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Introduction

The central theme of the thesis is the exploration of the possibilities of characterizing and adap-
tively making use of the structure of the search spaces of global optimization problems. Instead
of giving a pure technical introduction I will place the different parts of the dissertation in
the wider context of my ideas about a present puzzle within machine learning and the field of
metaheuristics.

The cheap and powerful computers changed the practice of engineering and science in many
ways. We can do things that were absolutely impossible before electronic computers. In the
course of the pre-computer age mathematicians could calculate only a limited number of steps
of the available algorithms relatively slowly. Even in the golden age of artificial intelligence
(around 1960) it was normal and accepted to publish surprisingly sophisticated problem solving
algorithms that were tested only by “hand simulation”, e.g. (Newell et al., 1960). Now it is
possible to calculate very difficult functions and algorithms which opens a space never seen
before. This effect is still getting stronger and stronger since the performance of scientific
equipment grows according to an exponential curve and new networking technologies boost this
performance even further. We have reached the level where it is possible e.g. to experiment with
systems containing a huge number of components interacting with each other in an arbitrary
way specified by the researcher. These include weather systems, sociological modeling and
evolutionary dynamics. With this success of computer science new problems emerged as well.
I am not referring to the well known open problems of e.g. complexity theory. The problems I
mentioned are not so apparent and sometimes overlooked by researchers. These problems are
connected to the epistemology of computer science. And not only computer science: all the
fields that are connected to it or were created by it.

Technology is developing faster then theory, and this results in a very interesting situation.
In physics the usual scenario is to develop theories first and then pick one based on experimental
data. This is because doing mathematics for months is much cheaper then performing a single
experiment in a cyclotron, or with the Hubble telescope. In computer science we can see a
radically different picture. Doing experiments is much easier then developing theories, and
besides of this, the scientists has to describe not only one world, but many, and the number
of these “worlds” is increasing. According to this, when solving a problem, the practice is to
experiment with lots of things, a toolbox that contains more and more algorithms produced by
the researchers, until the solution is acceptable. Then, if they want to, the theorists can think
about the reason why a particular solution did or did not work. And these theorists must face
really deep problems.

To illustrate the above ideas, from now on I will focus on search problems, since the thesis

9



10 INTRODUCTION

Figure 1: A simple surface for illustration.

belongs to this field. What is a search problem exactly? For us it will be sufficient to assume
that in a search problem a space is given, and some kind of evaluation function over the space.
The space is a set, e.g. a set of numbers or a set of timetables, or anything else. The problem is
to find an element, that meets some criteria given with the help of the evaluation function. For
instance we can search for elements with a high function value, or elements marked as “goal” by
the evaluation function, etc. The exact nature of the entities is not important in this formalism.
What is important is the structure of the space. The space is not only a set, it has structure, in
fact, at least two structures. One is given by the evaluation function, and one is given by the
actual algorithm applied for finding the solutions.

Fig. 1 helps to illustrate the idea. In this example the evaluation function is shown, where
the space is the two dimensional plane of real vectors which form an Eucledian vector space.
An important aspect of this structure is that it has a distance defined on it, namely the Eucledian
distance. Most algorithms searching such vector spaces use this structure when moving around,
e.g. when they want to generate a new candidate that is “close” to some other known vector,
they mean this “closeness” in terms of the Eucledian distance. This notion of distance has
the big advantage of being easily imaginable by humans. However, there is another structure,
which is defined by the evaluation function. The elements having the same function value are
equivalent according to this structure: the space has a special symmetry, where rings (in terms of
the Eucledian space) with the highest element in their center play a distinguished role. We can
think of it as another distance measure defined by the difference between the function values.
Note that these two structures we assigned to the space are different in a topological sense.

So far, everything is clear, maybe even boring. The tasks that are tackled by computer scien-
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higher description level

lower description level

reverse engineering
modeling

implementation
explanation

Figure 2: The lower level can have many models and a higher level can have many implemen-
tations.

tists day by day can have much more interesting properties, however. The root of the problems
is that in computer science it is possible to handle abstract entities, spaces, which can have an
arbitrary abstract structure, and which can be arbitrarily complex and large. The structure of
the space is not known in general (and available knowledge may well be misleading). Neither
the structure of the evaluation function, which is a black box in many cases, nor the structure
defined by the search algorithm. Such problems form the main application domain of sev-
eral search heuristics, such as evolutionary computation, simulated annealing, tabu search, ant
colony optimization, etc. To be precise the structure is of course known in the sense that it is
computable. For example the distance of every pair of points can be calculated w.r.t. to both
kinds of structures mentioned earlier. What is missing is a model of this structure: the intuition
and the insight.

Let us elaborate on this latest idea as this is in the very hart of the problem. The structure
of our scientific knowledge about the world is not a single huge consistent theory. To tackle
certain situations we need description levels which are built on top of each other. For instance
we can talk about electricity — even in the context of causal relationships — without referring
to its “implementation”. In fact the term was invented and used successfully a long time before
the invention of charged particles like electrons. The notion of description levels is generally
used not only in science but also in engineering. For example a good object oriented design
can be understood without a single implementation. Not to mention that the implementation
does not even have to be object oriented. The possible relations between description levels are
illustrated in Fig. 2. The reason of the existence of different description levels is that they are
useful. In computational science higher level descriptions of the domains of search algorithms
are usually missing.

An example could be finding a decision in a space of possible decisions, where the evalu-
ation of a decision is done by a model, which simulates the effects of the decision in the real
situation (which can be a power plant, for instance). The result of the simulation is a number
scaling the quality of the decision. As earlier the space of possible decisions has at least two
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kinds of structure. The first is defined by the search algorithm, which has to represent the de-
cisions somehow, for example with an array of parameters, and then it has to explore the space
generating new candidate solutions based on the existing ones. This mechanism implicitly de-
fines a structure, since (if the algorithm is not pure random search) the newly generated solution
will depend on the search history, so, loosely speaking, we have a sort of neighborhood rela-
tion. The effect of this structure is sometimes called the bias of the search algorithm (Mitchell,
1997). The other structure, as before, is defined by the evaluation function, which is a black
box in this case.

The interesting part is that — unlike in the case of the simple example in Fig. 1 — it is
impossible to find words (like ring) to describe the situation. The conceptual knowledge is
missing, which is the epistemological problem: we do not know — or in other words cannot
talk about — the entities we work with. In the history of science this situation is unique since
the vocabularies of scientific theories are traditionally based on the vocabulary of everyday lan-
guage. When dealing with such abstract spaces, we have no grounds to hope that the semantic
hierarchy that describes it meaningfully can be grasped by human intelligence. This claim is
not uncontroversial, a part of the thesis, especially Section 5.2, is devoted to arguing for it.

The question arises: is it at all worth the trouble to find such new terms, a vocabulary or even
a semantic hierarchy for describing specific domains? We have to keep in mind that one of the
main advantages of several metaheuristics is that they need very little domain knowledge and
in a real world application there might not be enough time or money to develop such models.
However if we ever want to understand these algorithms, their biases, the way they work, we
have to address these questions. Furthermore, with the help of such a description much more
effective search can be performed, since the two kinds of structures I mentioned above can be
synchronized. For example the symmetry of the function in Fig. 1 can be exploited using special
algorithms that work in a polar coordinate system. And it can be done only because we know
the terms ring and symmetry and (which is not independent of these) polar coordinate system
and we also know that in this case these are relevant. But we do not need to rely only on abstract
examples. If we look around between the things created by evolution we can see a great amount
of modeling. For example the frog’s eye detects motion and size, which are key elements of
the vocabulary for describing the frog’s world (and the human world too). The success of the
human race is related to the emergence of language, and one of the functions of language is to
model the world we live in in a much more effective and flexible way than other animals do.

In the following the outline of the thesis is given. Though this introduction may suggest
that this thesis is concerned mainly with philosophical matters, this is not at all true. The first
half of the thesis contains the descriptions of two algorithms that were developed without any
deep philosophical considerations. However, in historical perspective, the experiences I had
during the process of this research suggested me that certain generally accepted approaches
might be insufficient for the explanation of the performance of the algorithms on the problems
I studied and this made me think about possible alternative solutions. The second half of the
thesis contains the result of these efforts. The reactions to these attempts and my studies in
linguistics and cognitive science helped me put this earlier work of mine in a wider perspective
which is presented in this introduction.

The first chapter contains an introduction to the basic terms used throughout this disserta-
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tion. The material of the thesis forms four chapters. Chapter 2 (Jelasity and Dombi, 1998) and 3
(Jelasity et al., 2001) describe global optimizers that also explore the structure of the local op-
tima of an optimization problem. The first version is called GAS. This algorithm is able to make
use of structural information adaptively using a niching technique based on a subpopulation
approach simulating the formation of species. This means that the search space is divided to
clusters (which we call species), and these cluster-structure is constantly modified according to
the results of global search restricted to these clusters. The cluster structure reflects the distri-
bution of local optima. The bias of the algorithm can be controlled explicitly, as the structure of
the space (the distance function of the space) can be implemented arbitrarily, and the automatic
parameter setting of some important parameters is possible based on this distance function and
other user-given parameters. The output of the algorithm contains the structural information as
well as the final solution. The second version is called UEGO. The difference from GAS is that
the optimizer that works inside of a species can be any algorithm. This turns the approach into
a general hybrid paradigm that can be applied along with any optimizer if the structure of the
local optima is important or if stable solutions must be found. Another difference is that the
structure of the algorithm was simplified to make parallel implementation easier. For results of
the parallel implementation please consult (Ortigosa et al., 2001).

The sections of Chapter 4 are related to the way of description of the working of evolutionary
algorithms. Section 4.1 (Jelasity and Dombi, 1996) shows that using a restricted vocabulary
like it is done in some traditional theoretical approaches is insufficient, and suggests a way
of expanding the framework. This work is closely related to the epistemological problems of
computer science and shows that theoretical investigations based on some a priory fixed set of
features of the space are doomed to failure. Section 4.2 (Jelasity, 1997) gives an alternative
model with an emphasis on unknown and possibly important structural information. This work
builds on the previous one. The difference is that all aspects of the old way of looking at the
problem are rejected and it is suggested that the search should be described as a path through
some feature space where these features are relevant to the search space at hand. Section 4.3
(Jelasity et al., 1999) offers a way of visualizing the structure of spaces and also provides a
measure of problem difficulty. In this case the visualization is done based on the evaluation
function and the algorithm at hand so it is a tool to look at the structure defined by the evaluation
function from the viewpoint of the search algorithm.

Chapter 5 introduces a philosophical problem of the boundaries of human design where
many of the interesting questions mentioned in this introduction are covered. In Section 5.2
(Jelasity, 1999) it is suggested that the way of looking at evolution in the field of evolutionary
computation is very similar to the so called adaptational stance. It is also shown that — beside
the similarities — there are significant differences as well, and these are connected to the epis-
temological crisis of computational science. The point is that since biologists have a natural
vocabulary for talking about features of things (wing, eye, hart, etc.) in computer science the
situation is radically different. To imagine this try to talk about an elephant referring only to
its DNA sequence; well, in evolutionary computation people have no other information. I also
propose that the problem is deep and we have no grounds to think that it will ever be solved by
humans. Human intelligence was evolved in a specific environment for specific tasks. Though
the emergence of language made it possible to reach high levels of abstraction, to really describe
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such spaces and to make use of their structure the only way might be to do it automatically using
artificial intelligence and machine learning where concepts that are completely un-natural for
humans can be handled and evolved. Section 5.1 (Jelasity, 2000) offers an approach that makes
this automatic process possible. A framework is presented in which binary encodings of a prob-
lem domain can be learned using ideas from machine learning. The actual learning procedure
can be arbitrary. Using such an approach, it may be possible in the future to solve the reverse
engineering problem in a similar way evolution solved it for us evolving “devices” such as the
eye and human language. The later — besides its other functions — allows us to describe the
human domain, i.e. the aspects of the world that are important for us. This makes is possible to
plan our actions and to predict future events efficiently. In abstract domains a similar approach
of evolving such representations that allow efficient search, information compression and even
communication is becoming computationally feasible.
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Chapter 1

Evolutionary Computation Basics

The aim of this chapter is to give a short introduction to the field of evolutionary algorithms
(EA). This introduction is not intended to be complete; its purpose is only to make the thesis self
contained. Several good textbooks are available that describe the field in depth. Michalewicz’s
book is a classic and has several editions (Michalewicz, 1996). The “Handbook of Evolutionary
Computation” contains very useful short and clear papers on the important aspects of the field
(Bäck et al., 1997), and it is kept up to date constantly. Other useful references are (Mitchell,
1996; Bäck, 1996; Schwefel, 1995).

1.1 Evolutionary Algorithms and Heuristic Search
It is not an easy task to define evolutionary search since the boundaries of this area are fuzzy.
Several terminologies exist that describe essentially the same set of methods, though the uni-
fication of these terminologies has already begun. These terminologies include not only the
different flavors of EA but also completely separate fields like tabu search, simulated anneal-
ing, scatter search, path relinking, etc. The notations used are closest to the conventions of the
field known as genetic algorithms (GA) and in Section 1.1.6 links will be given to some other
interesting “languages”.

1.1.1 Short History
In (Fogel, 1998) the reader can find examples of the earliest attempts to make use of the evolu-
tionary analogy for solving computational problems. Some of these works were written soon af-
ter the structure of the DNA was discovered and the Darwinian principles gained a firm scientific
foundation. Evolutionary computation was born together with artificial intelligence, machine
learning, generative grammar, the theory of automata and cognitive science in the post-war era
of the exceptional scientific excitement and optimism.

One of the independently emerging fields is evolutionary programming (EP). This method
was introduced by Fogel, Owens and Walsh (Fogel et al., 1966) originally for developing finite
state automata for solving specific problems. Another field was founded in Germany (Rechen-
berg, 1973). This algorithm is traditionally called evolution strategies (ES) and was used for
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chromosome
space

C

ρ

←−
search
space

S

g

−→ IR

Figure 1.1: The structure of the optimization problem.

real parameter optimization (see (Bäck et al., 1991; Bäck, 1996) for a modern introduction).
The third important field is genetic algorithms (GA) starting with John Holland’s widely cited
book (Holland, 1975). One of the main features of this approach is that it was designed to search
binary spaces of the form {0, 1}n. The last field, genetic programming (GP) is relatively new
(Koza, 1992; Koza, 1994). This family of algorithms is used for evolving computer programs
for given tasks.

1.1.2 Basic Structure

The problem to be solved by the EA is formulated as shown in Fig. 1.1. We are given a search
space S and an objective function g defined on it. The problem is to find the global maximum
(or minimum) of g in S. Finding the optimal solution is not guaranteed; the EA performs
heuristic search. To apply the EA we have to create the coding function or representation ρ that
partially maps S to the finite chromosome space C. ρ has to be invertible to make it possible
for the EA to calculate the objective function value of any element of C. On C operators of
type Cn → Cm have to be defined. These operators will be used to generate new solutions from
known ones.

Let us mention that defining the operators on S instead of C would have been sufficient so
we could have ignored C altogether making the discussion simpler. However, many times it is
more convenient and natural to change the representation than to change the operators from a
practical point of view. Another reason for using C is that it is a convention in the field. In
many subfields of EA the operators are fixed and to adapt the algorithm to a problem one has to
find a good encoding.

Another special property of evolutionary optimization is that a population of solutions is
maintained instead of a single solution as usual in most of the exact methods. A population
is a multiset (or bag) over C (i.e. it may contain more than one instances of a given element).
However, it is possible that the population contains only one element. The skeleton of the
algorithm is shown in Fig. 1.2. In the simplest case the initial population P0 may be generated
by a uniform random sampling of C. A priori knowledge can be incorporated as well choosing
“good” individuals. The exit criterion in line 3 may be based e.g. on a previously fixed number
of objective function evaluations, the speed of convergence, the combination of the two, or any
other convenient method. It should be noted here that the size of the starting population |P0|
is a parameter of the EA, while |P ′

t |, |P ′′
t | and |Pt+1| are determined by the implementations of
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1 create the initial population P0

2 t <- 0
3 while not Exit(Pt)
4 P ′

t := Selection( Pt )
5 P ′′

t := Recombine( P ′
t )

6 Pt+1 := New-pop( Pt, P ′′
t )

7 t <- t+1

Figure 1.2: The skeleton of the EA.

Selection and New-pop. The remaining parts are discussed in separate sections.

1.1.3 Representation
As already mentioned in Section 1.1.2, a representation function must be given if the EA is
the method selected to solve the problem at hand. This is a rather problematic and sensitive
problem. One of the main goals of the thesis is to emphasize the crucial role of the structure
of the space in which the selected representation is a major component. Here, three ad hoc
examples of fairly different types are given to let the reader form an impression of the process
of choosing a coding function.

Real Functions

For real function optimization one natural choice is to use S directly. This approach is taken by
ES operating directly on real numbers. Other approaches are possible, however, though some
results indicate (Wright, 1991) that e.g. the working of the GA is very similar to ES in the case
of the problem class discussed in this section. Let us take a look at the GA approach.

Let S = [a, b] ⊂ IR. To code this interval, it has to be discretized first (i.e. a finite number
of points has to be selected from it). Let this discretization be equidistant and contain 2n point
for some n ∈ IN. Let us choose C = {0, 1}n. Than, ρ can be defined simply by assigning
a permutation of C to the increasing sequence of the selected points (see Fig. 1.3). Two spe-
cial permutations are used generally; they are shown in Table 1.1 for n = 4. An empirical
comparison of Gray and binary representations is given in (Caruana and Schaffer, 1988). It is
generally believed that the advantage of Gray coding is that it preserves the adjacency relation
of the coded points with respect to the Hamming distance (the number of bit differences), see
Table 1.1.

Traveling Salesman Problem

In the most general case of the traveling salesman problem (TSP), an undirected, weighted
graph G(V,E) is given, and the search space is the set of tours i.e. circles that visit all of the
points in V (the set of towns). The task is to find an element of S in which the weights sum up to
the minimal value. We can assume that an arbitrary pair of towns is connected in G since, with
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10 110100

a b

g

C

C = {0, 1}2
S = [a, b]

ρ(00) = a

ρ(01) =
2a+ b

3

ρ(10) =
a+ 2b

3
ρ(11) = b

Figure 1.3: An illustration of the binary coding of real domains.
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Figure 1.4: An illustration of the permutation encoding of the TSP.

properly chosen weights, any number of edges can be inserted without affecting the optimal
solution(s).

Several representations of the TSP are discussed in the literature (Radcliffe and Surry,
1995). The most trivial one can be obtained as follows: let us label the towns with the set
{1, 2, . . . , |V |} ⊂ IN. There are 2|V | permutations of V that correspond to the same tour. From
these, let us chose the one which starts at town 1 and goes on towards the town with the less
label out of its two adjacent towns. Let ρ assign this permutation to the solution at hand (see
Fig. 1.4).

Artificial Neural Networks

EAs are often used to optimize neural network structures and/or weights i.e. the learning is
partially or totally controlled by the EA. If S is a set of possible artificial neural network (ANN)
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number Gray code H.-dist. Binary code H.-dist.
0 0000 0000
1 0001 1 0001 1
2 0011 1 0010 2
3 0010 1 0011 1
4 0110 1 0100 3
5 0111 1 0101 1
6 0101 1 0110 2
7 0100 1 0111 1
8 1100 1 1000 4
9 1101 1 1001 1

10 1111 1 1010 2
11 1110 1 1011 1
12 1010 1 1100 3
13 1011 1 1101 1
14 1001 1 1110 2
15 1000 1 1111 1

Table 1.1: Gray and binary codes of integers in [0,15] and the Hamming distance (number of
bit differences) of the adjacent codewords for both case.

structures then a learning method (e.g. backpropagation) is necessary in order to measure the
value of the given structure (i.e. every evaluation of g involves a whole learning process and
than the performance of the tuned network is measured). If the weights are also optimized
by the EA then the cost of evaluating an ANN is much less. The present example illustrates
the way an ANN structure can be represented for the EA. It has to be noted that the original
version of this representation (Tang et al., 1995) contained the weights of the ANN as well. The
search space S is a class of feed-forward ANNs with 3 input and 1 output neurons, at most M
hidden layers and at most 3 neurons in each layer. The representation contains layer control and
neuron control bits. If the ith layer control bit is on, then the ith layer is present in the network.
Than, the corresponding neuron control block is used to determine the structure of the layer.
Figure 1.5 gives an example for M = 4. In this case, every individual contains 4 layer control
and 4 · 3 = 12 neuron control bits so C = {0, 1}16.

(Radcliffe, 1991b; Mandischer, 1993; Yao, 1993) are good references for the readers in-
terested in ANN representations. (Thierens, 1998) offers a solution to handling the functional
redundancy of many coding approaches (the problem of competing conventions). A promising
direction of research is finding representations that code the process of creation of the network
instead of the network itself. Such codings are more compact and may be more expressive in
certain cases. (Lucas, 1995) is a step towards this direction.
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hidden layers outputinput

101 110010 0111010
neuron control blockslayer control

Figure 1.5: An illustrative example of ANN structure encodings.

1.1.4 Operators

Line 5 in Fig. 1.2 has a key role; this is the point where new solutions are generated using
operators based on the old ones testing unseen areas of the search space. Genetic operators
always have ”parents” that are randomly drawn from P ′

t and results in an ”offspring” that is
placed into P ′′

t . These operators are normally not deterministic, so the general formulation of
the m-variable operator op for generating k offspring is

op : Cm −→ Ck.

The traditional operators are crossover and mutation. Crossover has two variables while muta-
tion has one. Multi-parent recombination is also used (Eiben et al., 1994). It is possible to apply
many operators one after another, e.g. first crossover, then mutation. Like in Section 1.1.3 a
couple of examples are given here for illustration. Note that general, representation independent
operators have also been defined (Radcliffe, 1994). An example of such operators will be given
in Section 1.2.2.

Binary Representation

In the case of binary representations C has the form C = {0, 1}.

n-point crossover. See (Eshelman et al., 1989) and Fig. 1.6. This type of crossover has a
parameter Pc (crossover probability). The operator is performed with a probability Pc. If the
operation is not performed, one of the parents is returned as the offspring.
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parents offspring

Figure 1.6: The n-point crossover operator for n = 2.

Uniform crossover. See (Syswerda, 1989). Here, the bits of the parents are swapped with a
given probability Pc position by position. Thus, unlike n-point crossover, uniform crossover
transmits bits independently.

Mutation. The bits are inverted with a probability Pm position by position. This kind of
mutation is thus equivalent to a uniform crossover with the inverse individual and Pc = Pm. Pm
is usually small (see (Bäck, 1993)) while Pc is generally close to 1. The operator is illustrated
in Fig. 1.7.

parent offspring

Figure 1.7: The traditional mutation operator.

Permutation Representation of the TSP

Several operators are known for this domain (Goldberg, 1989). All of them are very similar to
those shown in the binary case; the only difference is that a repair mechanism is needed since
in this case C is not in the form C = Σn.

Generalized n-point crossover. The operator is illustrated in Fig. 1.8 for n = 2. First we
try to proceed as we did in the binary case. However, in every position, we check whether the
town we wish to insert is compatible with those already accepted. Generally, after this first
phase the child is incomplete. In the second phase we try to fill in the gaps using the other
parent’s genetic material in the corresponding positions. Usually, it is still not enough. In the
final patching phase we complete the child using an arbitrary method.

Permutation mutation The order of two arbitrary chosen towns is reversed with a probability
Pm.
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parent 1 1 2 3 | 4 5 6 | 7 8
parent 2 1 5 4 | 3 8 7 | 2 6

phase 1 1 5 4 - - 6 2 -
phase 2 1 5 4 3 8 6 2 -
phase 3 1 5 4 3 8 6 2 7

Figure 1.8: Example of generalized n point crossover.

1.1.5 Selection, New-pop

Selection and New-pop are closely related so it is reasonable to discuss them together
under the name selection methods. The basic idea of every selection process is to increase
the average performance of the population by selecting good individuals with a high and bad
ones with a low probability. This is done by (implicitly or explicitly) assigning a probability
distribution to the population. The probability of selecting an individual x under the given
distribution is the fitness of x. Some of the selection methods use the objective function values
of the individuals directly (i.e. for x ∈ C they use g(ρ−1(x)) ) while others use only the order
information with respect to the function g. The methods of the first type are very sensitive to g.
In this case, the fitness function1 of the individuals has the form of a parametrized transformation

f(x) = T (g(ρ−1(x)),p)

where p is a parameter (vector) that can be used to control the selection process during the
search. Let |Pt| = |P ′

t | = |P ′′
t | and let New-pop be only the single assignment Pt+1 =

P ′′
t . Such selection methods are called generational selections. Proportionate, ranking and

tournament selections are discussed. For more details the reader should refer to (Goldberg,
1991; Blickle and Thiele, 1995).

