 254–269.

[7] Thomas J McCabe. 1976. A complexity measure. IEEE Transac-
tions on software Engineering 4 (1976), 308–320.

[8] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash
system. (2008).

[9] N Szabo. 1997. Nick Szabo – the idea of smart contracts. Nick
Szabo’s Papers and Concise Tutorials. http://szabo. best. vwh.
net/smart_contracts_idea. html (1997).

39