The special case when |P ′
t | = 2 and |P ′′

t | = 1 is called GENITOR or steady state selec-
tion (Syswerda, 1991). Here, New-pop has to delete an individual of Pt and replace it with the
single element of P ′′

t . Every selection method has an elitist version which means that the best
individual of Pt is guaranteed to survive.

Proportionate selection. This method uses g directly but transformed in such a way that
every element of Pt is positive. T is usually a linear transformation:

f(x) = T (g(ρ−1(x)), (a, b)) = ag(ρ−1(x)) + b

where parameters a and b are used to ensure the positivity and control the selection pressure
(e.g. if a = 0 then there is no pressure). The method is a random sampling of Pt according to

1The notation is a little confusing; generally the fitness function value of an individual is not its fitness. f has
to be transformed ”further” to obtain the fitness (a probability distribution).
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the probability distribution P over Pt where

P (x) =
f(x)

∑

y∈Pt
f(y)

Ranking selection. Here, a probability distribution over {1, 2, . . . , |Pt|} is fixed in advance
and assigned to the population that is sorted according to the objective function g. The fixed
distribution is linear or exponential but always monotone. The selection algorithm is again a
random sampling with respect to the fixed distribution.

Binary tournament selection. Here, no explicit distribution is used. P ′
t is filled by repeatedly

drawing two elements from Pt randomly and inserting the better one (according to g) in P ′
t .

This process has the advantage of being extremely simple and easy to implement and having
low computational complexity. Experimental investigations show (Goldberg, 1991) that its
performance is also acceptable.

1.1.6 Other Heuristics
The algorithm-skeleton given in Fig. 1.2 represents a much larger class of search methods than
EAs. This observation is not new, see (Eiben et al., 1995). As Glover puts it: “This terminology
has acquired the distinction of embracing nearly every kind of method conceivable” (Glover,
1996). In this section a couple of examples are given to illustrate this idea.

Tabu search Tabu search is a method with the main characteristic of using both long term and
short term memory (Glover and Laguna, 1998). Though EAs are usually called memoryless, it
is not fair for several reasons. The first is that a population of individuals serves as a kind of
long term memory about the history of the search. This memory can be used in all procedures
of the algorithm in principle in several ways. Another kind of memory are the parameters, e.g.
mutation probability. These parameters can be adapted on-line, during the search.

Nevertheless, the skeleton of tabu search is the same as the one shown in Fig. 1.2 provided
that the procedures can access global variables that serve as memory. Selection corresponds
to choosing the relevant memory components, recombination corresponds to creating a new
solution based on these components. A great number of techniques are available to implement
this, but the most well-known example for memory is the tabu list which consists of solutions
to avoid. The recombination here is to create a solution that is different from all the members
of the tabu list. The new population is created by updating the memory and the current solution
according to the result of the evaluation. Evolutionary analogies do not necessarily work here
of course. The general framework in Figs. 1.1 and 1.2 can be implemented in very different
ways, many of which are not “evolutionary”.

Stochastic hillclimbing This very simple method can be seen as a special EA with a popu-
lation size of one, and with only mutation. Surprisingly, different versions of this method are
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competitive to other heuristics (Mitchell et al., 1994; Juels and Wattenberg, 1996; Yagiura and
Ibaraki, 1996; Ishibuchi et al., 1997; Eiben et al., 1998b; Boettcher and Percus, 2000). It is
interesting that having a larger population was introduced by Holland for modeling complex
adaptive systems, and not for function optimization (De Jong, 1993). In fact many traditional
approaches used only one individual originally.

Simulated annealing This method is based on an analogy from physics (Aarts and Korst,
1989). When cooling a metal slowly, its atomic structure will be close to optimality. The
population has one element here, and there is only mutation, but in the selection phase a special
parameter is used called the temperature. If the temperature is high that the probability of
accepting the worse solution is higher. If the temperature is zero, then only the better solution
is accepted.

Scatter search and path relinking Path relinking is a generalization of scatter search (Glover
and Laguna, 1998). The idea is that several good solutions are maintained and creating a new
one is done by the recombination of these good solutions. It can be considered as a special
case of multi-parent recombinations. In the case of scatter search the search space is a multi-
dimensional real set, where this recombination is the linear combination of the good solutions.
In the abstract case the method is called path relinking and the recombination is done by gen-
erating paths in the abstract search space between the good solutions (which is in fact done by
combining their attributes just like in the case of crossover).

A last note The problem is that the division of the scientific field of heuristic search methods
reflects historical rather than scientific boundaries. This makes communication harder and as
a result unnecessary parallel work is done. Change cannot be expected soon because of social
factors: just like in the European Union, people have to learn to live with the co-existence of
several languages. It is very interesting to note that the situation is exactly the same in the field
of problems, though it is much less evident. The usual classifications uses labels like SAT, subset
sum, timetable generation, etc. However, it may well be that two instances of the SAT and the
subset sum problem class resemble each other more than two instances of the same class. The
boundaries are historical as well, just like in the case of methods, though the problem may be
much deeper here. Chapters 4 and 5 address questions that are closely related to this problem.

1.2 Models
The models in the literature can be divided into two groups. In the first group we can find models
that use the brute force approach and give exact mathematical results under certain assumptions
that usually mean serious simplification. There are a lot of models of EAs that try to predict
a certain feature of the working of the algorithm such as the diversity of the population (see
e.g. (White and Flockton, 1995) for a summary of models of GAs, and (Rudolph, 1997) for a
general discussion). An exact mathematical model of an algorithm called the simple GA (SGA)
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has been developed as well (Vose, 1992; Vose, 1999). Unfortunately, it is not tractable so cannot
be used to simulate the SGA on nontrivial problems.

The other group contains models that are indeed models. That means that they introduce
new terms and relations and attempt to provide an insight into the working of the algorithm. In
this section, we consider models belonging to this second group. These models make predic-
tions based on some properties of the search problem or the space. Four models are discussed;
the first is Goldberg’s building block hypothesis (Goldberg, 1989) based on Holland’s term
schema (Holland, 1975). The second is based on Radcliffe’s term forma (Radcliffe, 1994; Rad-
cliffe and Surry, 1995; Radcliffe, 1992). The third is an interesting work of Vose (Vose, 1991).
It is discussed in Section 1.2.3. Finally fitness landscapes are mentioned and fitness distance
correlation (FDC) is discussed (Jones and Forrest, 1995). These theories were originally de-
veloped for explaining GAs, so we adopt the original terminology here. It does not restrict the
generality of the discussion.

1.2.1 Building Block Hypothesis

Before formulating the approach, let us illustrate the ideas that lie behind the scene. This model
explains evolution as a process that combines together certain features of individuals via the
crossover operator. For example, in Africa, an ”optimal” individual has black skin, eyes and
hair. Starting from a uniform random sample of the people of the Earth as the initial population,
men with black skin will survive with a relatively higher probability. The same is true for the
eyes and the hair. Therefore, in the succeeding generations the combination of ”black features”
is very likely, and the process finally results in the optimal solution. It is clear that crossover
has a central role here, and mutation is used only to correct the sampling error of the starting
population (i.e. to ensure that features missing from the starting population may appear later).
This model also suggests using the minimal alphabet for coding, i.e. the optimal chromosome
space is thought to be C = {0, 1}n for some n ∈ IN. This is so because, for a fixed search space
S, this representation range maximizes the scope of the crossover operator by containing the
longest codewords. Thus, we fix C = {0, 1}n and define features of the codewords (schemata)
that are thought to be processed effectively by crossover. Than, the building block hypothesis is
discussed examining the predictive power of the model. Finally, a summary of the drawbacks
is given. Throughout this section, the application of 1-point crossover, traditional mutation and
proportionate selection with f = g ◦ ρ−1 is assumed unless otherwise stated2.

Schemata. Schemata are denoted by the elements of {0, 1, ∗}n where ∗ is a ”don’t care”
symbol. An H ∈ {0, 1, ∗}n denotes the subset of C in which the elements contain 0 (or 1)
in the positions where H contains 0 (or 1). For instance, for n = 3, ∗ ∗ ∗ = {0, 1}3, ∗01 =
{001, 101}. The schema theorem describes how schemata are processed during the genetic

2The positivity of f has to be assumed too due to the proportionate selection, but it is only a simplification of
the discussion. In practice, a lower bound on f = g ◦ ρ−1 can usually be given (recall that C is finite).
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optimal 
solution

crossover

Figure 1.9: Illustration of the building block hypothesis.

search if proportionate selection is used:

E(|H|t+1) ≥ |H|t
f
H

t

f t

(

1−
∑

ω∈Ω

pHω

)

(1.1)

where

• E() denotes an expectation value

• |H|t is the number of individuals in Pt that are members of schema H

• fHt is the observed fitness of schema H in time t, i.e. the average fitness of all the indi-
viduals of Pt that are members of H

• f t is the average fitness of Pt

• Ω denotes the set of genetic operators

• the propability pHω quantifies the potential disruptive effect on schema membership of the
application of operator ω ∈ Ω

Above average schemata with small disruption coefficients receive higher proportion in the
next population as stated by (1.1). Such schemata are rather numerous; an exact mathemati-
cal discussion can be found in (Bertoni and Dorigo, 1993). This effect is referred as implicit
parallelism.

Prediction with the Building Block Hypothesis

The building block hypothesis is illustrated in Fig. 1.9. It suggests that the optimal solution is
made up of building blocks i.e. short above average schemata that are combined together during
the search. Note that there is another sense in which the term building block is used. This other
sense also involves the notion of linear separability (Radcliffe, 1997), i.e. requires that there is
no interdependence (or epistasis) between the building blocks. In an even more general setting
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buildings blocks may even overlap (Kauffman and Levin, 1987; Altenberg, 1997b; Altenberg,
1994). Here we will use this term as Golberg introduced it originally. This hypothesis allows
us to make predictions in the sense that special problems can be designed that are expected to
be hard or easy for the GA. The first type of problems are the GA-deceptive problems (Liepins
and Vose, 1991b; Whitely, 1991; Goldberg, 1989) while the easy problems are called royal road
problems (Mitchell et al., 1994).

Deceptive problems. It is clear that (if the building block hypothesis is correct) if short, above
average schemata provide bad solutions if combined together then the GA will be misled. Such
problems can be designed explicitly using coefficients obtained by transforming the fitness func-
tion with the help of e.g. the Walsh transform (Khuri, 1994).

Here, the simplest possible deceptive function will be given for illustration, the so called
minimal deceptive problem. Let n ≥ 2 and let us fix two arbitrary bit positions. The notations
of (1.1) will be used but indicating only the two fixed bit positions of the schemata; the other
letters are fixed in ∗. Let

f 11 > f00, f01, f 10 (1.2)

If we would like f to be deceptive then we must have

f ∗0 =
f 00 + f 10

2
> f∗1 =

f 01 + f 11

2
(1.3)

or

f 0∗ =
f 00 + f 01

2
> f1∗ =

f 10 + f 11

2
(1.4)

Since both cannot hold in the same time together with (1.2), without the loss of generality e.g.
(1.3) can be assumed. Now we have

f 10 < f 00, f01

from (1.2) and (1.3), therefore there are two types of 2-bit deceptive problems:

Type I : f01 > f 00

Type II : f01 ≤ f00

Computer simulations show (Goldberg, 1989) that the Type II problem can mislead the GA if
the initial proportion of 11 in P0 is small enough. However, in most of the cases the optimum is
found so the building block hypothesis seems to be violated.

Royal Road Functions Royal road functions are supposed to be particularly easy for the GA.
A well-known royal road function R1 is shown in Fig. 1.10. R1 is defined on C = {0, 1}64.
An x ∈ C gets 8 points added to its fitness for each schema in Fig. 1.10 that contains it. The
optimum is the word containing only 1s and its fitness is 64 by definition. The performance
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H1: 11111111***************************...******* +8
H2: ********11111111*******************...******* +8
H3: ****************11111111***********...******* +8
H4: ************************11111111***...******* +8
H5: *****...*****11111111************************ +8
H6: *****...*************11111111**************** +8
H7: *****...*********************11111111******** +8
H8: *****...*****************************11111111 +8

opt: 11111111111111111111111...1111111111111111111 64

Figure 1.10: The royal road function R1.

of the GA on R1 has been investigated (Mitchell et al., 1994) and has been compared to the
performance of the stochastic hillclimbing algorithm (SHC)3. The SHC turned out to perform
much better than the GA on R1 providing an additional argument against the building block
hypothesis.

Criticism

The building block hypothesis and the schema-based approach has been criticized recently by
several authors. Here, a brief summary of the problematic points of the hypothesis is given.
(See also (Rudolph, 1997).)

Central role of n-point crossover. Successful experiments has been performed using opera-
tors that do not respect traditional schemata (Eshelman, 1991). On the other hand, the German
school evolution strategies (ES) emphasizes the important role of mutation (Bäck et al., 1991).

Minimal alphabet. It has been shown that there are problems that are hard in an alphabet
and easy in another (Kingdon and Dekker, 1995). Moreover, there are methods for alphabet
optimization (Tóth et al., 1995) which itself is an argument against a priori fixing the minimal
alphabet as the chromosome space.

Implicit parallelism. There has been a lot of controversy regarding this issue. The main prob-
lem is that in Holland’s original discussion it is assumed that the (non-overlapping) schemata
are processed independently; however, with finite populations it is not the case as pointed out
by many (Grefenstette, 1991; Kargupta, 1995). For example, this problem is the reason of the
failure of the building block hypothesis on the royal road functions; the linkage of schemata
(the so called genetic hitchhiking) leads to premature convergence.

3The SHC starts with a random individual. In the hillclimbing step, the SHC inverts one random bit. If the new
solution is better, then it replaces the old one.
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Schema theorem. According to some authors (e.g. (Juliany and Vose, 1994)) the schema
theorem is only a trivial statement about proportionate selection. It does not take into account
that the schemata are not only disrupted but also created by the genetic operators. It is based
on the observed fitness of the schemata but if the variance of the fitness of a given schema is
high then the observed fitness is a bad approximation of the average fitness. Finally and most
importantly it has been pointed out (Vose, 1991) that the schema theorem applies to every subset
of the chromosome space if the disruption coefficients are counted properly so schemata do not
have a special role.

Deceptive functions. The fact is deceptive functions have a very simple structure (Whitely,
1991). Care should be taken when stating that deceptive problems are the hardest problems for
the GA. In (Venturini, 1995) a very simple modification of the GA is suggested for handling
deceptivity.

1.2.2 Forma Analysis
Radcliffe’s approach offers a solution to some problems of the schema based model. He points
out that the subsets of the search space S defined by the schemata (provided that C = {0, 1}n
for some n ∈ IN) are not necessarily the most meaningful ones. The “useful” subsets are those
that have a low fitness variance and they should be discussed independently of the representa-
tion. Instead, “clever” genetic operators should be used that concentrate on S, the chromosome
space is of secondary importance. This approach solves many problems of the building block
hypothesis, however it considers to be necessary to involve a priori knowledge about properties
of the problem at hand or even empirical investigation of the features of the search space in
order to make it possible to design the clever operators. As it will be shown in Chapter 4, it is
not necessarily the case.

Of course to achieve an efficient computer implementation, it seems reasonable to design
a representation that reflects the features of S. The model is built up with this idea in mind
in the literature so we will follow this direction as well. First we discuss how can a priori
observed good features of the search space be used to design a representation and then general
genetic operators will be shown capable of handling these representations. Finally an example
illustrating the predictive power of the model is given. Throughout this section, for the sake
of simplicity but without the loss of generality it is assumed that the domain of ρ is S i.e.
ρ−1(C) = S.

Formae and Representation Design

The binary representation (C = {0, 1}n for some n ∈ IN) can be defined by n equivalence
relations given by the schemata with one defining (0 or 1) position. (The two complementary
schemata corresponding to the same position (e.g. 0 ∗ · · · ∗ and 1 ∗ · · · ∗) define a classification
(and thus an equivalence relation) over S.) This observation leads to a generalization of the
binary representation; the genetic representation. Before giving the exact definition we need to
examine some properties of sets of equivalence relations over S.
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Definition 1. A set Ψ = {ψ1, . . . , ψj} of equivalence relations over S covers S iff for every
x ∈ S at least one set Y of equivalence classes of the elements of Ψ exists such that

⋂

y∈Y

y = {x}

Definition 2. Let [ψ] = {[y]ψ : y ∈ S} where ψ is an equivalence relation over S and for
y ∈ S [y]ψ is the equivalence class of y w.r.t. ψ.

Definition 3. Let Ψ be a set of equivalence relations over S that cover S. A ρ : S −→ C(⊆ Σn)
representation is genetic iff there is a bijective mapping between Σ×{0, . . . , n−1} and

⋃

ψ∈Ψ[ψ].
A ψ ∈ Ψ is called a gene and [ψ] is the set of alleles of gene ψ.

An example of genetic representations is the permutation representation of the TSP (see
Section 1.1.3) where the corresponding equivalence relations classify S according to which
town is visited at a given place. An important property of some genetic representations is
described in Definition 4.

Definition 4. A genetic representation ρ : S −→ C(⊆ Σn) is orthogonal iff C = Σn)

Clearly, the traditional binary representation is orthogonal, however, the permutation repre-
sentation of the TSP is not since every town can be visited only once. Orthogonality is essential
when designing genetic operators since in the case of non-orthogonal representations an oper-
ator normally needs some repair mechanism; the genes cannot be mixed “blindly”. In the case
of genetic representations the more general term forma replaces schemata.

Definition 5. Let ρ be a genetic representation with the set equivalence relations Ψ. The set of
all formae is given by

Ξ = {
⋂

y∈Y

y : Y ⊆
⋃

ψ∈Ψ

[ψ]}

In the case of the permutation representation of the TSP, an example of formae could be the
set of tours that has a given town e.g. at the end of the tour.

The process of representation design proceeds in the opposite direction as would be indi-
cated by the above discussion. The researcher first tries to exploit knowledge about the search
space and to find a set of meaningful equivalence relations over it (i.e. that have low fitness
variance (see Section 1.2.2) and cover S). He then defines the representation according to these
equivalence relations. The operators do not have to be defined separately for each case since
there are general operators that handle an arbitrary genetic representation. Such operators are
discussed in Section 1.2.2.

RAR and R3

The definition of representation independent genetic operators is based on the observation that
ad hoc operators used in different applications and representations tend to share some proper-
ties. Therefore, an exact description of these common properties may help to create general
operators. Three of such features of crossover operators are described below: respect, assort-
ment and transmission. (Operators of orthogonal representations normally have these features.)
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respect A crossover operator respects a genetic representation if and only if every child it
produces contains all the alleles common to its two parents.

transmission A crossover operator transmits genes w.r.t. a given genetic representation if and
only if each allele in every child it produces is present in at least one of the child’s parents.
It is easy to see that an operator that transmits genes is respectful.

assortment A crossover operator is assorting if and only if it is possible for it to produce every
child that contains only alleles present in the two parents.

For example the generalized n-point crossover for the TSP (see Section 1.1.4) is not transmitting
due to the final patching phase, but it is clear that it respects the representation at hand.

Based on these abstract properties, several abstract operators have been defined. Two of
these are the random assorting recombination (RAR) and the random respectful recombination
(R3). By definition, RAR always assorts and R3 always respects w.r.t the genetic representation
it is implemented for. Now we give the definition of RARw adopted from (Radcliffe and George,
1993).

Definition 6. Let the genetic representation at hand contain n genes, x, y ∈ C and w ∈ IN. The
algorithm of RARw is as follows.

1. Place w copies of each allele common to the two parents in a bag G together with w
copies of “barred alleles” which are present in neither parent.

2. Place one copy of each allele in only one of the parents in the bag G together with a copy
of its barred counterpart.

3. Repeatedly draw from the bag G, in a random order, barred and normal alleles. Normal
alleles are included in the child whereas barred elements are excluded, in both cases
subject to the primacy of earlier decisions (i.e. an element previously included cannot be
excluded and vice-versa).

4. This process continues until either child is fully specified or the bag is empty. Should the
bag empty before the child is fully specified, remaining genes are assigned at random.

It is clear that for any w < ∞ RARw assorts. For increasing values of w, RARw shows
increasing respect. For w = ∞, RARw = R3. Note that it is not important for w to be an
integer; the definition can be generalized for any positive real number w. A final remark: the
computer implementation is usually not similar to the process described in Definition 6 and of
course may considerably differ in the case of different representations.

Prediction with Formae Analysis

Unlike the building block hypothesis (see Section 1.2.1) forma analysis emphasizes the role of
the fitness variance in the formae. Low fitness variance minimizes the sampling error, so the
GA gains reliable information about the performance of certain formae. Thus a representation
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is predicted to be successful if its formae have low fitness variance in them. In (Radcliffe
and Surry, 1995) several representations of the TSP were investigated and the one with the
lowest fitness variance tended to give the best results under very different conditions. This
winner representation is the so called corner representation where a tour is encoded by giving
the adjacent cities as an unordered pair for every city. Therefore, the tours in Fig. 1.4 would be
encoded as

({2, 6}, {1, 5}, {4, 6}, {3, 5}, {2, 4}, {1, 3})

and
({3, 6}, {4, 5}, {1, 5}, {2, 6}, {2, 3}, {1, 4})

respectively. Note that the genes of this representation contain
(

n

2

)

alleles each (n is the

number of cities) which is in high contrast with the minimal alphabet principle of the building
block hypothesis.

Criticism

Clearly, forma analysis is a great step ahead; it points out that the minimal alphabet is not
necessarily the best choice, takes into account that the schema theorem depends on the observed
fitness (by considering the fitness variance of formae) and applies to arbitrary subsets of S
(by choosing arbitrary subsets of S as a basis of the representation). Eludes the problem of
deceptivity by suggesting a clever design of the representation instead of fixing it in advance.
However, there are problems.

Old ideas behind. The main ideas remain the same; formae are thought to be combined
together during the search process according to the idea of implicit parallelism. The aim of
designing genetic operators that respect or assort formae is exactly this.

Design problem. In real world problems, extracting useful knowledge about the search space
is generally almost impossible and testing the fitness variance of a given subset of S can be very
expensive.

Fitness variance. Care should be taken when making predictions on the basis of fitness vari-
ance of formae of a given representation. For instance, the performance of the GA may be good
even with a representation with formae of a very high fitness variance in some cases. The root of
this problem is that there are other subsets of the chromosome space that are at least as suitable
for modeling the search (see Chapter 4).

As a summary we can conclude that forma analysis is nothing else but a good generaliza-
tion of the building block hypothesis for arbitrary representations extending it by advising on
representation design and analysis.
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1.2.3 The Random Walk Model
This section is devoted to a short article of Vose (Vose, 1991). The results of this paper have
not been used for defining problems that are hard or easy for the GA nor for predicting its
performance on certain problems to the best knowledge of the author. However it contains
very interesting ideas that seem to be mistreated in the literature. The work is usually cited to
mention that Vose proved that not only traditional schemata obey the schema theorem. He did,
but this result occupies only the first three pages (Section 1 and 2). The main results are on the
remaining nine pages as indicated by the last sentence of Section 2:

While not disputing the building block hypothesis, we offer an alternate theoretical
explanation of why GAs have enjoyed practical success.

The schema theorem has no role in the second part of the paper. Moreover, its title is misleading;
the paper has little to do with schemata and the building block hypothesis, instead, it is a totally
novel approach. It is interesting that Vose himself does not seem to think (Vose, 1991) important
in the sense we do. For instance, in (Juliany and Vose, 1994) the schema theorem and its
drawbacks are discussed but the paper in consideration is not even mentioned. (Battle and
Vose, 1993) also supports this claim.

Here, a summary of the approach is given in a somewhat generalized form; Vose uses the
chromosome space C = {0, 1}n and the fitness function but we will consider the search space
S4 and the objective function g5 with an arbitrary representation. We will ignore the (straight-
forward) proofs of the theorems mentioned here.

The Model

Let H be an arbitrary subset of S and P be a finite population. Then, let |H|P be number of
elements of P that are codes of members of H and let

gP (H) =
1

|H|P
∑

ρ−1(x)∈H

g(x)

be the average of H w.r.t. P .

Definition 7. A H ⊆ S is global iff

(∃P )(gP (H) > gP (S)) ⇒ (∀Q)(|H|Q > 0 ⇒ gQ(H) ≥ gQ(S))

Globality means that H enjoys constantly positive selective pressure independently of the
population it is represented in (except the case when it occupies the whole population). Defini-
tion 8 is needed for a characterization of the global subsets of S.

Definition 8. Let H ⊆ S. H is
4We assume that |S| = |C|; otherwise we could restrict ourselves to ρ−1(C) ⊂ S.
5Let g be injective. It is not a serious assumption since S is finite; anyway, it is needed only for the sake of the

simplicity of the notations.
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• monotone increasing iff H = g−1([a,+∞)) and

• monotone decreasing iff H = g−1((−∞, b))

for some a, b ∈ IR. H is not monotone otherwise.

Theorem 1. H ⊆ S is global if and only if it is monotone (increasing or decreasing).

Theorem 2. Let H ⊆ S be global and P be a finite population. If gP (H) > gP (S) then for
every predicate G,

gP (G) > gP (H) ⇒ (G ∩ P ⊂ H) ∨ (gP (H ∩G) > gP (G))

To understand Theorem 2 let us assume that a G ⊂ S is stronger than a global subset of
S H w.r.t. population P . The theorem says that G cannot reduce the survival probability of H
because it is either contained in H or its elements in H are responsible for the high strength.
What about the genetic operators? Vose defines stability of subsets of S to handle this question
w.r.t. the crossover operator.

Definition 9. Let H ⊂ S and S(H) be the probability that H is invariant under (a given
implementation of) crossover of distinct members of H .

• H is stable iff S(H) = 1

• H is semi-stable iff S(H) ≈ 1

• H is unstable iff S(H) = 0

As admitted by Vose, these classifications are coarse. The aim is to identify features of
subsets of S that describe how crossover disrupts them. Clearly, if the global subset of S H is
stable then once established in the population, it is permanent.

The random walk analogy is simply to consider gP (S) as a random variable that can move
to the left with a diminishing or zero probability depending on the stability of the monotone
increasing subsets of S (i.e. if they are stable or semi-stable, respectively).

Finally, let us examine an implication of the approach; namely the sequential way of looking
at the optimization process. It is the common feature to the wave model (see Chapter 4).

Theorem 3. Let G and H be monotone increasing subsets of S which are both represented in
some population P . Then,

G ⊂ H ⇒ gP (G) ≥ gP (H)

where strict inequality holds in the case of strict containment w.r.t P .

Now, let the objective function values contained in a population P be

g1 < g2 < · · · < gn

then the predicates
Hi = g−1([gi,+∞))
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are global and
gP (S) = gP (H1) < · · · < gP (Hn)

If these subsets of S are stable (or at least semi-stable) then the search can be considered as the
successive domination of the population by the stronger and stronger subsets that contain each
other, i.e.

Hi ⊂ Hj (i < j)

Criticism

Two remarks should be made regarding the main conclusion of (Vose, 1991) worded by Vose
as follows:

The genetic paradigm will succeed when monotone increasing predicates are stable
or semi-stable.

⇐ The role of genetic operators is considered to be only disruption as in the case of the
schema theorem. However, as will be shown in Chapter 4, the genetic operators have very
significant features besides the stability. Due to these features it is possible that the GA performs
very poorly even when the monotone increasing subsets are all stable.

⇒ The approach suggests that if the monotone increasing subsets are stable then the GA
is successful. It is not necessarily the case as shown in Chapter 4. The problem is that Vose
considers only monotone increasing subsets that are defined on the whole search space while
the GA can watch only a very tiny slice of this space. This means that sometimes safe search
can be performed even with rather unstable monotone increasing subsets involved.

1.2.4 Fitness Distance Correlation
Fitness distance correlation (FDC) was introduced as a measure of problem hardness (Jones and
Forrest, 1995). This measure is based on the notion of fitness landscapes. A fitness landscape
is defined simply by adding a distance measure to the search space giving it structure. This
structure is intended to reflect the structure which is implicitly defined by the search algorithm
under consideration. Using this distance function it is possible to talk about e.g. the neigh-
borhood of a solution, which is an important notion of many heuristic search methods. This
structure also makes it possible to think of the fitness function as a landscape, i.e. that has hills,
ridges, etc. Terminology like e.g. “ruggedness” of a fitness function comes from this landscape
analogy. It is interesting to note that this analogy can be very misleading especially in the case
of high dimensional or binary spaces as results from coding theory mentioned in Section 2.4.3
show. Loosely speaking, high dimensional sets are like a good city-car: they can be very small
from the outside but huge from the inside. Or to put it another way: according to a well known
example, an n-dimensional orange (in the Eucledian space) has only skin as n goes to infinity.
This effects illustrate why it is practically impossible to think about the neighborhood relations
in terms of the landscape analogy.
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In spite of the above difficulties fitness landscapes are very useful for gaining some insight
into the structure of problems as the popularity of FDC shows (though see (Altenberg, 1997a)).
For other measures see (Manderick, 1997).

Definition of the FDC

The FDC is the correlation of two properties of a solution. The first property is the distance of
the solution from the locus of a fixed global optimum. The other property is the distance of the
fitness of the solution from the value of the global optimum. For the sake of completeness, the
definition of the correlation of two discrete random variables x1 and x2 is

C =
1
N

∑N
i=1(x1 −m1)(x2 −m2)

s1s2

where N is the number of possible values, m1, m2 and s1, s2 are the means and standard devia-
tions of x1 and x2 respectively.

Illustration of the FDC

From a practical point of view, to calculate the FDC one needs the place and the value of a
global optimum and a sample of the solution space along with the corresponding fitness values.
The process of this calculation has an interesting byproduct, an two dimensional plot, which
depicts the sample points in the space of the two properties under consideration. This plot is
probably even more interesting than the FDC itself, and definitely gives much more insight
to the problem structure. To illustrate this we give two examples that have a fairly different
structure. Both examples are defined over the binary domain {0, 1}n. The distance used is the
Hamming distance in both cases. Following the usual practice, when creating the plots a small
random noise was added to every point to illustrate the density of points at a given place.

Needle in the Haystack The first example is a simple needle-in-the-haystack problem. The
space has a simple linear structure but the global optimum is at the place which is predicted
worst by this simple structure. The function used here is defined in (Liepins and Vose, 1991b)
over a 10 bit space. The two dimensional plot depicting the interdependence of the fitness
and distance from the global optimum is shown on Fig. 1.11. It is clear that the correlation
coefficient is -1, i.e. there is negative correlation, which indicates a deceptive problem. The
search algorithms that use the Hamming neighborhood for search are expected to run into a
local optimum.

Subset Sum For the definition of the problem see Section 2.5.3. Figure 1.12 was calculated
over a complete 12 bit space. It can be seen at first sight that the correlation is 0. However
the plot needs more explanation than in the previous case. Problems having a coefficient of 0
are usually considered very hard. It is because this indicates that the distance from the global
optimum and the fitness is uncorrelated, so there is no information in the neighborhood struc-
ture. Analyzing the plot we can see that there is a lot of very good quality solutions, which
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Figure 1.11: The correlation of fitness and distance from the global optimum for a needle-in-
the-haystack problem.

have a very different genotype; a plot like this clearly indicates that there is a problem with the
encoding of the problem. The surprising observation is that this problem is pretty easy for the
EA, tough the complexity depends on some parameters. The reason is that in general many
solutions are global optima. Many sections discuss the subset sum problem from the point of
view of problem difficulty, but probably Chapter 4 is the most relevant here.

Criticism

FDC is a method that is very useful in many situations, especially if the plot is also taken into
account. There are serious problems however. Section 4.3 offers a solution to these problems.

Global optimum. To apply the methods the global optimum has to be known. In different
constructed problems this information may be available but in general in the case of a black box
function it is not.

Prediction. To predict that a problem is difficult the value of the FDC is used. If it is close
to 0 than the problem is considered hard. In many cases, for example for some instances of the
subset sum problem, this forecast is not valid. Many solutions can be global optima and the
structure of the space can be such that one of these optima can be found easily. If combined
with other measures, like fitness correlation coefficient (Manderick et al., 1991), we may be
able to refine this prediction.

A counterexample. A counterexample is given in (Altenberg, 1997a) as a special constructed
function, the ridge function. Its structure is such that the majority of the space shows a deceptive
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Figure 1.12: The correlation of fitness and distance from the global optimum for the subset sum
problem.

structure but there is a path that contains only a few solutions but which leads to the global
optimum. The key is that from every point of the space, this “ladder” can be reached relatively
easily, which is quite counterintuitive. This is in connection with the failure of the landscape
analogy, I refer again to Section 2.4.3 where interesting results can be found from coding theory
that explain this effect.
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Chapter 2

Exploring Structure with GAS

This chapter introduces a niching technique called GAS (S stands for species) which dynami-
cally creates a subpopulation structure (taxonomic chart) using a radius function instead of a
single radius, and a ‘cooling’ method similar to simulated annealing. GAS offers a solution to
the niche radius problem with the help of these techniques. A method based on the speed of
species is presented for determining the radius function. Speed functions are given for both real
and binary domains. We also discuss the sphere packing problem on binary domains using some
tools of coding theory to make it possible to evaluate the output of the system. Finally two prob-
lems are examined empirically. The first is a difficult test function with unevenly spread local
optima. The second is an NP-complete combinatorial optimization task, where a comparison is
presented to the traditional genetic algorithm.

2.1 Introduction
In recent years much work has been done with the aim of extending genetic algorithms (GAs)
to make it possible to find more than one local optimum of a function and so to reduce the
probability of missing the global optimum. The techniques developed for this purpose are
known as niching techniques. Besides the greater probability of the success of the algorithm
and a significantly better performance on GA-hard problems (see (Beasley et al., 1993)), niche
techniques provide the user with more information on the problem, which is very useful in a
wide range of applications (decision making, several designing tasks, etc.).

2.1.1 Best-Known Approaches
Simple iteration runs the simple GA several times to the same problem, and collects the results
of the particular runs. Fitness sharing has been introduced by Goldberg and Richardson (Deb
and Goldberg, 1989). The fitness of an individual is reduced if there are many other individuals
near it and so the GA is forced to maintain diversity in the population. Subpopulations can also
be maintained in parallel, usually with the allowance of some kind of communication between
them (see, for example, (Davidor, 1991b)). The GAS method has developed from this approach.
The sequential niche technique is described in (Beasley et al., 1993). The GA (or any other
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optimizing procedure) is run many times on the same problem, but after every run the optimized
function is modified (multiplied by a derating function) so that the optimum just found will not
be located again.

2.1.2 Problems
These techniques yield good results from several viewpoints, but mention sholud be made of
some of their drawbacks, which do not arise in the case of our method, GAS.

Simple iteration is unintelligent; if the optima are not of the same value relatively bad local
optima are found with low probability, while good optima are located several times which is
highly unnecessary. Fitness sharing needs O(n2) distance evaluations in every step, besides the
evaluation of the fitness function. It cannot distinguish local optima that are much closer to each
other than the niche radius (a parameter of the method); in other words, it is assumed that the
local optima are approximately evenly spread throughout the search space. This latter problem
is known as the niche radius problem. The sequential niche technique also involves the niche
radius problem. The complexity of the optimized function increases after every iteration due
to the additional derating functions. Since the function is modified many times, “false” optima
too are found. The method seems difficult to use for combinatorial problems or structural
optimization tasks, which are the most promising fields of GA applications.

GAS offers a solution to these problems including the niche radius problem, which is the
most important drawback of all of the methods mentioned earlier.

2.1.3 Outline
In section 2.2 we give the description of GAS at the level that is needed for understanding
of the following parts. The reader who is interested in more technical details should refer to
ftp://ftp.jate.u-szeged.hu/pub/math/optimization/GAS/ for more infor-
mation or GAS itself. In section 2.4 we give a possible solution to the niche radius problem with
the help of the GAS system. Both real and binary problem domains are discussed. In section 2.5
we present experimental results. Two problems are examined. The first demonstrates how GAS

handles the uneven distribution of the local optima of the optimized function. The second is an
NP-complete combinatorial problem, where a comparison is presented to the traditional GA.

2.2 Species and GAS

2.2.1 Basic Ideas and Motivations

The motivation of this work was to tackle the problem of finding unevenly spread optima of
multimodal optimization problems. For this purpose, a subpopulation approach seemed to be
the best choice.

The obvious drawback of subpopulation approaches is that managing subpopulations need
special algorithms and the system is relatively difficult to understand and maybe to use as well.
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There are considerable advantages, however. Every subpopulation may have its own attributes
that make it possible for them to adapt to the different regions of the fitness landscape. The
subpopulations perform effective local search due to the mating restrictions that usually allow
breeding only inside of a subpopulation, and the different subpopulations can even communicate
with each other.

In our method GAS, every subpopulation (or species) is intended to occupy a local maxi-
mizer of the fitness function. Thus, new species are created when it is likely that the parents
are on different hills, and species have to be fused when they are thought to climb the same hill
(heuristics will be given later). To shed some light on the way GAS copes with unevenly spread
optima, it is natural to use a terminology that is well known from the field of simulated anneal-
ing. Thus, when illustrating our definitions and methods, we will talk about the ‘temperature’
of species, the ability of escaping from local optima. In our system, we made the ‘temperature’
an explicit attribute of every species (it is the attraction of species, see Definition 12). This
allowed us to offer an algorithm that ‘cools down’ the system while species of different ‘tem-
peratures’ are allowed to exist at the same time. The basic idea of the algorithm is that ‘warmer’
species are allowed to create ‘cooler’ species autonomously discovering their own local are of
attraction.

Finally, let us mention that due to our theoretical results, the large number of parameters of
GAS can be reduced to a couple of easy-to-understand ones (see section 2.4).

2.2.2 Basic Definitions
In this section some basic definitions will be given that are necessary for introducing the algo-
rithm. These definitions capture the relevan aspects of the structure of the search space from
the point of view of GAS. Using the notations in the Introduction of (Rawlins, 1991), let D
be the problem domain, f : D → IR the fitness function and g : {0, 1}m → D for some
m ∈ {2, 3, . . .} the coding function. (GAS searches for the maxima of f !)

The algorithm is based on some assumptions about the search space, which define its bias.
This structure is given by a distance function (d : D×D → IR) and the term section (section :
D ×D → P (D), where P (D) is the power set of D). For a given search space it is possible to
choose an arbitrary distance function and the definition of the shortest path (section) between
two points. Let us give some examples for simple spaces.

Example 1. D ⊆ IRm, D is convex.

section(x, y) = {z : z = x+ t(y − x), t ∈ [0, 1]}

Example 2. D = {0, 1}m (So if x ∈ D then x = (x1, . . . , xm))

section(x, y) = {z : if xj = yj then zj = xj}

The second example is much less trivial: note that it allows a huge number of paths for
reaching one solution from another. In abstratct spaces like the binary domain, it may well be
that the appropriate choice of the definition of section is different for different problems. But
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Figure 2.1: a: A possible radius function. b: Terms related to species.

even in usual cases like the real domain a different definition may be useful, which is based on
some other coordinate system, for example polar coordinates.

Now let us give another definition which captures another aspect of the search space which
is connected to the distribution of the local optima.

Definition 10. R : IN→ IR is a radius function over D if it is monotonic decreasing, positive,
R(0) = max{ d(e1, e2) : e1, e2 ∈ D} and

lim
n→∞

R(n) = 0.

Fig. 2.1a exemplifies these properties. Without knowing the algorithm it is hard to imagine
the function of this definition, but the idea is that the radius function will be used to control
the speed of ‘cooling’. In fact, it gives the ‘temperature’ of the system in a given step (see
section 2.3). At the beginning of the search the rough structure of the evaluation function is
explored, and as the search proceeds, finer and finer details are found. The schedule of cooling
is determined by this function.

From now on we will assume that a radius function R is fixed. At the implementation
presented here, the radius function does not change over time during the optimization, i.e. it is
static. Understanding the following definitions is crucial.

Definition 11. A species s over D is given by the triplet (o, l, S), where S is a population over
D and the members of S are the individuals of s; o(∈ S) is the center of s and is such that
f(o) = max f(S); l(∈ IN) is the radius index or the level of s, and so the radius of s is R(l).
Recall that in GAs a population is a multiset (or bag) of individuals (e.g. S =< x1, x1, x2 >).

Definition 12. s = (o, l, S) is a species. LetA(s) = {a ∈ D : d(a, o) ≤ R(l)} be the attraction
of s.

Fig. 2.1b illustrates the terms defined above. Species with small attraction behave as they
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were ‘cooler’; they discover a relatively small area, their motion in the space is slower but
they can differentiate between local optima that are relatively close to each other. Note that
for a species s = (o, l, S), o is ‘almost’ determined by S. If the maximal number of different
maximizers in a population would be one, Definition 11 would be redundant, however, it is
possible that two different individuals have the same maximal function value. In this case the
center is a random member of this maximal subpopulaltion. Also note that it is not necessary
that S ⊆ A(s).

Definition 13. Let T be a graph with the vertex set V (T ), where V (T ) is a set of species over
D. T is a taxonomic chart (t.c.) if T is a tree and there is an sr = (or, 0, Sr) root in T , and if
(sr =)s0, s1, . . . , sn is a path in T , then for the corresponding levels l0 < l1 < . . . < ln holds.

Note that the root sr of of every t.c. has the level 0 which means that its area of attraction
A(s) covers the whole domain D (see Definitions 10 and 12).

This term defines the structure in which the subpopulations are stored (thus the set of species
has a corresponding tree structure). This structure is generated and maintained by GAS and
forms part of the output. It is called a taxonomic chart to keep the biological terminology
consistent, but in fact it is simply a tree with species in its nodes. Thus we can talk about the
children and the father of a given species. The only restriction is that the children of a species
must have a higher level than their father. This restriction limits the height of the tree to the
maximal allowed level value. The recursive construction of the main algorithm will be based
on this tree structure.

2.2.3 The Algorithm
Let V (T0) (T0 is a t.c.) contain only sr = (or, 0, Sr), where Sr is randomly chosen. The
algorithm in Fig. 2.2 shows how GAS creates a Tn+1 t.c. from a given Tn t.c.

begin activity
while (population size of T_n <

maximum allowed) do
begin

choose two parents
create two offspring
update t.c.

end
dying_off
fusion

end activity

Figure 2.2: The basic algorithm that creates Tn+1 from Tn.

Before describing the parts of the algorithm, we should make a few remarks.
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• It is the flexibility of steady state selection (Syswerda, 1991) that allows the algorithm to
create and manage species, as will be shown later.

• The algorithm can be implemented in parallel on two levels: the level of the while cycle
and the level of the procedure. (However, our implementation is not parallel.)

Let us now examine the parts of the algorithm.

Population Size. The population size of a given T t.c. is
∑

s=(o,l,S)∈V (T )

|S|. In other words it is

the sum of the sizes of all the species.

Choose Two Parents. From a given T , we first choose a vertex (a species) with a probability
proportional to the number of the elements of the vertices. Then, we choose two parents from
this species, using the traditional probability (proportional to the fitnesses of the elements of the
species).

Create Two Offspring. From individuals p1 and p2, we create p′1 and p′2 by applying onepoint
crossover and mutation operators to the parents.

Update t.c. Since this is the point where new species are created, this is the most important
step. We have to decide here whether to separate the given two parents into two different species
and we have to find species for the two newly created offspring. If we decide to separate the
parents, we must find new existing species for them or create new species for them. The placing-
back algorithm is shown in Fig. 2.3. The notations of the algorithm: p1, p2 are the parents,
p′1, p

′
2 are the two offspring, e is a random point on the section that connects p1 and p2 (note

that p′1 and p′2 are not on this section in general), and sp is the original species of the parents.
We always mean sx = (ox, lx, Sx) on sx for any symbol x. Function move(p,s)moves p to S
and updates o if necessary. Parameter strict determines the precision of the search, i.e. the
‘temperature’ of the system. Increasing strict decreases ‘temperature’. The way of using
this parameter is described in section 2.3.

It is clear that for a concave or for a unimodal one-dimensional fitness function GAS will
never create a single species.

Dying off. Dying off deletes as many elements from the population of the t.c. as were
inserted in the while cycle keeping the population size constant. The method used for selecting
elements to die is based on the ranking defined by the transformed fitness function f̂ :

f̂(e) :=
f(e)− (a global lower bound of f on the whole population)

|S|
where e is in species s = (o, l, S).

This means that species of small size have more chance to survive (and to grow). The
precision of the procedure (i.e. the level of competition) can be varied during the optimization
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if f(e) < f(p1),f(p2) then
for x=p1,p2,p1’,p2’ do

if (there is a child node s_c of s_p
such that x is in A(s_c)) then

move(x,s_c)
{ With the restriction that p1 and p2 }
{ must not be put into the same species. }

for x=(a parent not put in so far) do
create a new child
s=(x,max{l_p +1,strict},<x>) for s_p

{ else: The parents are left in s_p. }

for x=(an offspring not put in so far) do begin
s:=s_p
while (x is not in A(s)) do s:=father node of s
{ if s=s_r then A(s)=D! }
move(p,s)

end

Figure 2.3: The algorithm that places parents and offspring back in the population updating the
t.c.

process. In section 2.3 we discuss how to use this possibility. Dying off has no effect on the
species structure (by definition) and does not delete the best individual of a species.

Fusion. The result of fusion depends on R and strict described earlier. After executing
fusion for a given T t.c., we get T ′, for which the following will be true: if s1, s2 ∈ V (T ′),
then d(o1, o2) ≥ R(strict). Fusion simply unites species of T that are too close to each
other, and strict tells it what is too close. If s1 and s2 are united, the result species is
s = (o,min{l1, l2}, S1 ∪ S2), where f(o) = max{ f(o1), f(o2)} and o is o1 or o2. In view
of the tree structure, the species with the lower level absorbs the other. If the species have the
same level, either of them may absorb the other.

2.3 Optimization with GAS

For global optimization with GAS, we suggest the algorithm shown in Fig. 2.4. For determina-
tion of the vector of evaluation numbers x and the radius function R, we suggest a method in
section 2.4 based on the speed of species with a given radius in a given domain.

The main for cycle performs the ‘cooling’ operation. Increasing strict results in new
species with smaller radii (see Fig. 2.3). The basic philosophy is to increase diversity at the
beginning of every cycle and then perform optimization of the newly discovered areas. This
kind of oscillation can be observed in biological systems as well.
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begin GAS
create a starting t.c. T_0
for strict=1 to ST_m { 0 < ST_m(=strict_max) < 8 }

new species
evolution
stabilize
iterate evolution until reaching
x_strict function evaluations

end GAS

begin evolution
for i=1 to 10 do activity
immigration
for i=1 to 5 do activity

end evolution

Figure 2.4: The high-level optimization algorithm.

We now describe the species-level genetic operators, used in the algorithm shown in Fig 2.4.

Immigration. For every species s = (o, l, S) in a given t.c., |S|/2 randomly generated new
individuals are inserted from A(s). Immigration refreshes the genetic material of the species
and makes their motion faster. It has a kind of greasing effect.

New species. This switch alters the state of the system towards managing species creation. It
randomizes dying off and relaxes competition by decreasing the lower bound of the fitness
function, and so decreases the relative differences between individuals. According to some bi-
ologists (Csányi, 1982), species are born when the competition decreases; strong competition
results in very similar individuals and new niches cannot be discovered this way. Our experi-
ments support this opinion.

Stabilize. The effect of this is the contrary of new species. It prohibits the creation of
new species and increases competition.

As a summary, we give here some heuristical arguments that support the subpopulation struc-
ture approach and use a radius function instead of a single radius.

• The number of distance calculations grows with the size of the t.c. instead of the size of
the population.

• Application of species–level operators (e.g. fusion, immigration) becomes possible.

• Lower-level (closer to root) species manage to create new species in their attraction.
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• The advantages of the technique based on the radius function and increasing strict
(see Fig. 2.4) are similar to those of the ‘cooling’ technique in the simulated annealing
method.

Finally, to make our discussion more rigorous, we give the definitions of stability of species
and t.c. These definitions are not really necessary for the present discussion in the sense that
will not be used in any strict mathematical environment. However, when stability is mentioned,
it is ment in this sense. The impatient reader is free to skip these definitions.

Definition 14. W ⊆ D. Species s is stable in W if o ∈ W , and if o1, o2, . . . is a series of new
centers inserted by GAS to s during running then it is impossible that for some i oi 6∈ W .

Example 3. It is clear that s is stable in W = {e ∈ D : f(e) > f(o)}.

Definition 15. e0 ∈ D, e0 is a local optimum (with respect to d) of f . s is stable around e0

if, for every o1, o2, . . . series of new centers inserted by GAS to s during running, on → e0
(n→∞) with probability 1.

Example 4. W ⊆ D, e0 ∈ W . If s is stable in W and e0 is the global optimum of f in W (i.e.
e0 is a local optimum of D or else s could not be stable in W ) and there are no more optima of
f in W , then s is stable around e0. This example would need a proof but we do not give it here
because it is marginal from our present point of view.

Definition 16. T is a t.c. T is stable if every species of T is stable around distinct local optima
of f .

Definition 17. T is a t.c. T is complete if T is stable and there is exactly one stable species
around every local optimum of f .

2.4 Theoretical Results
In this section we discuss the theoretical tools and new terms that can be used due to the exact
definition of the t.c. data structure and GAS algorithm.

2.4.1 Speed of Species
We do not assume that the optima of the fitness function are evenly spread; we create species
instead that “live their own lives” and can move in the search space and find the niche on which
they are stable. It can be seen that from this point of view determining the radius function R
depends more upon the speed of the species than on the number of spheres (niches) of a given
radius that can be packed into the space. The speed of a given species s = (o, l, S) will depend
on its radius R(l). The larger the radius is the faster the species can move towards its stable
state so the fewer the number of iterations it needs to become stable. This idea will be used
when simultaneously dividing the available number of function evaluations among the species
and setting the values of the radius function R.
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The solution of the sphere packing problem mentioned above is the base of setting the
niche radius parameter of the methods mentioned in the Introduction. This method has several
drawbacks. One of these is that for example in the case of binary spaces it is possible to pack
a huge umber of spheres to relatively small spaces so the resulting radius is too small. In such
spaces we cannot hope that all the local optima will be found in general. However, this value is
useful when evaluating the output of the system since it tells us what percentage of the possible
number of optima we have found. In section 2.4.3 we discuss such packing problems in the
case of binary domains. This discussion sheds some light on the basic differences between
binary and real domains and suggests that our intuitions that work in real spaces may well be
misleading in a binary domain.

Real Domains.

In real domains we have D ⊆ IRn for some n ∈ IN. Let us fix a dimension number n and a
species s = (~o, l, S) and let us denote the radius of s by r (i.e. r = R(l)). (Recall, that for a
species s = (~o, l, S) the center of s, ~o, is an n-dimensional real vector: ~o = (o1, . . . , on).)

The following suggestion for the definition of speed is an approximation. It is assumed that
the fitness function f is the projection f(~x) = x1 and GAS simply selects new individuals from
the attraction of s, A(s), randomly with a uniform distribution instead of generating them using
parents and genetic operators and drops them into the species one by one. Note however, that
this does not mean that GAS is approximated using a blind random search since the center of
the species is always the best individual, and after generating the random element, the center
is updated. This means that in the case of the projection function the expected value of the
improvment remains constant while the species is moving upwards. The speed for a radius r and
a dimension n will be the average step size towards the better region that results in generating
one random individual.

Definition 18. The speed v(r) of s is (c1 − o1)/2, where ~c ∈ IRn is the center of gravity of the
set

Sn,r = A(s) ∩ {~x ∈ IRn : x1 > o1}

To understand this definition, recall that in the case of the projection function the probability
of improvement is 1/2, i.e. hitting the half sphere which is above the center, i.e. Sn,r. If only
this half sphere was sampled then the expected improvement would be the distance of the center
of gravity of this half sphere and the center of the species. Since half of the hits result in no
improvement on average, the expected improvement will be the half of this distance. In other
words, let us choose a random element ~x∗ = (x∗1, . . . , x

∗
n) fromA(s) with a uniform distribution.

Let ξ = o1 − x∗1 if o1 > x∗1, and ξ = 0 otherwise. Than M(ξ) (the expected value of ξ) is v(r).
This means that v(r) is given by the equation

v(r) =
1

2

1

V (Sn,r)

∫

Sn,r

x1 dx1 . . . dxn (2.1)
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where V (Sn,r) is the volume of Sn,r. (Recall that if ξ = 0 then the center of s o is not changed
by GAS.) It can be proved that

v(r) =

(

n
n−1

2

)

2n+1
r (2.2)

holds. In the general case (if n is even) (2.2), is defined with the help of the function Γ(t + 1),
the continous extension of t!. Γ(t + 1) =

∫∞
0 xte−x dx, Γ(1/2 + 1) =

√
π/2 and Γ(t + 2) =

(t+ 1)Γ(t+ 1).

Binary Domains.

Let D = {0, 1}n. Let us fix a dimension number n and a species s = (o, l, S) and let us denote
the radius of s by r (i.e. r = R(l)). We give a definition of speed similar to Definition 18.
Like in the case of real domains, an approximation is used. It is assumed that the fitness of
an individual x ∈ D is given by the number of 1s in it, and GAS works as described in the
case of real domains. As in the binary case, the speed for a radius r and a dimension n will be
the average size of the first step of o after receiving one random individual. The difference is
that in the case of binary domains, the starting center has to be fixed too since the average step
sizes change as the center changes. More precisely, the average step size will decrease since the
function is bounded from above unlike the projection function used in the real case. Let e ∈ D
such that the number of 0s is equal to or greater by one than the number of 1s depending of the
parity of the number of bits. Let e be the fixed starting center. Let

Sn,r = {e′ ∈ D : d(e′, e) ≤ r}

where the distance function d is the Hamming distance (the sum of the bit differences). Let us
choose a random e∗ from Sn,r with a uniform distribution and let ξ = d(e∗, e) if there are more
1s in e∗, and let ξ = 0 otherwise.

Definition 19. Let v(r) = M(ξ) be the speed of species s in D if the radius of s is r.

We performed experiments to determine v(r) (Fig. 2.5). It can be seen if n � r, then the
equation

v(r) =
3

11

√
r (2.3)

seems to describe the speed. If r approaches n, the growing of the speed becomes slower than
(2.3) would indicate.

2.4.2 Determining R and x
We use the notations of Fig. 2.4 here. Recall that STm is the number of steps in the ‘cooling’
procedure, the maximal value of strict, and xi denotes the number of function evaluations
at step i. Let us assume that the evaluation number N , the domain type and the corresponding
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Figure 2.5: Speed in binary domains.

speed function v are given. We know that the function evaluations at the different levels sum up
to the maximal allowed value:

STm
∑

i=1

xi = N (2.4)

We suggest a setting for which the system of equations

v(R(i))xi = C (i = 1, . . . STm) (2.5)

holds where C is a constant (independent of i). This simply means that the species of the
different levels receive an equal chance to become stabilized, i.e. if a species has a small radius
and therefore a small speed then it will receive much more evaluations that allows it to find a
stable place. From (2.4) and (2.5) it follows that

C =
N

∑STm

i=1
1

v(R(i))

. (2.6)

We note that C has an easily understandable meaning: it is the distance that a species of level i
expectedly crosses during xi iterations.

In GAS, the upper bound M of the number of species can be set. M = [population size/4]
by default. Now we can give the value of C:

C = R(0)Mν (2.7)

Recall that R(0) is the diameter of the domain we examine. ν is a threshold value. Setting
ν = 1 means that every species receives at least sufficient function evaluations for crossing the
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whole space, even if the number of species reaches M which makes the probability of creating
a stable t.c. very high. In section 2.5 we examine the effect of several different settings of ν.
Finally let

R(i) = R(0)βi (i = 1, . . . STm, β ∈ (0, 1)) (2.8)

Choosing anR this way is attractive for several reasons. First, giving the whole function reduces
to only one parameter, which has a clear meaning. Second, subproblems defined by the species
will be similar to the original problem, giving the algorithm a recursive structure. Note that this
setting may not be optimal for some problems that have special structure, though setting the
maximal number of levels provides a possibility to adapt the algorithm to different situations
even with this fixed radius function.

Using (2.6), (2.7) and (2.8), we can write

N

R(0)Mν
=

STm
∑

i=1

1

v(R(0)βi)
(β ∈ (0, 1)) (2.9)

where everything is given except β. Since v is monotonous, the right side of (2.9) monotonically
decreases as β increases and so reaches its minimum if β = 1. Using this fact, the feasibility
condition of (2.9) is

N

R(0)Mν
>

STm
v(R(0))

(2.10)

If (2.10) holds, (2.9) has exactly one solution. This property allows us to use effective
numeric methods for approximating β.

Now, the number of parameters to set is significantly reduced. Section 2.5.1 gives a list
along with explanations and settings used in the experiments.

2.4.3 Evaluating the Output
We based the setting of the parameters of GAS on the speed function. However, it is important
to know the maximal possible size of a t.c. for a given radius function R (assuming an arbitrary
large evaluation number and population size) since it tells us what percentage of the maximal
possible number of optima we have found.

The problem leads to the general sphere packing problem and this has been solved neither
for binary nor for real sets in the general case.

Real Case
In n-dimensional real domains Deb’s method (Deb, 1989) can be used.

p = (

√
n

2r
)
n

where r is the species radius, the domain is [0, 1]n and p is the number of optima, assuming that
they are evenly spread. We note that this is only an approximation.
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Binary Case
Results of coding theory can be used to solve the packing problem in binary domains since it is
one of the central problems of this field. We will need the definition of binary codes.

Definition 20. d, n ∈ IN, d ≤ n. C ⊆ {0, 1}n is a (n, |C|, d) binary code if ∀c1, c2 ∈ C :
dist(c1, c2) ≥ d (The function “dist” is the Hamming distance, the sum of the bit differences.)

Definition 21. d, n ∈ IN. A(n, d) := max{|C| : C is a (n, |C|, d) binary code}.
A(n, d) has not yet been calculated in the general case; only lower and upper bounds are

known. Such bounds can be found for example in (MacWilliams and Sloan, 1977; van Lint,
1992; McEliece, 1977). One of these is the Plotkin bound:

Theorem 4. ((Plotkin bound)) For d, n ∈ IN, we have

A(n, d) ≤ d

d− 1
2
n

if d ≥ 1

2
n

In a special case, the exact value is also known:

Theorem 5. For binary codes and m ∈ IN, we have

A(2m+1, 2m) = 2m+2.

In Table 2.1 we show the Plotkin upper bounds for 2n = 32, 128 and 1024. The values have
been calculated according to the following formulas:

A(2n, n+ a) ≤ n+a
n+a−2n/2

= 1
a
(n+ a)

A(2m+1, 2m) = 2m+2

A(2n, n− a) ≤ 22a+12(n− a)

2.5 Experimental Results
In this section we examine two problems. The first demonstrates how GAS handles the un-
even distribution of the local optima of the optimized function. The second is an NP-complete
combinatorial problem, where a comparison is presented to the traditional GA.

2.5.1 Setting of GA and GAS Parameters
In the following experiments, the settings of the traditional GA parameters are Pm (mutation
probability) = 0.03 (see e.g. (Goldberg, 1989)) and Pc (crossover probability) = 1, while the
population size = 100. In the while cycle of the basic algorithm (shown in Fig. 2.2), the
maximum allowed population size is 110. For continuous domains, we used Gray coding as
suggested in (Caruana and Schaffer, 1988).

The settings of the specific GAS parameters are the following:
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d 2n 32 128 1024
n-3 3 328 15 616 130 304
n-2 896 3 968 32 640
n-1 240 1 008 8 176
n 64∗ 256∗ 2048∗

n+1 17 65 513
n+2 9 33 257
n+6 3 11 86

n+16 2 5 33
n+40 - 2 13

Table 2.1: Plotkin upper bounds for A(2n, d). The indicated values are exact.

• R (radius function) and x (evaluation numbers) can be determined using the method de-
scribed in section 2.4.

• M (maximal number of species in the t.c.) is set to M = (pop. size)/4. Setting a larger
value is not recommended since too many small species could be created.

• N (
∑STm

i=1 xi) depends on the available time and computational resources. We used N =
104.

• ν (treshold) and STm (maximal strict level) are the parameters we tested so we used
several values (see the descriptions of the experiments).

For simplicity, we run evolution only once after new species (see Fig. 2.4) but we
note that increasing that number can significantly improve the performance in some cases. The
cost of one evolution is 275 evaluations after new species, and 200 after stabilize
at the above settings.
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Figure 2.6: The function with unevenly spread optima.

2.5.2 A Function with Unevenly Spread Optima
The problem domain D is [0, 10]. The fitness function f : D → IR.
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f(x) =
10
∑

i=1

1

(ki(x− ai))2 + ci

f (shown in Fig. 2.6) is a test function for global optimization procedures suggested in (Törn
and Žilinskas, 1989).

We have determined R and x for ν = 1/4, 1/2, 3/4 and 1 (see Table 2.2). STm is 8 in every
case. Recall that according to the algorithm in Fig. 2.4 the elements of x must be divisible by
200 (the cost of evolution after stabilize) and the sum of them must be 104−STm ·275.

We run the corresponding algorithms 100 times. The numbers of stable species that con-
verged to one of the local optima are shown in Table 2.3. The most important result is that no
unstable species appeared in the output even for ν = 1/4. The best results are observed in the
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ν = 1 ν = 3/4 ν = 1/2 ν = 1/4

R x R x R x R x

1 6.61 200 6.333 200 5.978 0 5.334 0
2 4.369 200 4.011 200 3.573 200 2.845 0
3 2.888 400 2.54 200 2.136 200 1.517 200
4 1.909 600 1.609 400 1.277 400 0.809 200
5 1.261 800 1.019 800 0.763 600 0.432 600
6 0.834 1200 0.645 1200 0.456 1200 0.23 1000
7 0.551 1800 0.409 1800 0.273 2000 0.123 2000
8 0.364 2800 0.259 3000 0.163 3200 0.066 3600

Table 2.2: Radius and evaluation numbers for ν = 1/4, 1/2, 3/4 and 1.

case of ν = 1/4. Here, even o3 was found 2 times in spite of its very small attraction. Fig. 2.7

o1 o2 o3 o4 o5 o6 o7 o8

ν = 1 100 0 0 100 60 97 48 94
ν = 3/4 100 1 0 100 65 87 72 94
ν = 1/2 100 34 0 100 74 99 58 98
ν = 1/4 100 25 2 100 85 100 90 100

Table 2.3: Number of stable species around the local optima.

shows the average number of species detected before increasing strict (after stabilizing for
the old strict). From these values, we can gain information on the structure of the optima of
the fitness function. For example, for radii greater than 3, very few species were created, which
means that the optima are probably closer to each other than 3.

2.5.3 An NP–complete Combinatorial Problem
We study the subset sum problem here. We are given a set W = {w1, w2, . . . , wn} of n integers
and a large integer C. We would like to find an S ⊆ W such that the sum of the elements in S
is closest to, without exceeding, C. This problem is NP-complete.

We used the same coding and fitness function as suggested in (Khuri et al., 1993): D =
{0, 1}128. If e ∈ D (e = (e1, e2, . . . , e128)), then let P (e) =

∑128
i=1 eiwi, and then

−f(e) = a(C − P (e)) + (1− a)P (e)

where a = 1 when e is feasible (C − P (e)) ≥ 0), and a = 0 otherwise. Here, ∀w ∈ W 1 ≤
w ≤ 1000 and C is the sum of a randomly chosen subset of W (every element is chosen with a
probability 0.5). We do not need a coding function here since D is the code itself.
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Figure 2.7: The species number increasing history (average of 100 runs).

We tested several values of STm. Table 2.4 shows R and x for STm = 1, 2, . . . , 6. The
value 8 is not feasible and 7 is also very close to that bound. ν = 1 in every case. We run the
corresponding algorithms 50 times. For comparison, in experiments on the same problem with
two times more (i.e. 2 · 104 instead of 104) evaluation numbers in (Khuri et al., 1993), 0.93
optimal solutions were found per run. Here, this value is at least one for every STm, and for
STm = 2 it is 2.62 (see Table 2.5). Besides this, many near-optimal solutions were found (as
shown in Fig. 2.8) so we received much more information with only 104 function evaluations.

STm = 1 STm = 2 STm = 3 STm = 4 STm = 5 STm = 6

R x R x R x R x R x R x

1 2 9600 20 2600 47 1800 72 1400 93 1200 109 1200
2 3 6800 17 2800 41 1800 67 1400 92 1200
3 6 4600 23 2400 49 1600 79 1400
4 13 3200 35 2000 67 1400
5 26 2400 57 1600
6 48 1600

Table 2.4: Radii and evaluation numbers for STm = 1, 2, . . . , 6.
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Figure 2.8: Number of near-optimal solutions found during the 50 runs.

2.6 Summary

In this chapter we have introduced a method called GAS for multimodal function optimization
(or multimodal heuristic search). GAS dynamically creates a subpopulation structure called a
taxonomic chart, using a radius function instead of a single radius, and a ‘cooling’ method
similar to simulated annealing. The cooling method ensures that the structure of the search
space is discovered step by step starting from a very rough approxmation and finishing with a
detailed one.

The setting of the parameters of the method was based on the speed of species instead of

opt. found/ avg. fitness number of
STm run of all spec. species

1 1.56 -3.194 201
2 2.62 -15.616 1250
3 2.1 -10.866 1250
4 2.12 -12.568 1238
5 2.08 -12.84 846
6 1.0 -6.943 211

Table 2.5: Result of the experiment (50 runs).
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their relative size to the search space, and the definition of speed was based on the structure of
the space. The structure of the space is given by the user trough a distance function. Speed
functions were given for both real and binary domains.

We performed experiments for a difficult test function with unevenly spread local optima
and for an NP-complete combinatorial problem. In both cases our results are encouraging
though much work will have to be done to examine the effects of the parameters of the method
more thoroughly.



Chapter 3

UEGO, a General Paradigm

In this chapter UEGO, a new general technique for accelerating and/or parallelizing existing
search methods is suggested. The skeleton of the algorithm is a parallel hill climber. The
separate hill climbers work in restricted search regions (or clusters) of the search space. The
volume of the clusters decreases as the search proceeds which results in a cooling effect similar
to simulated annealing. Besides this, UEGO can be effectively parallelized; the communication
between the clusters is minimal. The purpose of this communication is to ensure that one hill
is explored only by one hill climber. UEGO makes periodic attempts to find new hills to climb.
Empirical results are also presented which include an analysis of the effects of the user-given
parameters and a comparison with a hill climber and a GA.

3.1 Introduction
In this section a short introduction to the history and motivation behind developing UEGO is
presented, but first let us state what the acronym means. UEGO stands for Universal Evolu-
tionary Global Optimizer. However, it must be admitted from the start that this name is not
over-informative, and the method is not even ’evolutionary’ in the usual sense. In spite of this
we have kept the name for historical reasons.

3.1.1 Roots
The predecessor of UEGO was GAS, a steady-state genetic algorithm with subpopulation sup-
port. For more details on GAS the reader should consult Chapter 2 or (Jelasity and Dombi,
1998). Let us note however that this chapter is self contained and does not assume any further
knowledge about GAS; it will not be mentioned outside of this section only in connection with
the empirical comparison results.

GAS has several attractive features. Perhaps the most important of them is that it offers a
solution to the so-called niche radius problem which is a common problem of many simple
niching techniques such as fitness sharing ((Deb, 1989) or (Deb and Goldberg, 1989)), simple
iteration or the sequential niching (Beasley et al., 1993). This problem is related to functions
that have multiple local optima and whose optima are unevenly spread throughout the search
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space. With such functions the niche radius cannot be set correctly since if it is too small the
search becomes ineffective and if it is too large those local optima that are too close to each other
cannot be distinguished. The solution of GAS involves a ’cooling’ technique which enables the
search to focus on the promising regions of the space, starting off with a relatively large radius
that decreases as the search proceeds.

However, the authors of GAS came in for a number of criticisms, one being that the algo-
rithm was too much complex, and another that parallel implementation turned out to have many
pitfalls associated with it.

Although UEGO is based on GAS there are two major differences that were motivated by
the need for a better parallel implementation and the requirement of using domain specific
knowledge in an effective way.

The structure of the algorithm has been greatly simplified. As a result the parallel implemen-
tation is much easier and the basic ideas become more accessible. This is important because, as
our results will show, UEGO performs similarly or better than the GA and the simple stochastic
hill climber (SHC) on our test problems, and at the same time it can be parallelized better than
these methods (Ortigosa, 1999; Ortigosa et al., 2001).

3.1.2 Basic Ideas

The basic idea is that in multimodal optimization problems where the objective function has
multiple local optima and the structure of these optima should be discovered beside the global
optimum, it may be useful to ensure that the optimizer does not waste its time exploring the same
region multiple times but simultaneosly new and promising regions are found. This goal can be
achieved by applying a non-overlapping set of clusters which define sub-domains for the applied
optimizer. Based on the results of the optimizer, the search process can be directed towards
smaller regions by creating a new set of non-overlapping clusters that consists of smaller sub-
domains. This process is a kind of cooling method similar to simulated annealing. A particular
cluster is not a fixed part of the search domain; it can move through the space as the search
proceeds. The non-overlapping property of the set of clusters is maintained however.

UEGO is abstract in the sense that the ’cluster-management’ and the cooling mechanism has
been logically separated from the actual optimization algorithm, so it is possible to implement
any kind of optimizers that work inside a cluster. This allows the adaptation of the method
to a large number of possible search domains using existing domain specific optimizers while
enjoying the advantages of having muliple non-overlapping clusters which ensures that search
effort is focused on interesting regions.

Here an SHC shall be utilized as the optimizer algorithm. This choice is supported by results
that show that the performance of the SHC is similar to that of the GA in many cases and some-
times may even be better (e.g. (Mitchell et al., 1994; Juels and Wattenberg, 1996; Yagiura and
Ibaraki, 1996; Ishibuchi et al., 1997)). In (Eiben et al., 1998b) a GA with very small population
size (1) has been suggested for the graph coloring problem, which is in fact an SHC. Our results
confirm that the SHC can indeed outperform the GA at least on the problems and parameter
settings we considered.
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3.1.3 A Note on Terminology
In the following sections the term species will be used instead of e.g. cluster, zone, region, sub-
domain etc. This may be strange since in evolutionary computation this term normally means
a population of similar individuals while here it denotes a subset of the search domain. This is
not a major problem however; a species in our sense is nothing else but the set of all possible
members that are similar according to some similarity measure which is in fact a function of
e.g. the application domain. We think that the behavior of a species as will be defined later has
strong biological analogies.

The actual number of solutions in a species is given by the applied optimizer. In the case of
SHC it is one but e.g. in the case of a GA it may be larger.

3.1.4 Outline of the Chapter
Section 3.2 describes UEGO; the basic concepts, the general algorithm and the theoretical tools
that are used to set the parameters of the system based on a few user-given parameters. Sec-
tions 3.3 and 3.5 discuss the experimental results that describe the effects of these parameters
of the algorithm on the quality of the results and compare UEGO with a simple GA (GAS), a
stochastic hill climber (SHC) and a multistart hill climber (MHC) using a set of test functions.
Section 3.6 then provides a short summary.

3.2 Description of UEGO
In this section the basic concepts, the algorithm, and the setting of the parameters are outlined.
In UEGO, a domain specific optimizer has to be implemented. Wherever we refer to ’the opti-
mizer’ we mean this optimizer.

3.2.1 Basic Concepts
In the following it will be assumed that the parameters of the function take values from the same
interval. This is easy to achieve for any function via normalization.

A key notion in UEGO is that of a species. A species can be thought of as a window on the
whole search space. This window is defined by its center and a radius. The center is a solution,
and the radius is a positive number. Of course, this definition assumes a distance defined over
the search space. The role of this window is to ’localize’ the optimizer which is always called
by a species and can ’see’ only its window, so every new sample is taken from there. This means
that the largest step made by the optimizer in a given species is no larger than the radius of the
given species. If the value of a new solution is better than that of the old center, the new solution
becomes the center and the window is moved.

The radius of a species is not arbitrary; it is taken from a list of decreasing radii, the radius
list. The radii decrease in a regular fashion in geometrical progression. The first element of
this list is always the diameter of the search space which will ensure that the largest species
always contains the whole space independently of its center. The diameter is given by the
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uego
init_species_list()
optimize_species( n[1] )
for i = 2 to levels

create_species(new[i]/length(species_list))
fuse_species( r[i] )
shorten_species_list( max_spec_num )
optimize_species( n[i]/max_spec_num )
fuse_species( r[i] )

rof
ogeu

Figure 3.1: The basic algorithm of UEGO.

largest distance between any two possible solutions according to the distance mentioned above.
If the radius of a species is the ith element of the list, then we say that the level of the species is
i.

During the optimization process, a list of species is kept by UEGO. The algorithm is in fact
a method for managing this species-list (i.e. creating, deleting and optimizing species); it will
be described in Section 3.2.2.

3.2.2 The Algorithm

Firstly, some parameters of UEGO will be very briefly mentioned more details of which can be
found in Section 3.2.3.

As we mentioned earlier, every species has a fixed level during its lifetime. Species-level
operators may change this level however as will be described. The maximal value for the level
is given by a parameter called levels. Every valid level i (i.e. for levels from [1,levels])
has a radius value (ri) and two function evaluation numbers. One is used when new species
are created at a given level (newi) while the other is used when optimizing individual species
(ni). To define the algorithm fully, one more parameter is needed: the maximal length of the
above-mentioned species list (max spec num).

The basic algorithm is shown in Figure 3.1. Now the procedures called by UEGO will be
described.

Init species list. Create a species list consisting of one species with a random center
at level 1.

Create species(evals). For every species in the list, create random pairs of solutions
in the ’window’ of the species, and for every such pair take the middle of the section connecting
the pair. If the objective function value of the middle is worse than the values of the pair, then
the members of the pair are inserted in the species list. Every new inserted species is assigned
the actual level value (i in Figure 3.1).
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The motivation behind this method is simple: to create species that are on different ’hills’
so ensuring that there is a valley between the new species. Of course this is a heuristic only.
In higher dimensions it is possible (in fact typical) that many species are created even if the
function is unimodal. This is an unlucky effect which is handled by the cooling process to
ensure that at the beginning the algorithm does not create too many species capturing only the
rough structure of the landscape. The parameter of this procedure is an upper bound of the
function evaluations. Note that this algorithm needs a definition of section in the search space.

Fuse species(radius). If the centers of any pair of species from the species list are
closer to each other than the given radius, the two species are fused. The center of the new
species will be the one with the best function value while the level will be the minimum of
the levels of the original species to be fused. Of course this method does not ensure that no
species will overlap after fusion though the amount of the overlapping regions is typically highly
decreased.

Shorten species list(max spec num). Delete species to reduce the list length to the
given value. Higher level species are deleted first.

Optimize species(evals). Start the optimizer for every species with the given evalua-
tion number (i.e. every single species in the actual list receives the given number of evaluations).
See Section 3.2.1.

It is clear that if for some level i the species list is shorter than the allowed maximal length,
max spec num, the overall number of function evaluations will be smaller than ni (see Fig-
ure 3.1, optimize species). In our implementation we use the difference of the actual
number of function evaluations and ni to find more species. This technique has no effect when
there are many species but if the number of species is small, a lot of extra effort is devoted to
finding new ones.

Finally, let us make a remark about a possible parallel implementation. The most time-
consuming parts of the basic algorithm is the creation and optimization of the species. Note that
these two steps can be done independently for every species, so each species can be assigned
to a different processor. Note also that a species is defined by its center and its level, so the
amount of information used in communications is really small. In GAS algorithm a species
is a set of individuals and there are relations among species and even among individuals, so
it is quite difficult to send a species or an individual to another processor. The complexity of
the possible parallel approach would be high enough. As our experimental results will clearly
show, sequential UEGO performs slightly better than the SHC and the GA even when the number
of species is as high as 200.

3.2.3 Parameters of UEGO

The most important parameters are those that belong to the different levels: the radii and two
function evaluation numbers for species creation and optimization (see Figure 3.1). In this sec-
tion a method is described which sets these parameters using a few easy-to-understand param-
eters set by the user. The experimental sections will provide further guidelines on the meaning
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and setting of these remaining user-given parameters.
We will now make use of the notation introduced in Section 3.2.2. The user-given pa-

rameters are listed below. Short notations (in brackets) that will be used in equations in the
subsequent sections are also given.

evals (N ): The maximal number of function evaluations the user allows for the whole opti-
mization process. Note that the actual number of function evaluations may be less than
this value.

levels (l): The maximal level value (see Figure 3.1).

threshold (ν): The meaning of this parameter will be explained later.

max spec num (M ): The maximal length of the species list.

min r (rl): The radius that is associated with the maximal level, i.e. levels.

The parameter setting algorithm to be described can use any four of the above five values while
the remaining parameters are set automatically.

Speed of the optimizer. Before presenting the parameter setting method, the notion of the
speed of the optimizer must be introduced. As explained earlier, the optimizer cannot make a
larger step in the search space than the radius of the species it is working in. Furthermore if
the center of a species is far from every local optimum then these steps will be larger while
if the center is already close to a local optimum then the steps will be very small. Given a
certain number of evaluations, it is possible to measure the distance the given species moves
during the optimization process assuming that the species is suboptimal. This distance can be
approximated (as a function of the radius and evaluations) for certain optimizers using ideal
landscapes (such as linear functions) with the help of mathematical models or experimental
results. This naturally leads to a notion of speed that will characterize a given domain (assuming
e.g. a linear landscape) and will depend on the species radius. Speed will be denoted by v(r).
As we will not give any actual approximations here, the reader should refer to Chapter 2.

The parameter-setting method is based on principles that are supposed to be intuitive and
reasonable. The main reason of using such principles is to reduce the number of parameters to
a small set in which every parameter has a clear meaning. These principles are now described
below.

Principle of equal chance. At a level, every species moves a certain distance from its original
center due to optimization. This principle ensures that every species will receive the number
of evaluations that is enough to make it move at least a fixed distance assuming that the speed
of this motion is v(r). A species will not necessarily move that far but the definition of speed
is such that if the species is far from the local optima then it will move approximately the
given distance. This common distance is defined by r1ν. The meaning of threshold can
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now be given: it directly controls the distance a species is allowed to cover, so it actually
controls the probability that they will eventually represent a local optimum: the further a species
can go the higher the probability of reaching a local optimum is (and the more expensive the
optimization is). Recall that r1 is always the diameter of the search space. Now the principle
can be formalized:

v(ri)ni
M

= r1ν (i = 2, . . . , l) (3.1)

Principle of exponential radius decreasing. This principle is quite straightforward; given
the smallest radius and the largest one (rl and r1) the remaining radii are expressed by the
exponential function

ri = r1(
rl
r1

)
i−1

l−1 (i = 2, . . . , l). (3.2)

Principle of constant species creation chance. This principle ensures that even if the length
of species list is maximal, there is a chance of creating at least two more species for each old
species. It also makes a strong simplification, namely that all the evaluations should be set to
the same constant value.

newi = 3M (i = 2, . . . , l) (3.3)

Now we can develop a method to determine all the parameters from the user given parameters.
First let us express N (the number of all function evaluations available) using the parameters of
the algorithm. Let us define new1 = 0 for the sake of simplicity since new1 is never used by
UEGO. We can write the equation

l
∑

i=1

(ni + newi) = (l − 1)3M +
l
∑

i=1

ni = N (3.4)

making use of (3.3) in the process. One more simplification is possible; set n1 = 0 whenever
l > 1. Note that if l = 1 then UEGO reduces to the optimizer it uses for optimizing the species.
Expressing ni from (3.1) and substituting it into (3.4) we can write

(l − 1)3M +
l
∑

i=2

Mr1ν

v(ri)
= N (3.5)

Using (3.2) as well, it is quite evident that the unknown parameters in (3.5) are just the user given
parameters and due to the monotony of this equation in every variable, any of the parameters can
be given using effective numerical methods provided the other parameters are known. Using
the above principles the remaining important parameters (ni, newi and ri) can be evaluated as
well. Note however that some of the configurations set by the user may be infeasible.



70 CHAPTER 3. UEGO, A GENERAL PARADIGM

3.3 Experiments with Real Functions

In this section experimental results on real functions will be presented. Due to the stochastic
nature of UEGO, all the numerical results given in this work are average values of fifty execu-
tions, obtaining an enough statistic sample of experiments. From this data set the corresponding
confidence intervals (95%) were computed (see (Sokal and Rohlf, 1981)). These confidence in-
tervals have not been represented because it would have messed up the plots since there are
multiple curves in each graphic, and also these intervals were too narrow, so they could not be
distinguished from the average values.

In this section, a set of four test functions and two classical multimodal functions (Griewank,
Rastrigin) have been used to evaluate UEGO. These test functions have different characteristics
w.r.t. dimensionality and the number of local optima so, it is possible to illustrate the effect of
these characteristics on the performance of UEGO. Comparisons with the ancestor of UEGO,
GAS (see Chapter 2) and the simple and multistart version of a hill climber (SHC and MHC)
described in (Solis and Wets, 1981) will also be given.

3.3.1 Test Problems

A first experimental stage was carried out on a set of four new defined functions. We chose not
to use well-known benchmark functions for testing. The reason for this is that we agree with the
ideas discussed in (Hooker, 1995), namely that for doing scientific tests it is more convenient to
use functions that differ only in controllable features. This allows the analysis of the effect of
only one separated feature of the test problem, e.g. the number of local optima. There is another
reason: using widely accepted benchmark problems prevents developing methods that perform
well only on special kind of problems. We believe that it is more important to characterize the
ideal problem for optimization methods than trying to show that they outperform other methods
on as many benchmark problems as possible. In a second stage, UEGO was evaluated and
compared to other algorithms, using Griewank and Rastrigin functions (see Section 3.4.1).

In the experiments to be discussed here we wanted to examine the effects of dimensionality
and the number of local optima. Therefore we used four test functions that are characterized
in Table 3.1. The construction of these functions starts with a user-given list of local optimum

Table 3.1: Characteristics of the four test functions.

F1 F2 F3 F4

Type [0, 1]2 → IR [0, 1]2 → IR [0, 1]30 → IR [0, 1]30 → IR

# of maxima 5 125 5 125

sites (o) and the corresponding function values (fo). All the function values have to be positive.
In the first step, we define bell shapes for every site to create the local optima. The height of a
bell is given by the function value fo of its site o, and its radius r is the distance of o from the
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Test Function F2

Figure 3.2: The plot of the test function F2.

closest site. The height of the bell at a distance x from o is fog(x), where:

g(x) =















1− 2x2

r2
if x < r

2
2(x−r)2

r2
if r

2
≤ x < r

0 otherwise

The objective function is the sum of these bells. In the case of our test functions, the coordi-
nates of the maximum sites and their values were randomly taken from [0, 1] using a uniform
distribution. The two-dimensional function F2 has been drawn in Figure 3.2.

3.3.2 The Optimizer and the Settings

For real function optimization the optimizer used by UEGO was the hill climber suggested
in (Solis and Wets, 1981). The parameters of the hill climber algorithm were set as in (So-
lis and Wets, 1981). The parameter ρub, that controls the maximal step size, was set to the
radius of the species from which the optimizer is called. The accuracy of the search was set to
min(ρub/103, 10−5). No fine tuning of the parameters of the optimizer was done.
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Figure 3.3: A sample from the results of our preliminary experiments.

3.3.3 The Experiments

In our preliminary experiments the minimal radius (min r) was calculated automatically, the
threshold (ν) was fixed to 1 in every run, and the effects of the remaining parameters were
examined. However, it soon became clear that it was not the best choice: in the case of F2
the performance often decreased as the number of evaluations was increased. This effect can be
seen in Figure 3.3, where the average of the most-fit species values of the objective function (for
fifty runs of UEGO) as a function of the average value of the number of function evaluations has
been represented (notice that the number of function evaluations is always less than evals).
The reason of this strange behavior is that with the increasing number of evaluations the minimal
radius became smaller and smaller according to principles described in Section 3.2.3, so the
search slowed down. Another observation was that the performance seemed to be the best when
the number of levels was two.

Due to these results we decided to examine the effect of the minimal radius and the maximal
number of species with the number of levels fixed to two. The set of the tested values are shown
in Table 3.2. Experiments were performed for all combinations of these parameter settings.

In these experiments, the behavior of UEGO was rather similar for functions F1 and F3, and
all the tested values of minimal radii (min r) resulted in almost identical performance, but the
results were very sensitive to the values of maximal number of species (max spec num). The
performance decreased with the increasing value of max spec num. In our experiments the
optimal value for the max spec num parameter was the minimal (20). For F4, changes on the
performance of UEGO w.r.t. min r are almost negligible, as happens on F1 and F3.

On the other hand, for F2 the value of min r did make a difference, mainly when the
maximal number of species was relatively small and the performance of UEGO was very robust
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Table 3.2: Tested values of UEGO parameters for the real functions.

evals levels max spec num min r threshold

1000, 2000, 3000, fixed 20, 50, .003, .005, automatically
5000, 10000, 15000, to 2 100, 200 .01, .03, set

20000, 50000 .05, .08
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Figure 3.4: The effect of the different maximal species numbers on F3 and the different radii on
F2.

for the greatest value of min r (0.8), especially for max spec num equal to 20 and 50. Two
characteristic plots illustrating these effects are shown in Figure 3.4.

The other goal was to find evidence that using more levels than two can be useful. To achieve
this goal several values of level ( 2, 3, 5 and 10) were examined with the maximal species
number fixed to 20. The experiments were performed for F2 since it was the only function
on which the value of min r had significant effect. The result clearly showed that with the
optimal minimal radius UEGO was fairly robust w.r.t. the number of levels. However, when the
minimal radius was set to a much smaller value than the optimum, higher values of levels
outperformed the lower settings. This effect is illustrated in Figure 3.5. The first interesting
phenomenon that needs explanation is that in the first set of experiments, results on F1, F3
and F4 were very similar w.r.t. min r while on F2 we got a very different behavior. The first
idea that comes to mind is that F1 and F3 have few local optima so it is quite reasonable that
setting large maximal number of species would result in a poor performance since most of the
evaluations are devoted to search for the non-existent peaks while this problem does not exist in
the case of F2. This would also explain that the different values of min r had no effect: most
of the search was in fact random search.

For F4 test function UEGO needs more than 50,000 function evaluations for reaching the
global optimum. For a small number of species, the algorithm converges relatively fast to a
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Figure 3.5: The effect of the different number of levels with the optimal and with a much smaller
radius.

solution, but this solution is a local one. However, when the maximal number of species is great
(100, 200), UEGO spends more function evaluations on reaching a solution, but this solution will
be a global solution. For these values of maximal species number results in Table 3.3 will show
that the algorithm reaches the real optimum in 40% of executions for evals=50000 function
evaluations. Remember that F4 is a hard problem (30 dimensions and 125 local optima).

On the other hand, the optimal values of max spec num for F1 and F3 are 20. So, it seems
that for very hard problems is convenient to use a large number of species in order to ensure
the convergence to the solution. Therefore we suggest that UEGO should be used for optimizing
highly multimodal functions because it ensures easy species creation.

The second phenomenon, namely that it is reasonable to use more levels if the minimal
radius is smaller than the optimal minimal radius (for levels=2), is much easier to explain.
The “cooling” mechanism of UEGO ensures that if the maximal level is high then in some phase
of the search the radius is very likely to be near the optimal value while if the maximal level is
2 then the radius immediately becomes the value set by the user. This property is very useful
since setting a higher maximal level may ensure a higher degree of robustness.

3.4 Comparing algorithms
In this section comparisons with a simple hill climber (SHC), a multistart hill climber (MHC)
and GAS will be shown. The parameters of SHC, MHC and GAS algorithms were set as fol-
lows. The hill climber (SHC) was the optimizer used by UEGO; it means that SHC is UEGO
with levels= 1. In the multistart case the number of restarts from a new random point was
given by the optimal value of the max spec num for UEGO. The parameters for GAS are very
similar to those of UEGO, so they were set to the Best UEGO parameters for every problem using
max spec num as population size.

Results for UEGO were obtained with levels = 2 in every case. max spec num = 20,



3.4. COMPARING ALGORITHMS 75

0 10000 20000 30000 40000 50000
No. Function  Evaluations

0.870

0.875

0.880

0.885

0.890

0.895

0.900

0.905

0.910

0.915

Fu
nc

tio
n 

V
al

ue
s

 Comparison of different algorithms
Test problem F1

Hillclimber
Best  Uego
Worst Uego
Multistart
GAS
global max.

0 10000 20000 30000 40000 50000
No. Function  Evaluations

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

Fu
nc

tio
n 

V
al

ue
s

 Comparison of different algorithms
Test problem F2

Hillclimber
Best  Uego
Worst Uego
Multistart
GAS
global max.

0 10000 20000 30000 40000 50000
No. Function  Evaluations

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

Fu
nc

tio
n 

V
al

ue
s

 Comparison of different algorithms
Test problem F3

Hillclimber
Best  Uego
Worst Uego
Multistart
GAS
global max.

0 10000 20000 30000 40000 50000
No. Function  Evaluations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fu
nc

tio
n 

V
al

ue
s

 Comparison of different algorithms
Test problem F4

Hillclimber
Best  Uego
Worst Uego
Multistart
GAS
global max.

Figure 3.6: Comparison of the hill climber, the multistart hill climber, GAS and UEGO.

min r = 0.8 for F1, and F3 test functions, and max spec num = 100, min r = 0.2 for F2 and
F4 test functions were the setting parameters for the results named as Best UEGO. Parameters
for Worst UEGO were max spec num = 200, min r = 0.003 for F1, and F3 test functions, and
max spec num = 20, min r = 0.03 for F2 test function, and max spec num = 200, min r
= 0.03 for F4 test function. Numerical results of these comparison experiments are shown in
Figure 3.6 and Table 3.3.
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Table 3.3: Comparison of the UEGO, the multistart hill climber and GAS. % means the percent
of the runs reaching the global optimum.

UEGO MHC GAS

Eval. N.Spec. % Eval. N.Spec. % Eval. N.Spec. %

F1, levels=2, max spec num=20, min r=0.8

811 2.62 88.5 1000 3.56 2 1673 2.30 76.4
1482 2.74 99.1 2000 3.42 98 3410 2.50 98.2
2062 2.86 100 3000 3.14 100 5075 2.54 100
3228 2.88 100 5000 2.84 100 8549 2.50 100
6038 2.94 100 10000 2.72 100 17194 2.76 100
8411 2.98 100 15000 2.46 100 26743 2.78 100

10621 3.24 100 20000 2.28 100 34580 2.82 100
22826 3.32 100 50000 1.02 100 86435 2.78 100

F2, levels=2, max spec num=100, min r=0.2

751 7.12 0 1000 8.22 0 1631 0.94 0
3020 7.44 0 2000 10.04 0 2371 1.42 0
2049 7.40 3 3000 12.16 0 3343 3.44 0
3019 7.82 48 5000 9.98 4 5997 5.12 0
5151 7.94 96 10000 7.86 56 8120 7.44 0
6228 8.52 100 15000 6.02 84 25276 9.32 0

17152 8.96 100 20000 4.38 100 35122 11.38 20
19246 9.74 100 50000 5.24 100 87930 11.46 28

F3, levels=2, max spec num=20, min r=0.8

918 2.96 0 1000 20* 0 1818 1.06 0
1807 3.28 0 2000 20* 0 3428 1.08 0
2708 3.54 0 3000 20* 0 5108 1.08 0
4597 3.72 42 5000 20* 0 8748 1.16 0
9596 3.98 68 10000 7* 0 17428 1.16 0

14467 4.64 98 15000 4.88 98 24914 1.46 10
19492 4.94 100 20000 4.86 94 37365 1.28 10
49477 4.98 100 50000 4.98 100 87569 1.00 18

F4, levels=2, max spec num=100, min r=0.2

899 5.8 0 1000 100* 0 1817 1.28 0
1808 6.5 0 2000 100* 0 3419 2.16 0
2455 8.0 0 3000 100* 0 5102 1.78 0
4812 10.4 0 5000 100* 0 8746 1.32 0
9564 11.8 0 10000 100* 0 17407 2.24 0

14350 12.6 10 15000 100* 0 28922 1.48 0
19587 15.0 16 20000 82* 2 34793 1.16 0
49804 20.4 40 50000 65* 4 40256 0.60 0
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Table 3.3 shows average values of the number of function evaluations, number of local or
global optima found (species) and the percentage of success in finding the global optimum. Set-
ting parameter values for functions F1, F2, F3 and F4, were chosen as a result of the preliminary
experiments. In this table, the symbol * means that most of maxima found were not local nor
global maxima.

It can be seen that for function F1, when evals ≥ 3000, all the three algorithms reached
100% of success in finding the global optimum, however UEGO was able to find more local
optima and it was at least 60% computationally less expensive than MHC and GAS algorithms.
For function F3, with only five maxima, GAS was able to find the global optimum in a very few
runs (18% success), while UEGO and MHC were fully successful when evals=50,000. They
found all the local and global optima in most of the runs. Similar results were obtained for
function F2, but in this case UEGO outperformed MHC in the number of species (local optima).
Finally, results for the hardest function F4, clearly show that though UEGO did obtain only 40%
of success in finding the global optimum, it was able to find 20 real local optima while MHC

and GAS failed in all the cases.
In short, it can be said that UEGO is slightly better than the multistart hill climber for F1, F2

and F3 and for problem F4, UEGO is the only technique that reaches the global optimum. From
Figure 3.6, it is clear that Best UEGO outperforms SHC and GAS for all the functions.

These results indicate that it is reasonable to use the clustering technique to create starting
points since the performance does not decrease but, unlike the multistart hill climber, UEGO
provides a great number of reasonably good solutions that are at least as far from each other
as the minimal radius (see Table 3.3). This property is very useful in several applications, for
example in decision problems: the expert decision maker has a lot of good solutions to choose
from. Also remember that the number of restarts of the hill climber was optimal. GAS is also
outperformed which justifies our efforts to eliminate the drawbacks of GAS.

3.4.1 Results for Griewank and Rastrigin functions
In this section some comparisons of above algorithms for Griewank and Rastrigin functions will
be shown. First of all we tried to find the best parameters for UEGO, so we decided to test UEGO
using several values of max spec num, levels and min r (in this case, values of min r
are normalized to the domain of definition of each function). The ranges of the parameters
are shown in Table 3.4. Experiments were performed for all combinations of these parameter
settings, and the threshold was automatically set.

Table 3.4: The values of the UEGO parameters for the test functions.

evals levels max spec num min r

10000, 15000, 20000, 2, 3, 5, 10, 0.1, 0.2,
30000, 50000, 200000 5, 10 50, 200 0.5, 0.8,

Both functions are ten-dimensional and they have several optima, so these test functions are
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hard multimodal problems. The best performance over these test functions was reached when
the number of levels was 10 because in this case the convergence is rather slow and the
probability for finding the best solutions is high. The optimal max spec num tends to be high.
Particularly, for comparisons we chose the values 50 and 200 for Griewank and Rastrigin test
functions respectively. The optimal min rad was 0.1 and 0.2, respectively.

Table 3.5 shows some comparisons among UEGO, MHC and GAS. For each algorithm the
number of function evaluation (Eval), the most-fit species function value (Val) and the number
of species found (Sp.) are shown. It is interesting that the real optimum (whose value is zero)
was not found for any of the algorithms, for any of the parameter combinations tested. How-
ever, UEGO found the global optimum when more function evaluations were allowed, i.e. for
Rastrigin test function, UEGO needs about 25,000,000 function evaluations to find the global
optimum. We tried to find the optimum using MHC and GAS algorithms as well, but they did
not reach it in those experiments, even when the number of function evaluations was higher
than 100,000,000. For Griewank function, the three algorithms found the global optimum in
1,000,000 function evaluations. The number of global and local optima found by UEGO and
MHC were quite similar.

To summarize the results: it has been demonstrated that both the clustering and the level-
based “cooling” techniques of UEGO show some advantages over its predecessor GAS. On the
other hand, UEGO can be parallelized almost as effectively as the multistart hill climber. Without
going into the details we mention that a parallel version of UEGO using a simple asynchronous
Master Slave model has been implemented and executed on a Cray T3E using up to 33 proces-
sors (Ortigosa, 1999; Ortigosa et al., 2001) and for a set of eleven test functions an almost linear
speed up was obtained. Using 33 processors the values of the speed up range between 27 and
32.

3.4.2 A Note on Parameter Setting

As shown clearly by the previous sections, there is no unique best way to set the parameters
of UEGO. The optimal setting depends on the problem structure. This fact is not surprising
since the heuristics used in the algorithm make explicit assumptions about the structure of the
domain. It is not special to UEGO either since general theoretical results about the relationship
between search domains and optimizers (Wolpert and Macready, 1997) predict this effect.

If information is available on the number and distribution of local optima of the problem
to be solved then it is possible to set the parameters based on the design principles of UEGO

and on the empirical results discussed in Section 3.3.3. If there are many local optima then the
maximal number of species should be high and if they are close to each other then the minimal
radius should be small. Of course, if the structure of the problem is unknown then preliminary
experimentation is necessary. One possible strategy suggested by our experiments is to use
a small minimal radius, more levels, e.g. 10, and to use a high maximal number of species,
e.g. 200. The number of species created during the optimization gives a hint about the number
of local optima, though this is only a heuristic since e.g. having many species is not sufficient
nor necessary for having many local optima especially if the number of function evaluations is
small.
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Table 3.5: Comparisons for Griewank and Rastrigin Test Functions

UEGO MHC GAS

Eval. Val. Sp. Eval. Val. Sp. Eval. Val. Sp.
Griewank Test Function

2153 -0.1891 42.34 10000 -0.4805 50 15003 -0.4738 6.70
3434 -0.0874 42.96 15000 -0.3260 50 23876 -0.3658 10.54
4400 -0.0591 46.86 20000 -0.1797 50 33129 -0.2545 11.86
6267 -0.0315 48.84 30000 -0.0630 50 54823 -0.1258 11.78

17717 -0.0236 49.10 50000 -0.0200 50 85640 -0.0914 11.70
33057 -0.0103 49.18 200000 -0.0180 50 231462 -0.0243 11.80

Rastrigin Test Function
5043 -49.49 200 10000 -55.61 200 15311 -27.59 20.92
5686 -45.01 200 15000 -42.46 200 24214 -22.25 49.76
6757 -45.63 200 20000 -35.71 200 33289 -18.98 49.78
8467 -47.29 200 30000 -34.69 200 55122 -16.76 49.70

11918 -41.77 200 50000 -25.87 200 85746 -14.40 49.42
36827 -19.23 200 200000 -20.92 200 235875 -14.23 49.68

3.5 Experiments with the Subset Sum Problem

In this section we will discuss the performance of UEGO on an NP-complete combinatorial
optimization problem: the subset sum problem. A comparison with GENESIS (Grefenstette,
1984) and a hill climber will be presented. As another result of the experiment the behavior of
the parameters of UEGO will be illustrated.

3.5.1 Problem and Coding

In the case of the subset sum problem we are given a set W = {w1, w2, . . . , wn} of n integers
and a large integer M . We would like to find a V ⊆ W such that the sum of the elements in V
is closest to, without exceeding, M . This problem is NP-complete. Let us denote the sum of
the elements in W by SW .

We created our problem instances in a similar way to the method used in (Khuri et al., 1993).
The size of W was set to 50 and the elements of W were chosen randomly with a uniform
distribution from the interval [0, 1012] instead of [0, 103] (as was done in (Khuri et al., 1993))
to obtain larger variance. According to the preliminary experiments, the larger variance of W
results in harder problem instances which is important since comparing methods on almost
trivial problems makes little sense. The problem instance used here turned out to be so hard
that none of the methods employed could find an optimal solution. Based on the results of
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Table 3.6: The values of the UEGO parameters for the subset sum problem.

evals levels max spec num threshold min r

3000, 10000, 30000, 2, 3, 5, 10, 20, 40, automatically fixed
100000, 300000 5, 10 100, 200 set to 1

Section 4.2, M was set to SW/2. As will be shown, this is the most GA-friendly setting, so
there is no bias against GENESIS introduced by the problem instance.

We used the same coding and objective function as suggested in (Khuri et al., 1993). For a
solution (x = (x1, x2, . . . , x50)),

f(x) = −(a(M − P (x)) + (1− a)P (x))

where P (x) =
∑50
i=1 xiwi, and a = 1 when x is feasible (i.e. M − P (x) ≥ 0) and a = 0

otherwise. Note that the problem is defined as a maximization problem.

3.5.2 The Optimizer and GA Settings
In UEGO, the optimizer was chosen to be a simple SHC as was discussed in the Introduction.
In our implementation the SHC works as follows: mutate every bit of the solution with a given
probability (but mutating one bit at least), evaluate the new solution and if it is better than or
equal to the actual solution, it becomes the new actual solution. This type of SHC worked best
in (Mitchell et al., 1994), as well. The mutation probability was set at 4/n where n is the
chromosome length. This value was the same in all the experiments carried out including those
with GENESIS. The other GA parameters were a population size of 50, 1-point crossover with
probability 1, and elitist selection.

3.5.3 The Experiments
One of the two main goals of these experiments was to analyze the effects of the user-given
UEGO parameters described in Section 3.2.3. To perform this analysis, several values were
chosen for each parameter (see Table 3.6) then UEGO was run 50 times for every possible
combination of these values. This meant that 5 · 4 · 6 · 50 = 6000 experiments were performed
for one problem instance. Three problem instances were examined but since the results were
similar in each case, only one problem instance is discussed below. Figure 3.7 shows the effects
of the different parameter settings. As the plots are typical it was inferred that the parameters of
UEGO must be fairly robust for this particular problem class. It has to be noted that this does not
automatically imply that similar robustness would be observed on other domains as well (see
Section 3.4.2).

The other goal of the experiments was to make a comparison. Figure 3.8 shows the relevant
results. Note that it was difficult to select the best and the worst performance because the curves
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Figure 3.7: With the various level settings, max spec num is 100 and for the different max.
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Figure 3.8: The parameters for the best UEGO were max spec num=20 & levels=10, and
for the worst max spec num=5 & levels=2.

cross, but the plots give a good approximation. Here SHC is simply UEGO with the setting of
levels=1.

3.6 Summary

In this section UEGO, a general technique for accelerating and/or parallelizing existing search
methods was discussed. As was shown, most of the parameters of the system are hidden from
the user due to an algorithm for calculating those parameters from a couple of simple parame-
ters. This algorithm is based on principles stated in Section 3.2.3 and the speed of the applied
optimizer.

Experimental results were given for real and combinatorial problems. It was shown that the
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user-given parameters are robust in the case of the subset sum problem and the advantages of
the UEGO clustering technique and the level-based “cooling” technique were demonstrated on
the real domain.

Other experimental results were also given, such as the comparison of the technique with
several methods. In the case of the subset sum problem it was shown that UEGO is slightly better
than a GA and an SHC. On the real domain UEGO outperformed the multistart hill climber in
the sense that either the quality of the global optimum was better or the number of local optima
found by UEGO was larger. GAS was outperformed w.r.t. both aspects. The later indicates that
the modifications in order to eliminate the drawbacks of GAS has been successful at least in the
case of the problems we considered.
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Chapter 4

Real Building Blocks

This chapter contains ideas that are related to possible ways of describing the working of an
evolutionary algorithm. This work is useful for illustrating the epistemological problem men-
tioned in the Introduction, i.e. that for a meaningful description one needs terminology which
might not be available a priory. The subset sum problem is used troughout for illustration. The
first two sections describe two ways of looking at the search process and the last section tackles
a slightly different problem: search space visualization for explaining problem difficulty.

4.1 Implicit formae in Genetic Algorithms

This section discusses the new term implicit forma, which is useful for explaining the behaviour
of genetic algorithms. Implicit formae are special predicates over the chromosome space. These
prediactes are not defined as schemata of the representation at hand though they depend on
the representation. The new term is a generalization of the concept of formae such that every
approach connected to formae (e.g. fitness distribution) is also relevant to implicit formae. After
a short theoretical discussion, three examples are given for illustration, including the subset sum
problem which is NP-complete.

4.1.1 Introduction

An understanding of how genetic algorithms (GAs) work is of major importance from the point
of view of both theory and application. For a long time, the concept of schemata played the
central role in GA theory (Holland, 1975). However, it is now clear that this concept is itself
not enough for a prediction of the behaviour of the GA (White and Flockton, 1995); at least
some generalization of the concept is necessary for both binary and general representations.

For general representations, the concept of formae (e.g. (Radcliffe, 1992)) has been intro-
duced. This approach is especially useful in the design of genetic operators, but it should be
mentioned that formae are very similar to schemata in the sense that they are strongly con-
nected to the representation at hand (though the representation is normally designed using the
previously chosen formae).

85
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This section shows that besides the carefully designed formae there are other factors are
also important when modeling the search. These factors seem to be treated as properties of
formae in the literature, e.g. the variance of fitness (Radcliffe and George, 1993; Radcliffe and
Surry, 1995) or noise (Kargupta, 1995). While understanding that these are useful tools for
gaining information about the quality of a given representation of the problem at hand, we try
to provide a deeper insight into the search process by introducing the term implicit forma. We
believe that this approach will help in predicting and especially in explaining the behaviour of
GAs in several problem classes, including real-world applications.

In section 4.1.2, we give a brief introduction to forma analysis, restricting ourselves only
to the basic definitions, and implicit formae are then discussed. In section 4.1.3, the new term
is illustrated through three case studies. One of the examples is the subset sum problem, an
NP-complete combinatorial problem. The relation of the GA and the bit-hillclimber algorithm
is also discussed on the basis of implicit formae.

4.1.2 Formae and Implicit Formae

Formae

A discussion of formae is needed only to make it clear why the name implicit forma has been
used to denote the properties discussed here. Thus, a very basic knowledge suffices. A detailed
description can be found in (Radcliffe, 1992).

A representation maps the solution space S to a chromosome space C. Usually, every
x ∈ C can be regarded as an intersection of a set of predicates over C. If C = {0, 1}n, then
these predicates are the schemata of order 1. If C is the chromosome space of the permutation
representation of the traveling salesman problem, then these predicates are the subsets of the set
of all permutations with a fixed town at a given position. Thus, a set of alleles (i.e. predicates
that a chromosome may contain) can be assigned to every representation. A forma is simply
the intersection of a subset of the alleles. The empty set is not a forma. It is clear that if
C = {0, 1}n, then formae reduce to schemata, so a forma is a generalization of the concept of a
schema.

From our point of view, the essence of the above definitions is that formae are predicates
over the chromosome space C that are closely related to the representation at hand. When the
emphasizing the difference between these formae and implicit formae is needed we will use the
name explicit formae.

Implicit Formae

It has already been shown (Radcliffe, 1991a; Vose, 1991) that every predicate over the space of
all chromosomes C behaves according to the schema theorem for some appropriate genetic op-
erators; in other words, its proportion is approximately determined by its observed fitness. The
forma analysis is connected to this result, i.e. representation-independent operators are designed
(Radcliffe and Surry, 1995) to be “friendly” with the formae given by the representation. For
some special GAs schemata have been introduced that are useful in modeling the search. One
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example is relative ordering schemata (Kargupta et al., 1992) and another comes from group-
ing GAs (Falkenauer, 1994b; Falkenauer, 1994a) where groups can define schemata. These two
examples can not be defined using fixed positions and wildcards, though they can be defined us-
ing unions of such fixed schemata. However, it is possible that some other arbitrary predicates
over the chromosome space C are also treated as the formae, i.e. they obey the schema theorem
and so are suitable for modeling the search. Examples of this phenomenon will be given in
section 4.1.3. The existence of such predicates motivates our central definitions.

The definitions below are relative to a given GA implementation. On this implementation
we mean the search space, the encoding of this space and a set of genetic operators (selection,
crossover, mutation). However the definitions are independent of the objective function.

Notation 1. Let P(C) be the set of all predicates over the chromosome space C.

Definition 22 has a central role. It gives a possible property of elements of P(C) that will
be important when talking about the search process.

Definition 22. The degree of relevance of a given predicate P ∈ P(C) with respect to a GA
implementation is r(= r(P )) iff during the successive iterations of the GA and P as the objec-
tive function (P (x) = 1 if x ∈ P , 0 otherwise) starting from an infinite uniformly distributed
random population, the proportion of P goes to r as the number of generations goes to infinity,
where

P (x) =

{

1 if x ∈ P
0 otherwise

Definition 23. A given predicate P ∈ P(C) is an implicit forma iff r(P ) > p0 and is neutral
iff r(P ) = p0, where p0 = |P |/|C|.

This definition gives a possibility for measuring the “disruptive effects” of a given GA im-
plementation on the given subset. It is important that this definition is relative to an implemen-
tation of the GA but it is independent of any fitness function that will be optimized by this GA.
The fitness function used in the definition is fixed. It serves as a tool for grasping the disruptive
effects of the GA implementation at hand. This notion can be considered as a generalization of
schemata, or rather building block as building blocks are considered to be the subsets that are
disrupted less by the GA (short, low order schemata). Of course, some drawbacks can be found
here as well. For instance in the actual search process the sampling error must be considered.
The rate of relevance is also important and would be worth discussing in more detail, but for
our present purposes Definition 23 suffices. The definition of the degree of relevance refers to
infinite populations. In practice, the intuitive relevance also depends on the size of the predicate
since very small predicates might not get a sample at all.

Though here we focus on the experimental results, for illustration we give an analysis of
predicate EVEN without the straightforward technical details.

Definition 24. C = {0, 1}n, EVEN ∈ P(C); EVEN(x) iff the number of 1s in x is even.

Through this simple example, we would like to emphasize an advantage of Definition 22:
due to the very simple objective function that is applied in this definition an exact dynamic
analysis of the relevance level can be given even for realistic problems and predicates.
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Theorem 6. Let the GA components be C = {0, 1}n, 1-point crossover with a probability Pc,
generational and proportional selection without the transformation of the objective function (i.e.
the fitness function equals the objective function) and no mutation. Then, for a large enough n,

r(EVEN) ≈ (1− Pc) +
1

2
Pc (4.1)

Proof. If n is large enough, then for any x ∈ C the probability that a randomly chosen half of
x contains an even number of 1s is 1/2. Let pt be the proportion of EVEN in the tth generation,
and let g(pt) be the expected proportion in generation t + 1 without the effect of the genetic
operators. Here, g(pt) = 1. The disruption of the genetic operators under the above assumptions
is

dr(g(pt)) = g(pt)(1− Pc) +
1

2
Pc

It is trivial that dr ◦ g has a unique fixpoint x0 in (0, 1] which is given by the equation
dr(g(x0)) = x0 and equals (4.1).

Theorem 7. Let the GA components be the same as in Theorem 6 except that the fitness function
is the objective function incremented by 1. Then, for a large enough n,

r(EVEN) ≈ 1

2



1− 3

2
Pc +

√

(
3

2
Pc)2 − Pc + 1



 (4.2)

Proof. The same as the proof of Theorem 6, except that g(pt) = 2pt/(pt + 1).

A trivial corollary immediately follows from Theorems 6 and 7.

Corollary 1. Under the assumptions of Theorem 6 or 7, if Pc = 1, then EVEN is neutral, and
if Pc 6= 1, then EVEN is an implicit forma with the relevance level given by (4.1) and (4.2),
respectively.

It should be emphasized that an implicit forma is not necessarily a useful predicate, in the
sense that it is not necessarily suitable for describing the search. Its usefulness depends on the
particular objective function f , e.g. on the variance of f in it. Finally, note that the definition of
implicit formae characterises only the possible set of predicates that might be usful for modeling
the search with the given GA implementation since it is independent of the fitness function.
Over a given domain the appropriate implicit formae have to be chosen for creating the model.

4.1.3 Implicit Formae at Work
In this section, three case studies will be presented. The first illustrates how (rather exotic)
implicit formae can direct the search process. The second is the subset sum problem, where we
analyze the GA from the basis of implicit formae. The third offers a possible way of creating
problems in which the GA performs better than a simple hillclimber algorithm, again using
implicit formae. Such problems have received much attention recently (Mitchell et al., 1994).
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The following GA components are the same in all three examples: C = {0, 1}100, 1-point
crossover, mutation with Pm = 0.003 and a population size of 100. Pc = 0.6 in the last
example, otherwise Pc = 1. The selection used was elitist and proportional. To perform the
experiments, GENESIS was used modified so that it could trace our non-traditional implicit
formae. The algorithms were run until 104 function evaluations in every experiment in each
case. All functions were maximized.

An Example for Illustration: the Equal Blocks Problem

The objective function f of this example was designed especially to illustrate the idea of implicit
formae. However, it should be noted that it may very well happen that real problems have
features like this one. Its domain is C and for an x ∈ C f(x) is counted as follows:

Let us fix an ideal block size b = 5. Let us divide x into blocks that contain only 1s or 0s
(e.g. 111|0|11|000). For every block containing b′ elements let us subtract a penalty |b−b′| from
the objective function value and let us fix the optimum value at 0. It is clear that the optimal
individual will contain 20 blocks with 5 elements in each. For illustration, we give the two
optimal solutions of the 30-bit equal blocks problem:

000001111100000111110000011111, 111110000011111000001111100000

This task meets our needs because formae (i.e. schemata) have little meaning and high
fitness variance. It may be thought that schemata like

∗ . . . ∗ 0111110 ∗ . . . ∗
have high fitness. However, their fitness variance is considerable because the function is ex-
tremely epistatic and is quite insensitive to shifting due to its inherent properties.

Twenty independent experiments were performed with the GA and also with the uniform
random search. The averages of the solutions found were −23.3 and −212.2, respectively. An
explanation of this result can be given on the basis of the existence of implicit formae. Let us
define a predicate over C.

Definition 25. Let [y, z]-blocknumber∈ P(C) and x ∈ C. [y, z]-blocknumber(x) is true iff the
number of blocks contained in x is in [y, z].

Figures 4.1b and 4.1a support the following hypotheses:

• [20, 30]-blocknumber is an implicit forma. As shown in Fig. 4.1a, [20, 30]-blocknumber
gained a proportion of almost 100%. It is also interesting to note that (as shown in
Fig. 4.1b) the expected and observed growth fits well. This also indicates that [20, 30]-
blocknumber is an implicit forma.

• [20, 30]-blocknumber has an important role in modeling the search process. The typical
S-curve in Fig. 4.1a is familiar from the analysis of the above average and low order
schemata of low fitness variance.

To summarize the first example, it have been shown that an implicit forma the existence of
which is not trivial from the representation played an important role in the search.
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Figure 4.1: (a) the proportion growth and (b) the expected and observed growth of the implicit
forma [20, 30]-blocknumber. Average of 20 independent runs.

A Real Example: the Subset Sum Problem

We study the subset sum problem here. We are given a set W = {w1, w2, . . . , wn} of n integers
and a large integer M . We would like to find an S ⊆ W such that the sum of the elements in S
is closest to, without exceeding, M . This problem is NP-complete.

We used the same coding and objective function as suggested in (Khuri et al., 1993): If
x ∈ C (x = (x1, x2, . . . , x100)), then let P (x) =

∑100
i=1 xiwi, and then

−f(x) = a(M − P (x)) + (1− a)P (x)

where a = 1 when x is feasible (i.e. M − P (e) ≥ 0) and a = 0 otherwise.
When creating a problem instance, elements of W were drawn randomly from the interval

[0, 104] instead of [0, 103] (as was done in (Khuri et al., 1993)) to obtain larger variance and thus
a harder problem. The sum of all of the elements in W was 455784 and the sum to be created
was 105. (It should be noted that optimal solutions do exist for the examined problem instance.)

After studying several experiments with the GA, a hypothesis seemed reasonable. The GA
tends to sample individuals in which the number of 1s is close to 100 · 105/455784 ≈ 22. That
means that the numbers in W are treated as probability variables for which the expected value
of the sum of any subset with 22 elements is 105. In other words, it is assumed by the hypothesis
that the GA “figures out” how the problem instance was generated. After forming the above
hypothesis, four algorithms were run 50 times independently:

GA As described earlier.

HYPO A direct implementation of the hypothesis. Every bit is set to 1 with a probability of
22/100 = 0.22 independently.

RAND Uniform random search.
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Figure 4.2: Proportion of value 1 for a given bit over the solutions of the 50 independent runs
of the GA. The proportion indicated by the hypothesis is also shown.

HILLCLIMB Starting from a random solution, a randomly chosen bit is inverted and the new
solution replaces the old one if it is not worse. This process is iterated.

The averages of the solutions were −4.36, −4.65, −27177 and −302.4, respectively. GA
found 12, while HYPO found 6 optimal solutions during the 50 runs. The results clearly reveal
that, the hypothesis is reasonable. However, the average number of bits in the 50 solutions of
the GA is 28.9, which is slightly more than predicted. Figure 4.2 sheds some light on this issue.
The higher peeks tend to belong to relatively small values from W , while the lower proportions
indicate a relatively large value. This is because individuals containing large values tend to die
off at the very beginning of the search.

It is now time to explain exactly what the hypothesis means. Clearly, it says nothing about
any particular element or subset of W . The only important feature is the number of 1s in an
individual, according to the hypothesis. To express this in our terminology, there are implicit
formae, based on the number of 1s in a chromosome, that play a mayor role in the optimization
process. This motivates the following definition.

Definition 26. Let [y, z]-1s∈ P(C) and x ∈ C. [y, z]-1s(x) is true iff the number of 1s in x is
in [y, z]

[24, 34]-1s was traced by GENESIS and the statistics are shown in Fig. 4.3. The graphs
are very similar to those of the previous example, the equal blocks problem, so the conclusions
are also very similar; in the case of the subset sum problem (with the GA components and the
problem instance generation method used here), implicit formae play an important role.

When Will a GA Outperform Hillclimbing?

The title of this section is borrowed from (Mitchell et al., 1994). Here, using implicit formae,
we will try to point out some basic differences between the GA and hillclimbing through a
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Figure 4.3: (a) the proportion growth and (b) the expected and observed growth of the implicit
forma [24, 34]-1s. Average of 20 independent runs.

simple example. We believe that this approach can be generalized, however. Moreover, using
the definitions given in (Radcliffe and Surry, 1995), more general representations could also be
considered.

It is well known that functions that are easy for the GA (e.g. royal road functions) are easy
(if not easier, see (Mitchell et al., 1994; Juels and Wattenberg, 1996)) for the bit-hillclimber, i.e.
the algorithm HILLCLIMB in section 4.1.3. This is because HILLCLIMB can easily combine
explicit formae (here schemata) in the case of such problems.

But what about implicit formae? As we have seen, the GA can “handle” several implicit
formae besides the explicit ones, and these implicit formae are not necessarily implicit formae
w.r.t. HILLCLIMB. The example of this section illustrates this effect. Let us consider the
function

f(x) =

{

‖x‖ if ‖x‖ is even
−‖x‖ otherwise

where ‖x‖ is the number of 1s in x. This function is extremely hard for HILLCLIMB since
every x with even ‖x‖ is a local optimum from which HILLCLIMB cannot get out. On the
other hand (as shown in section 4.1.2), EVEN is an implicit forma if Pc < 1 and Pm = 0. On
the basis of this observation, Pc was set to 0.6.

Twenty independent experiments were performed with RAND, HILLCLIMB and the GA.
The average best results were 67.7, 49.2 and 83.3, respectively. Observe that HILLCLIMB is
considerably worse than RAND. Figure 4.4a indicates that EVEN is an implicit forma with a
relevance level of approximately 0.66.

As shown in Fig. 4.4b, in spite of the constantly strong pressure, EVEN cannot go further
than 66% after a quick increase at the very beginning of the search. However, the relevance
level of 0.66 is enough to outperform both RAND and HILLCLIMB.

Let us make a final remark. It may be thought that EVEN is a very artificial property which
will not be encountered in the case of a real problem. However, for instance, it is a well-known
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Figure 4.4: (a) the proportion growth and (b) the expected and observed growth of the implicit
forma EVEN. Average of 20 independent runs and a typical single run, respectively.

fact in chemistry that atoms that have an even number of nucleons in their nuclei are always
more stable than those with an odd number of nucleons.

4.1.4 Happy or Sad Conclusions?

We have examined the implicit formae, the invisible forces that can direct the genetic search
as strongly and definitely as explicit formae. We must be a little more precise here: nothing
directs genetic search expect the fitness function, as the genetic operators know nothing about
the expected proportions of some subsets of the search space. The operators can see only a
relatively little population (selection) or a couple of solutions (recombintion, mutation). What
we are talking about is imagining genetic search. It is very important though, since to analyse
something first we need models to work with. The only problem is that in the case of a particular
problem we know only the explicit formae and this can make modeling of the behaviour of the
GA quite difficult if these formae have a small relevance level.

One solution could be to find implicit formae that might be suitable for modeling given
domains and examine them with the tools of the GA analysis. This may be a lot of work since
it is not trivial at all what the implicit formae of a given representation are, even if it is simple.
In spite of this, for commonly used domains it may worth doing this analysis. However, for real
applications, the representation (and thus the chromosome space C) and the operators tend to be
different, difficult and problem-specific so the situation is not too hopeful. The other solution is
to create representations automatically using machine learning techniques. Section 5.1 presents
such an approach.
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4.2 A Wave Analysis of the Subset Sum Problem
This section introduces the wave model, a novel approach on analyzing the behavior of GAs.
Our aim is to give techniques that have practical relevance and provide tools for improving the
performance of the GA or for discovering simple and effective heuristics on certain problem
classes. The wave analysis is the process of building wave models of problem instances of a
problem class and extracting common features that characterize the problem class in question.
A wave model is made of paths which are composed of subsets of the search space (features)
that are relevant from the viewpoint of the search. The GA is described as a basically sequential
process; a wave motion along the paths that form the wave model. The method is demonstrated
via an analysis of the NP-complete subset sum problem. Based on the analysis, problem specific
GA modifications and a new heuristic will be suggested that outperform the original GA.

4.2.1 Introduction
This section introduces the wave model, a novel approach on analyzing the behavior of GAs.
Our aim is to give techniques that have practical relevance and provide tools for improving the
performance of the GA or for discovering simple and effective heuristics on certain problem
classes.

This is very important since the models known from the literature are not capable of pro-
viding such information. There are measures of problem difficulty such as (Jones and Forrest,
1995), but they tend to be very expensive to calculate and do not provide much more informa-
tion than the result of running the GA on the given problem. Other approaches suggest features
that are responsible for problem difficulty such as deception (Whitely, 1991) or having long
paths (Horn et al., 1994) but the identification of these features for nontrivial problems is hard
and it is not clear, how to improve the performance based on the identified features. Exact
models such as Markov chain analysis (Suzuki, 1993) are not tractable on nontrivial problems
while the wave model is a trade-off between exhaustivity and practical usefulness. Forma anal-
ysis (Radcliffe and Surry, 1995) has similar practical motivations but while it still stands on the
ground of the traditional building block hypothesis (Goldberg, 1989) the wave analysis is an
attempt to shed some light on a rather different aspect of the search process.

In section 4.2.2 the basic concepts of the wave analysis will be discussed. In section 4.2.3 the
practical application of the wave model is demonstrated. The problem class under consideration
is the subset sum problem which is NP-complete. After analyzing this problem class, problem
specific GA modifications and a new heuristic will be suggested that outperform the original
GA. Finally, the results will be summarized.

4.2.2 The Wave Model
First the terminology should be clarified. The wave analysis is the process of creating a wave
model of a fixed objective function or the elements of a characteristic set of functions from a
problem class and then extracting the common features of the models. The GA implementa-
tion (selection and genetic operators) is also fixed. Thus, a wave model belongs to a problem
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instance and a GA implementation and the wave analysis is a framework for creating and ana-
lyzing such models.

It has to be noted that the analysis is not an automated process. It is a framework that helps
creating problem class specific models, but finding a good wave model remains a hard task. The
evaluation of the results of the analysis (e.g. the description of the role of the genetic operators)
is non-trivial as well. The utility of the approach is not providing trivial methods for gaining
information about a problem. Instead, it is a “way of thinking” that makes it possible to learn
from the GA how to solve problems, and to develop new, effective and problem class specific
heuristics.

As it is widely known, the GA is a very flexible meta-heuristic that is successful on very
different problem classes. Models of the GA try to capture the reasons of this flexibility. For
example, the oldest, schema based approach suggested, that the search process is nothing else
but the identification of ‘building blocks’ via selection and combining them together via the
reproduction operators in an implicitly parallel way.

Using the wave analysis we look at the GA as a collection of heuristics and in the case of a
given problem class we try to identify the one actually used by the GA. This approach simply
means that the actual search process performed by the same GA implementation in different
domains can have different models and these models can be converted to heuristics that may
outperform the original GA (see Section 4.1). The wave model is sequential emphasizing the
similarity between the GA and hillclimbing methods. In this framework the GA is in fact a very
general and flexible hillclimbing method.

Now, let us fix the notations. Let S be the search space, f : S → IR the objective function,
C the coding space and g : S → C the injective coding function. For the sake of simplicity,
the notation f(c) (c ∈ C) will be used instead of f(g−1(c)). Let P0 be the initial population
and Pi the population at step i. Let f(Pi) be the average function value of the individuals in
population Pi. The objective function will be maximized.

Waves

Before introducing the concept of waves, an assumption will be made: f(Pi) ≤ f(Pj) if i < j
and the variance of f in the succeeding populations does not increase. This assumption is rather
weak since it follows from the properties of the selection mechanisms commonly used in GAs
(see e.g.(Blickle and Thiele, 1995)).

A wave needs a space in which it can spread. To construct this space, let us sort the elements
of C along a one-dimensional line according to the partial ordering given by f . Then, every
element in this ordering will be a subset of C with elements having the same function value.
Observe that the above assumption means that during the search the population can be looked
at as a wave that spreads towards the region with the better values. Such a wave is shown in
Fig. 4.5.

The goal of creating a wave model is to extract the problem specific characteristics of this
wave motion. The main method of achieving this goal will be a discretization in terms of
characteristic features of C and the result of this will be called a path. Paths will be defined in
the next section.
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Figure 4.5: Here S = [0, 1], f(x) = x. The population size is 50. Ranking selection and binary
encoding were used. The evaluation number is 100, 300 and 500 respectively. The height of the
box at point i indicates the proportion of Prefix1

[i,i] in the population (see Definition 30).

Paths

First, let us define a partial ordering over the subsets of C as it was done in (Vose, 1991).

Definition 27. Let C1, C2 ⊂ C. C1 < C2 iff maxc∈C1
f(c) < minc∈C2

f(c).

The next definition will be the basis of the definition of path.

Definition 28. Let Ci ⊂ C, (i = 1, . . . , k). The sequence C1, . . . , Ck is an increasing sequence
of features iff Ci < Cj for every i < j.

Every path will be an increasing sequence of features but several restrictions have to be
considered. The first and most natural property an increasing sequence must have to be a path
is the wave motion property.

Definition 29. An increasing sequence of features C1, . . . , Ck has the wave motion property
iff for every i Pr(Ci ⊇ Pj for some j) ≈ 1. (where Pr() stands for probability and Pj is the
population at step j).
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Figure 4.6: Here S = [0, 1], f(x) = x. The population size was 50. Ranking selection and
20-bit binary encoding were used. The evaluation number was 1000. 50 independent runs were
performed. The number of representatives of the features Prefix1

[0,5], Prefix1
[6,12] and Prefix1

[13,20]

are shown as the function of generation index for every run.

Observe that the succeeding elements of the sequence with the wave motion property has to
cover the population one after another because it has been assumed that the average fitness in-
creases during the search and the sequence in question is increasing in the sense of Definition 28.
The definition allows us to verify the wave motion property both empirically and mathemati-
cally. Figure 4.6 exemplifies the wave motion property. The definition of the elements of the
increasing sequence illustrated in Fig. 4.6 is the following:

Definition 30. Let c ∈ {a, b}n. c has the feature Prefixa[i,j] if the first k letter of c is a (i ≤ k ≤ j)

and if k < n then the (k + 1)th letter of c is b.

Example 5. Let C = {0, 1}4. Then, using the traditional schema notation, Prefix1
[1,2] =

10∗∗∪ 110∗, Prefix0
[2,4] = 001∗ ∪ {0001, 0000}.

Let us shed some light on how to read the figures similar to Fig. 4.6. Every graph in the
figures corresponds to a feature. A graph depicts the number of elements in the given generation
(x-axis) having the feature in question. Instead of averaging the results, the graphs contain
a continous line for every experiment performed. For example, Fig. 4.6 clearly shows that
in generation 10 Prefix1

[0,5] is almost not represented in most of the experiments, Prefix1
[6,12]
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dominates the generation i.e. the wave is here in generation 10 and Prefix1
[13,20] starts gaining

strength.
At this point a natural question arises: can we accept an increasing sequence as a model of

the GA if the sequence in question shows the wave motion property. The answer is certainly no.
The problem is that if Pi ⊂ A holds for some featureA and for a population Pi then Pi ⊂ B will
also be true for any B ⊃ A. To overcome this difficulty, it has to be required that every element
of the increasing sequence of features has to be minimal in the sense of the next definition:

Definition 31. An element of an increasing sequence with the wave motion property Ci is
minimal if the replacing of Ci with any of its subsets results in a new sequence that does not
have the wave motion property anymore.

Now the definition of a path can be given.

Definition 32. An increasing sequence of features is a path if it has the wave motion property
and every element is minimal in it.

Path Decomposition

Definition 32 is still not sufficient for our purposes; some refinements have to be made. It may
very well happen that a path says little about the process inside the GA and cannot be a basis
of improving the performance of the search. The problem is connected with the multimodality
of the objective function. To shed some light on this issue, let us consider the example shown
in Fig. 4.7. Though it is a path, it is clear that if for the starting population P0 ⊂Prefix1

[1,5]

holds then with the given settings no solutions will be generated that would start with a 0 and
in fact the search will be identical with the earlier example shown in Fig. 4.6 so the sequence
Prefix1

[1,5], Prefix1
[6,12], Prefix1

[13,20] is a path. Similarly, its 0-prefixed counterpart is a path as
well. The above comments make it clear that the path in question has some kind of structure
and the information about this structure is essential from the viewpoint of a good model. The
above phenomenon motivates the next definition.

Definition 33. A path C1, . . . , Ck is complex iff there are two paths B1, . . . , Bk and A1, . . . , Ak
such that Bi ∩ Ai = ∅ and Bi ∪ Ai = Ci (i = 1, . . . , k). If a path is not complex then it is
simple.

Now the definition of the wave model can be given.

Definition 34. A wave model of the search performed by an implementation of the GA on a
given objective function is a set of simple paths such that for every method used for generating
the initial population P0 there is exactly one path in which the first feature C1 covers P0 with a
probability approaching 1 (Pr(C1 ⊃ P0) ≈ 1).

This definition of the wave model is very simple and could be refined in several ways.
For example it says nothing about the relation of different paths or other possible types of
decompositions of paths. However, for the present discussion it suffices since the focus is on
the empirical results of section 4.2.3.
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Figure 4.7: Here S = [0, 1], f(x) = |x − 0.5|. The population size was 50. Ranking
selection and 20-bit binary encoding were used. Only 1-point crossover was used with a
probability of 1. The evaluation number was 1000. 50 independent runs were performed.
The number of representatives of the features Prefix1

[1,5]∪Prefix0
[1,5], Prefix1

[6,12]∪Prefix0
[6,12] and

Prefix1
[13,20]∪Prefix0

[13,20] are shown as the function of generation index for every run.

4.2.3 The Subset Sum Problem
In this section we demonstrate the wave analysis using the subset sum problem which is NP-
complete. Then, using the wave model, the performance of the GA will be improved and a
heuristic will also be given that outperforms the original GA.

Problem Description and Representation

In the case of the subset sum problem we are given a set W = {w1, w2, . . . , wn} of n integers
and a large integer M . We would like to find a V ⊆ W such that the sum of the elements in V
is closest to, without exceeding, M . This problem is NP-complete. Let us denote the sum of
the elements in W by SW .

We created our problem instances in a similar way to the method used in (Khuri et al., 1993).
The size ofW was set to 100 and the elements ofW were drawn randomly with a uniform distri-
bution from the interval [0, 104] instead of [0, 103] (as was done in (Khuri et al., 1993)) to obtain
larger variance. According to the preliminary experiments, the larger variance of W results in
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harder problem instances. Five problem instances were generated (SUB1, SUB2, SUB3, SUB4
and SUB5). Since the value of M seemed to be interesting during the preliminary experiments,
M -s was set in a different way for all the five instances. We set Mi (M corresponding to the ith

problem instance SUBi) to the closest integer to SWi · i/9 where SWi is the SW corresponding
to SUBi.1 (It should be noted that exact solutions do exist for the examined problem instances.)

We used the same coding and objective function as suggested in (Khuri et al., 1993). C was
{0, 1}100. If x ∈ C (x = (x1, x2, . . . , x100)), then let P (x) =

∑100
i=1 xiwi, and then

−f(x) = a(M − P (x)) + (1− a)P (x)

where a = 1 when x is feasible (i.e. M − P (e) ≥ 0) and a = 0 otherwise.

Wave Analysis

The experiments were performed with GENESIS (Grefenstette, 1984). The selection type was
ranking selection. The operators were 1-point crossover and traditional mutation. The proba-
bilities of the operators are 1 and 0.003 if not otherwise stated. The population size was 100
and the number of evaluations was 5000 in every experiment. The initial populations were
generated by a uniform random sampling of C.

Before giving the analysis an important issue has to be discussed: the methods for identify-
ing the features that would form the paths of the wave model. In general, it is a tough problem
and requires a lot of work. In fact, it needs a scientific research: making a hypothesis, verifying
it doing experiments with the GA, improving the hypothesis and so on. The difficulty is hidden
in the fact that the set of possible features for given configurations of the GA is very large and
mostly undiscovered. Schemta form only a (maybe small) subset of this collection of features.
For example, the features that will arise in this work are fairly independent of schemata and
other examples are given in Section 4.1. It is very likely that any automation of this feature-
finding process (if possible) will involve very powerful and intelligent computational methods.
Section 5.1 offers a framework of finding features using machine learning methods.

Now let us see the wave analysis of the subset sum problem. Experimenting with the GA,
it has been found that on every problem instances the search has two phases: the distribution
optimization phase and the hillclimbing phase.

Distribution optimization

This phase is connected to the size of M . The method for generating the initial population
has a special bias regarding the number of bits. This factor has a gaussian distribution with
a mean value of 50 (the half of the string-length). This means that most of the elements in
P0 have approximately 50 1s so the expected value of the fitness function is SW/2. If M is
smaller than SW/2 then the initial population can be expected to have a poor performance.
Distribution optimization means that the GA alters the distribution and the number of 1s to a
better configuration. This phenomenon is the most characteristic in the case of SUB1 so we will

1Instances with an M > SW/2 have an ‘almost’ equivalent problem with an M ′ = SW − M . ‘Almost’
equivalent, because of the asymmetric construction of the objective function.
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Figure 4.8: The number of representatives of L[15,30], L[5,14] and L[0,4] respectively. The results
of 50 runs are shown as a function of generation index.

concentrate on this problem instance here. To construct a path for SUB1 let us first define a
feature:

Definition 35. A c ∈ C has the feature L[i,j] if the subset defined by c contains k of the largest
50 elements of W and i ≤ k ≤ j.

Then, we claim that the sequence L[15,30], L[5,14], L[0,4] is a path. The mathematical consider-
ations implying that the above sequence is increasing with a high probability (w.r.t. the samples
taken by the succeeding populations) are straightforward and elemental and therefore omitted.
The empirical results shown in Fig. 4.8 imply the wave property. The minimality and simplicity
of the path are also trivial if considering the definitions of these properties (see section 4.2.2).

Another argument beside this model is that it predicts2 that the high mutation probability
which has a bias towards the initial distribution of bits in the solutions detaining the wave motion
of the above path will decrease the performance. Experimental results justify the prediction (see
Fig. 4.9 and NAIV-M in Table 4.2).

2Prediction is possible because the path under consideration covers the whole search space and therefore does
not allow any other paths to exist.
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Figure 4.9: The proportions of L[15,30], L[5,14] and L[0,4] respectively. The probability of mutation
is increased to 0.06. The results of 50 runs are shown as a function of generation index.

The Hillclimbing Phase

This phase begins when the optimization of the bit distribution in the solutions has been per-
formed. The model of this second phase does not share the linear style of the first phase. On
the contrary, we suggest that there is an enormous number of paths in the model of this phase
that are built of relatively small sets and are highly problem instance specific. This is why this
phase is called the hillclimbing phase; such path structure calls for a hillclimbing strategy. This
claim is supported by section 4.2.3.

There are several arguments that support our suggestion regarding the path structure of this
phase. First, every run on every problem resulted in a different solution that are considerably
far from each other (see Table 4.1). The many optimal solutions found do not seem to have
any common feature except the bit distribution. Results of coding theory (van Lint, 1992)
also support that a great number of paths can exist without interfering with each other. As it
was shown in Chapter 2, GAS, a GA with a special niching technique supporting the separate
handling of different local optima outperformed the standard GA on this problem. Finally, the
modifications of the GA that were made using this hypothesis were successful as it will be seen
in section 4.2.3.
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Hamming distance
min. max. average variance

SUB1 13 69 47.56 91.89
SUB2 24 63 47.55 50.5
SUB3 34 65 49.91 26.2
SUB4 34 68 49.71 26.77
SUB5 35 64 49.97 25.21

Table 4.1: The values correspond to sets of optimal solutions of problem instances found during
all the experiments icluding the ones with the modifications of the GA (section 4.2.3). The
minimum, the maximum, the average and the variance of the Hamming distences of pairs from
these sets are shown.

The Wave Model

As the mindful reader has observed already, no exact wave models have been given for any
of the problem instances under consideration. Since the aim of the wave analysis is to extract
characteristic features of whole problem classes, the problem instance specific details (such as
the exact path structure of the second phase for a given problem instance) are not important.
What was given is a general characterization of the search on an arbitrary problem instance of
a class of the subset sum problem.

Application of the Results

As it has been suggested, the search has two phases: the bit distribution optimization phase and
the hillclimbing phase. It will be shown that both require extra computational effort that can be
saved. In the following, the modified algorithms will be described.

OPTDISTR, distribution optimization. This phase can be totally eliminated by explicitly en-
suring that the bit distribution is optimal from the very beginning of the search w.r.t the bias
of the population initialization procedure. This was done by modifying the problem instances.3

For a problem instance SUBi from the base set Wi the ki largest elements have been deleted
where ki was such that the sum of the remaining elements of Wi was the closest to 2Mi. A solu-
tion of a modified problem instance naturally defines a solution of the original problem instance
with the same function value.

All the following algorithms in this section use these modified problem instances.

5X1000, hillclimbing phase. According to our model, there are a lot of paths in this phase.
Since they are rather far from each other (see 4.1) and do not seem to show any common

3The algorithm of the modification is independent from the problem instances so can be looked at as a problem
class specific modification of the GA.
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NAIV NAIV-M OPTDISTR

#opt average #opt average #opt average
SUB1 4 -8.0 0 -6136.0 14 -5.26
SUB2 5 -7.64 0 -186.8 11 -3.92
SUB3 3 -10.5 2 -20.32 9 -3.98
SUB4 5 -7.94 6 -8.62 7 -5.5
SUB5 5 -9.6 8 -6.12 9 -6.7

OPTDISTR-M 5X1000 HEUR

#opt average #opt average #opt average
SUB1 12 -2.72 5 -5.8 15 -3.48
SUB2 9 -4.34 9 -4.0 9 -7.96
SUB3 9 -4.8 9 -3.35 4 -8.6
SUB4 10 -5.94 11 -4.0 4 -13.8
SUB5 5 -7.72 14 -3.76 2 -13.94

Table 4.2: The methods used are described in the text. NAIV is the GA used in section 4.2.3.
‘-M’ means that only mutation was used with a probability of 0.06. The values correspond to
the result of 50 independent runs. The number of optimal solutions found and the average of
the results of the runs are shown.

structure it was assumed that it would be a good idea process them separately. Therefore the
population size was reduced to 2 and the GA was run 5 times with 1000 evaluations in each to
ensure that only one path is processed at a time. Then, the best solution was picked as a result.
The only operator was mutation with a probability of 0.06. Note that this algorithm is rather
similar to – though more flexible than – the stochastic hillclimber.

HEUR, a heuristic. To examine the effect of the optimal bit distribution a heuristic has been
introduced which simply generated 5000 random individuals on the modified problem instances.
This method is in fact equivalent to generating an initial population with 5000 elements.

Evaluation

It can be seen that the optimal bit distribution is essential; even the random search (HEUR)
performed well though only the bit distribution was optimized.

The application of the information about the hillclimbing phase was useful as well. 5X1000
had the best average performance on almost every problem instance especially on SUB5 which
is the hardest (the largest) problem instance since the smallest set is subtracted from W5 due to
the bit distribution optimization. Note that no fine tuning of the parameters have been performed
to adapt the method to smaller problems. Table 4.2 clearly shows that the model has practical
relevance.
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4.2.4 Summary
In this section the wave analysis of GAs has been described. The wave analysis is the process of
building wave models of problem instances of a problem class and extracting common features
that characterize the problem class in question. A wave model is made of paths which are
composed of subsets of the search space (features) that are relevant from the viewpoint of the
search. The GA is described as a basicly sequential process; a wave motion along the paths that
form the wave model.

The above mentioned features include but are not at all limited to schemata. In fact there
are many that are independent of schemata such as those involved in the wave analysis of the
subset sum problem presented here. Using this analysis, modifications of the naiv GA has been
suggested that outperformed the original algorithm on the subset sum problem class.

4.3 Trajectory Structure of Fitness Landscapes
Characterization of trajectory structure of fitness landscapes is a major problem of evolutionary
computation theory. In this section a hardness measure of fitness landscapes will be introduced
which is based on statistical properties of trajectories. These properties are approximated with
the help of a heuristic based on the transition probabilities between the elements of the search
space. This makes it possible to compute the measure for some well-known functions: a ridge
function, a long path function, a fully deceptive function and a combinatorial problem: the
subset sum problem. Using the same transition probabilities the expected number of evaluations
needed to reach the global optimum from any point in the space are approximated and examined
for the above problems.

4.3.1 Introduction
This section is concerned with the characterization of fitness landscapes w.r.t. optimizers that
use a stochastic hill-climbing heuristic. Members of the field of evolutionary computation be-
long to this class of optimizers. The definition of hardness, maybe the most important feature
of a landscape is far from clear (see (Naudts and Kallel, 1998) for a summary of the available
measures) so we need to clarify the problem we would like to tackle.

Theory or Practice?

The first question is whether one would like to give a method for characterizing fitness func-
tions in practice i.e. a method which can be used to make predictions on interesting existing
(maybe black box) problems or one would like to gain theoretical insights of the working of the
optimizer.

In the first case the method needs to run fast; preferably faster than the optimizer itself
otherwise it would be easier to run the optimizer and see what happens. There are attempts to
give such practically useful measures like those based on the observed trajectories of several
runs with some fixed set of parameters (Kallel, 1998), or epistasis variance (Davidor, 1991a).
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These approaches are useful but from a theoretical point of view they have their limitations.
The main problem is that these methods do not take the whole search space into account but
instead only a very small fraction of it. The well-known measure, fitness distance correlation
(FDC) (Jones and Forrest, 1995) does not really belong to this first class since it needs to know
a global optimum in order to make predictions. If based only on a relatively small sample these
measures can be highly misleading as described in (Naudts and Kallel, 1998) and as confirmed
by our own experience.

Theoretically motivated measures need not be computed efficiently but they should be capa-
ble of providing a characterization of easy and hard functions and maybe useful in suggesting
constructed easy and hard problems. While the characterization suggested here belongs to this
class, techniques will be suggested that make it possible to examine relatively small problems
empirically.

Multimodality

Another question is multimodality. Many problem characterisation methods make the assump-
tion that the main criterion of the success of an algorithm is finding the global optimum. This
practice has serious drawbacks however. The first is that there can be multiple global optima
that may be arbitrarily far from each other which makes the original FDC meaningless. This
problem is not serious since it is possible to choose the distance from the closest global opti-
mum. The more serious problem is that in engineering practice where evolutionary computation
has its main applications it is not always necessary to find a global optimum. Intuitively, it is
enough to find solutions that are judged good enough by the engineers. This means that local
optima are not simply obstacles in the way of success; their distribution and the structure of
their attraction areas are essential from the point of view of problem characterization.

For example if a function has a unique global maximum that is a “needle in the haystack”
but in the same time it has another local optimum which is almost as good as the global one
but it has a large area of attraction then this function should be characterized as fairly easy.
However, when based on the whole search space which should be the optimal setting since it
contains the most information, FDC would predict that it is a hard problem if the global and
local optima are far from each other. Our approach emphasizes the role of the local optima.

One Number?

The practice of searching for a single number as a measure of problem hardness is is similar
to the efforts of psychologists to characterize human intelligence with a single IQ. Both have
the drawback of oversimplification. Our approach emphasizes the role of the interpretation of
certain figures and our measure of difficulty is in fact a function of the stopping criterion of the
search but is it possible to take other factors into account as well.

The Idea

The basic idea is to examine the trajectories of the space w.r.t. a given operator and stopping
criterion. The ending points of these trajectories form a very interesting set: these are the points
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the search is expected to converge to. Statistical measures over this set w.r.t. some properties
such as fitness or probability of being the result of the search are the best candidates for being a
hardness measure. Here a measure of this kind will be suggested.

There are practical problems when such measures have to be computed since a huge amount
of calculation is needed. As it was mentioned, it would be possible to obtain the trajectories of
the search by running the algorithm and collecting the history of the process. Our approach is
different. We define transition probabilities between the elements of the space. These values
define the probability of every possible trajectory and also they make it possible to identify the
points the algorithm is accepted to converge to. A heuristic for approximating the number of
trajectories leading to a given point will be given and statistical measures based on this data will
provide the hardness measure.

Based on these transition probabilities it is also possible to approximate the expected number
of evaluations needed to get from a point to a given other point. This values can be used as
distance measures and plots can be drawn that depict the convergence relations.

4.3.2 Basic Notions

This section introduces a model of stochastic hill-climbing search. This model will be used
in two ways. The first application is an iteration formula used for approximating the expected
number of steps of reaching the global optimum or any set of solutions from a point of the search
space. The second and maybe more original application is to characterize fitness functions using
the notion of endpoints. Let S = {s1, s2, . . . , sM} be the search space. Let us fix S to be the
binary space {0, 1}l.

A novel distance notion

Let us define an ordering of the solutions as was done in (Vose, 1991).

Definition 36. We say that si ≤ sj iff f(si) ≤ f(sj), where f is an arbitrary fitness function of
type S → IR. This means that sM is a global optimum.

For every mutation operator the probability of getting from a given solution to another one
can be given. For example the operator of the stochastic hill-climber is that every bit in the
solution is flipped with a given t probability. In this case the probability of getting from a given
solution to another one is td(1− t)l−d, where d is the number of different bits and l is the length
of the solutions. This model is used in this section. However, any mutation or other genetic
operator can be chosen.

Let Pr(j)
ik denote the probability of getting from sj to sk via the application of the mutation

operator j times. This notation is important for the main iteration formula. First of all we have
to compute the values Pr(1)

ik for every index. Let si and sk be solutions, let the probability of
flipping a bit be t, let the Hamming distance between si and sk be d and let the length of a bit
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string be l. Then

Pr
(1)
ik =















td(1− t)l−d iff si < sk
∑

si≥sk
td(1− t)l−d iff i = k

0 otherwise.
(4.3)

Note that the case i = k is very important, because Pr(1)
ii denotes the probability of no motion,

i.e. the sum of the probabilities of constructing a worse solution by the mutation operator. The
only exception is the case i = M , because at this point we have reached the global optimum
and that is the end of the search, so we choose Pr(1)

MM = 0. This guarantees that the following
iteration formula will measure the distance from the global optimum appropriately. Pr(j)

iM is
computed by the following iteration formula:

Pr
(j)
iM = Pr

(1)
ii Pr

(j−1)
iM +

∑

sk>si

Pr
(1)
ik Pr

(j−1)
kM , (4.4)

where j = 2, 3, . . .. This formula means that Pr(j)
iM is the probability of getting from si to the

global optimum in j steps. If i = M i.e. the solution is the global optimum then Pr(j)
MM need

not be computed because it is 0. The expected value of the number of steps from a solution to
the global maximum is given by the limes of the series

E
(j)
iM = E

(j−1)
iM + jPr

(j)
iM (j = 2, 3, . . .). (4.5)

This formula gives a new distance notion for the stochastic hill-climbing search which is in fact
the expected number of function evaluations. This distance is more expensive to calculate than
the Hamming distance, which is the basis of the FDC, but it provides more accurate and more
informative results. In the numerical experiments the following formula was used for checking
convergence:

jPr
(j)
iM < (j − 1)Pr

(j−1)
iM and jPr

(j)
iM < ε. (4.6)

Note that if the expected number of steps is zero then the solution at hand is a global optimum
or the global optimum cannot be reached at all. The later is not possible with the operator we
are using.

Endpoints

Our definition of endpoints is motivated by the very simple though quite common stopping
criterion: if the best solution does not improve after a given number of evaluations then the
program will stop. A solution will be called an endpoint if it is not expected to improve in a
given number of steps.

Definition 37. si is endpoint if P (1)
ii is greater than a given bound (near 1).
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Note that a given bound K corresponds to a stopping criterion of 1/(1−K) steps without
improvement. Also note that the set of endpoints depends on this parameter; the parameter of
the stopping criterion. The notion of endpoints depends only on the transition probabilities just
like the expected number of evaluations.

Though the notion of endpoints is independent from the calculation of the expected number
of evaluations, it is possible to generalize our above formulas to handle the set of endpoints
instead of the global optima alone. Let Z denote the set of the endpoints. Then

Pr
(j)
iZ =

∑

z∈Z

(

Pr
(1)
ii Pr

(j−1)
iz +

∑

sk>si

Pr
(1)
ik Pr

(j−1)
kz

)

, (4.7)

where j = 2, 3, . . . . Note that in this case Pr(1)
zi (z ∈ Z) is set to 0 for all si ∈ S, similarly to

the case of the global optimum in Eq. (4.3). Eq. (4.5) is changed to

E
(j)
iZ = E

(j−1)
iZ + jPr

(j)
iZ (j = 2, 3, . . .). (4.8)

Note that Eq. (4.7) gives the probability of reaching one of the endpoints from si in j steps and
Eq. (4.8) gives the expected value of the number of steps from a solution to an endpoint.

Endpoints are essential since they are the possible results of the search. This motivates our
approach that statistical measures of certain properties of these endpoints are the best candidates
for being a good hardness measure. Clearly Eq. (4.8) says nothing about a given endpoint, only
about the set of endpoints while the most important question is: what is the probability of
reaching a given endpoint starting from a random element of the space? This probability can be
approximated using the transition probabilities which define a weighted graph over the search
space S. Let us determine a spanning forest in this graph in the following way: let the roots of
the trees be the endpoints and for every other point let us select the outgoing edge (transition)
with the highest probability. It is easy to see that this method provides us with a spanning tree
with a maximal weight in O(S) time. Note that the edges of these trees point towards their
roots.

The endpoints of a given function describe the expected results of the stochastic hill-climber.
The probability of reaching a given endpoint can now be approximated with the proportion of
the points of the tree rooted from the given point in S. For instance if |S| = 100 and the tree of
a given endpoint contains 10 points then we say that the probability of reaching that endpoint
is 0.1. Using this probabilities it is possible to approximate the average fitness of the results of
multiple optimization runs. This values can be compared to the actual observed values as will
be done in Section 4.3.3.

It is also possible to characterize the deceptiveness of the problem with these probabilities.
Let us introduce our deceptiveness coefficient, a number from [0, 1], which is based on the notion
of endpoints.

Definition 38. Let BK be a set of bounds (minimal transition probabilities as parameters of
being an endpoint) from [a, 1) where 0 < a for a given bound K ∈ BK . Let Fmin be the
minimum, Fmax be the maximum of the fitness of endpoints, and let E be the expected value of
fitness. Let

sK = 1− E − Fmin
Fmax − Fmin

.



110 CHAPTER 4. REAL BUILDING BLOCKS

If Fmax − Fmin = 0 then let sK be 0. Then the deceptiveness coefficient is the mean value of
sK , where K takes the values of BK .

This number characterizes the problems: 1 indicates that the problem is misleading, 0 means
that it is very friendly. In section 4.3.3 this coefficient will be shown for some well-known
problems. Note that this coefficient depends on a set of parameters. It is possible to give
a coefficient for every stopping criterion by using the one element set containing the bound
corresponding to that criterion.

4.3.3 Empirical results
In this section our method will be demonstrated via empirical results. A stochastic hill-climber
was used with the same operator which has been mentioned in the section 4.3.2. First, a survey
will be given of the studied functions and some explanation on how to read the iteration and
the other figures. Finally our heuristic for determining the probabilities of the endpoints will be
validated via some empirical results.

Studied functions

Some well-known functions have been examined with our method. These are the Ridge func-
tion, the Long Path problem, Liepins and Vose fully deceptive problem and the Subset Sum
problem. The iteration figures (figures that show the expected number of evaluations for the
space) will be shown for these functions and the deceptiveness coefficient will also be dis-
cussed. Note that in the iteration figures noise has been added to the distances and fitnesses so
that identical points can be distinguished. For all the examined problems size was set to 10 bits
and the probability of the mutation operator of the hill-climber was 0.1.

Ridge function

Ridge functions were introduced by Quick, Rayward-Smith and Smith in (Quick et al., 1998).
In our experiments a 10-bit version was used. FDC predicts that ridge functions are very mis-
leading while the hill-climber and the GA easily solves the function. Our results show that this
function is easy. The ridge function hasn’t got local optima as it is shown in the iteration figure.
The iteration stopped after 488 steps, so the iteration figure shows that from every point in the
search space the global maximum can be reached in 250 steps.

The iteration figure shows that there is a path in the search space, as follows from the
construction of the ridge function. On the other hand, the points which are not on the path
were gathered at the beginning of it. It is also clear that from an arbitrary point the global
maximum can be reached only via walking through the path.

Let us examine the deceptiveness figure with respect to the number of endpoints. Obviously,
from bound 1 to 0.96 there is only one endpoint, the global maximum so it is predicted that
the hill-climber always finds the global optimum. One can easily see that when the bound is
0.96 there are only two endpoints and every other point tends to the worst one. This is why
the deceptiveness is 1. When the bound is under 0.96 the number of the endpoints suddenly
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Figure 4.10: The iteration figure of the 10 bit Ridge function
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Figure 4.11: The deceptiveness figure and the number of endpoints of the 10 bit Ridge function

starts to grow, because all the points on the path become endpoints. This is the explanation of
the jump of deceptiveness since as it has been mentioned the search process walks trough the
path so most of the points tend to the beginning of it. Additional decreasing of the bound has
essentially no effect on the value of deceptiveness because independently of the new endpoints
all the remaining points tend to the beginning of the path.

Note that our coefficient which depends on the stopping criterion clearly shows that the
friendliness of the ridge function as claimed by (Quick et al., 1998) heavily depends on the
stopping criterion; the allowed probability of staying in place has to exceed 0.96 to make the
problem friendly.
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Figure 4.12: The iteration figure of the Long Path problem

Long Path

Long Path problem is introduced by Horn, Goldberg and Deb in (Horn et al., 1994). This
problem was constructed to be difficult for the hill-climber. First of all, note that the problem
size was set to 11 bits, because this function is defined as odd bits problem. In this case formula
(4.5) converged after 1257 steps for all the points.

The iteration figure clearly reflects the structure of this problem, surely there is a long path.
In the case when some points with low fitness are closer to the global optimum than points
which are at the beginning of the path show that these points do not have to walk through the
path, they are able to jump into it. It is interesting that the shape of the path is not linear. It
means that inside the path bigger steps can be taken i.e. there are shortcuts. Recall that the
interpretation of our plots is essentially different from the interpretation of the FDC plots. In
our case the distance is the expected number of evaluations for reaching the optimum from
the given point and this distance is not a direct function of the encoding alone as in the case
of Hamming distance. This is why the structure of the plot indicates shortcuts why a similar
structure in an FDC plot would simply indicate deceptiveness.

In figure 4.13 from bound 1 to 0.96 the situation is the same as with the ridge function.
Under 0.96 the points of the path gradually become endpoints. The deceptiveness of the function
in the area where the points of the long path become endpoints as the bound decreases is lower
than in the case of the ridge function. This is due to the above mentioned shortcuts. When
all the points of the path become endpoints there is no significant change anymore. Note that
since in this case the path is longer than the path of the ridge function deceptiveness does not
increase as fast. The other interesting result to note is that our figures clearly show the structural
similarity between the long path and the ridge function.
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Figure 4.13: The deceptiveness figure and the number of endpoints of the Long Path problem
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Figure 4.14: The generalized iteration figure of the Liepins and Vose function

Liepins and Vose fully deceptive function

This problem was introduced in (Liepins and Vose, 1991a). This function is fully deceptive.
There is one global optimum and a local one. The global optimum is fairly independent of the
whole structure of the function so no trajectories converge to it. The only possibility to find it
is blind coin tossing.

If there is only one endpoint, the global maximum, then Eq. (4.5) converges for none of the
points after 20000 iteration steps. It means that from all points of the search space the global
optimum is unreachable under these conditions. That is why the iteration figure is meaningless
though is clear that the points are very far from the optimum. For this reason Eqs. (4.7) and
(4.8) were used.

The generalized iteration formula with bound 0.999 results in figure 4.14. There are two
endpoints, the global and the local optimum. In this case all points convergent after 215 iteration
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Figure 4.15: The deceptiveness figure and the number of endpoints of the Liepins and Vose
function
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Figure 4.16: The iteration figure of the Subset Sum problem

steps, so it is clear that all points can easily reach the endpoints.
Examining the deceptiveness figure it is obvious that all points tend to the local optimum,

even if the number of endpoints grows. It can be seen that this function is consistently deceptive
independently of the stopping criterion (at least in the range we examined).

Subset Sum problem

The subset sum problem is a combinatorial optimization problem. In this problem we are given
a set W = {w1, . . . , wn} of n integers and a large integer N . We would like to find a V ⊆ W
such that the sum of the elements in V is closest to N . For more details see (Khuri et al., 1993).
We examined a 10 bit problem here.

Unlike the previous functions this is a highly multimodal function as it can be seen in the
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Figure 4.17: The deceptiveness figure and the number of endpoints of the Subset Sum problem

iteration figure. There are many points with high fitnesses which are far from the global opti-
mum. Note that there are few points for which the formula had not converge, but the iteration
figure correctly shows the structure of this function. Note that in this case the maximum itera-
tion of formula (4.5) was 3000 and 1005 points converged. Let us note again that although the
FDC plot of the subset sum problem is very similar in this case it does not mean that it means
the same.

Let us examine the deceptiveness figure. Deceptiveness never goes above 0.5 so it shows
that although this problem has many local optima most of the points tend to the endpoints with
good fitness. Note that there are also large fallings and jumps because of the few endpoints,
but the deviation of the deceptiveness is very little. So in this case the deceptiveness coefficient
is very informative. An important observation about the figure of the number of endpoints
is that in this case the number of endpoints grows smoothly. This is the reason why in the
deceptiveness figure there is no plateau.

These results are in agreement with earlier investigations concerning the subset sum problem
(e.g. Section 4.2 and (Khuri et al., 1993)) where it was found that the problem is easy (with the
suggested encoding and with the applied test problem generation method) and according to our
earlier results the subset sum problem indeed has an enormous number of relatively good local
optima and these local optima can be very far from each other.

Discussion

This section gives a guide on how to read the figures in general. First notice that iteration
figures are not correlation figures so the information shown by them is only indirectly related
to our figures based in the approximated expected number of evaluation (referred to as iteration
figures). If the iteration formulas converge for all points then the horizontal axis of the iteration
figure shows the expected value of the steps from a given solution to the global optimum (or the
set of endpoints). The structure of the plot is not necessarily important e.g. it is not necessarily
good to have a linear form like in the case of FDC. However if there are many points with good
fitness far from the global optimum then the given function has many good quality local optima.

The figure showing the deceptiveness coefficient as a function of the stopping criterion is
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function dec.coeff. deviation
Ridge 0.63 0.46
Long Path 0.46 0.36
Liepins and Vose 0.973 0.018
Subset Sum 0.33 0.046

Table 4.3: The deceptiveness and its standard deviation for the studied functions

very interesting. First of all it should be noted that the coefficient is most informative if the
deviation is small. If the number of endpoints is small then the deviation may be large since
as additional endpoints jump in with the decreasing bound the value of the coefficient may be
altered significantly. However most of the real problems behave like the subset sum problem i.e.
they have many good local optima. On the other hand, regions with small deviation carry much
information about the structure of the problem; the sudden change of the deception coefficient
in the case of the ridge and long path problems is related to their special structure.

Table 4.3 shows the deceptiveness coefficient and its standard deviation for the studied func-
tions. It can be observed that in the case of the fully deceptive problem the result is correct and
the same can be said about the Subset Sum problem. However, in the case of the other two
functions these values are not so informative because of the large deviation but here the decep-
tiveness as the function of stopping criterion still accurately shows the structure of the space.

Finally note that according to this measure the ideal function is the constant function. This is
quite evident since in that case we can reach the global optimum with zero evaluations with any
kind of parameter setting. Strangely enough, there is a tendency among the known measures
to regard the constant function as hard. FDC and the measure suggested in (Naudts and Kallel,
1998) are good examples. This is related to the observation that plateaus are hard for hill-
climbers and if a partial sample of the space contains similar elements then the problem can be
expected to be hard. However if the plateaus have good fitness then why would it be a problem
to get stuck in them?

Validation of the Model

In this subsection we have a look at that the expected value of fitness as predicted by the same
heuristic used for calculating the deceptiveness coefficient as was mentioned in section 4.3.2.
For every bound the averages of 500 hill-climber runs are shown.

In figure 4.18 it can be seen that the sudden performance growth predicted by the spanning
forest over the transition probability graph is not followed by the hill-climber. Note that at the
sudden growth of the prediction the standard deviation of the average results of the hill-climber
is very large.

On the other hand in the case of the Subset Sum problem the prediction coincides with
the real result. This is related to the fact that in this case the number of the endpoints decreases
smoothly with the increasing bound. In the case of the Liepins and Vose function the predictions
follow the observed behavior. These plots show that the heuristic used for determining the
weights of the endpoints is valid since using the weights the weighted sum of the fitnesses of
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Figure 4.18: The prediction versus the results of the hill-climber

the endpoints predict the result of the hill-climber quite well.

4.3.4 Summary

In this section we suggested that the hardness measures of functions should take the local optima
into account. The suggested measure is based on the fitnesses and weights of endpoints, the
solutions to which the optimizer can be expected to converge. The weight is the probability that
the optimizer will converge to the given point if started from a random solution. This measure
depends on the stopping criterion of the optimizer since the set of endpoints depends on this
parameter.

A heuristic was also suggested for calculating this coefficient. The time complexity of the
method is O(|S|2) so only relatively small spaces can be considered. This method involves the
calculation of the transition probabilities between solutions w.r.t. an operator. These transition
probabilities were used also for approximating the expected number of evaluations needed to
reach the global optimum and plots were presented showing these values for several spaces.
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In general if the number of relatively good local optima is large then this measure seems
to be reliable but if this is not true then the behavior of the coefficient as a function of the
stopping criterion still carries a lot of information about the function at hand. A possible source
of problems can be if the deviation of the fitnesses of the endpoints is too small since the
coefficient is relative to the minimal and maximal fitness of the set of endpoints. This problem
can be solved if the lowest acceptable fitness is given as a parameter.



Chapter 5

Human or Automated Design?

This chapter is organised around the problem of collecting and representing domain knowl-
edge. This issue has two aspects that are strongly connected. One aspect is the practical way of
extracting this knowledge. This is the subject of Section 5.1. The other aspect is the philosoph-
ical limitations of such knowledge extraction algorithms and also the relation of the extracted
knowledge to our present scientific knowledge. Section 5.2 seeks answers to these problems,
and furthermore attempts to place this issue in the broader context of adaptationism.

5.1 Automatic Generation of Representations
Domain knowledge is essential for successful problem solving and optimization. This section
introduces a framework in which a form of automatic domain knowledge extraction can be
implemented using concepts from the field of machine learning. The result is an encoding of the
type used in most evolutionary computation (EC) algorithms. The approach focuses on whole
problem domains instead of single problems. After the theoretical validation of the algorithm
the main idea is given impetus by showing that on different subdomains of linear functions the
method finds different encodings which result in different problem complexities.

5.1.1 Introduction and Motivation
Domain knowledge plays a key part in today’s machine learning applications. Though in many
cases relatively simple heuristics combined with the brute force of available fast processors and
millions of test samples seems to be the best available solution — like hidden Markov models
used in speech recognition systems rather than an expert knowledge of phonemes (Rudnicky
et al., 1994), or simple Bayesian models employed in natural language processing applica-
tions instead of knowledge of grammar (Mitchell, 1997) — it is now widely accepted that for
instance the performance of evolutionary heuristics depends heavily on the applied encoding
and operators. In fact this is consistent with what the “no free lunch” theorems (Wolpert and
Macready, 1997) tell us: there are no algorithms that are the best in each domain, so for the best
performance in each domain one has to find the best algorithm for each separately. Hence the
extraction of domain knowledge is essential.

119
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Our research into the question also supports this view (see Chapter 4). We have shown that
the usual practice of simply characterizing domains by giving them labels such as “NP-hard”
or “subset-sum problem” is not necessarily useful or even misleading. The actual structure and
complexity of a domain (i.e. a set of functions defined over a common search space) depends
on the source of these functions. For example a domain containing subset sum problems (i.e.
“NP-complete” combinatorial optimization problems) may turn out to be a trivial domain due
to the structure of the parameters of the particular functions in the domain. So even when a
characterization is available (the function is not a black-box) the extraction of domain knowl-
edge is still essential. In Section 5.1.4 it will be shown that even when we know that a domain
contains only linear functions the performance can still be significantly improved using domain
analysis.

The problem is that extracting domain knowledge in general is quite a difficult problem;
scientific researchers and engineers do this for a living and it is not one of the easiest jobs
available. However, in systems where knowledge is explicitly and separately represented, it is
possible to perform some kind of meta optimization over the domain of possible knowledge con-
tent. Evolutionary heuristics are good examples since knowledge is expressed in the encoding
and operators while the basic algorithm remains the same. A lot of methods can be found in the
literature that tackle the problem of dynamic problem structure analysis. A survey of methods
using probabilistic models can be found in (Pelikan et al., 1999). Other approaches concentrate
on linkage detection (Munetomo and Goldberg, 1999). A common feature of these methods is
that they concentrate on single functions. Our goal here is different in that we would like to
extract knowledge that characterizes a whole domain and is reusable and interchangeable. One
area of research is relevant from this point of view, namely the work of Radcliffe (Radcliffe,
1994). Their basic ideas on the nature of knowledge to be extracted are not unlike those pre-
sented here (the differences being emphasized later on) but they did not tackle the problem of
extracting knowledge automatically in a systematic way.

This section introduces a framework in which automatic domain knowledge extraction is
possible. In our case domain knowledge means the representation or encoding of the search
space. Here, binary representations will be generated that are optimal in a sense to be described
later. A binary representation is a mapping of the search space to a set of the binary strings
{0, 1}n. Though it is now widely accepted that an arbitrary binary representation is not neces-
sarily better than an arbitrary non-binary encoding, our problem is a little different here. We
are looking for the optimal binary representation in the space of all binary representations of a
search space. Note that e.g. a search space of size 2n has 2n! different n-bit binary representa-
tions which is an enormous number. It is still possible that the optimal binary representation is
not optimal in the space of all representations but here we do not tackle this problem.

In a binary representation every position of this string contains a 0 or a 1 which means that
every position defines a concept over the search space. The term concept is used as in machine
learning, i.e. a concept over a space is a subset of the space. Very briefly, our method is based
on finding such concepts with the help of a measure over the concept space.

The outline is as follows. In Section 5.1.2 the basic concepts of the framework are de-
fined. In Section 5.1.3 a useful property of the method is proved which supports applicability.
Section 5.1.4 provides an illustrative but interesting example of the possible advantages of the
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approach on the class of linear functions. In Section 5.1.5 it will be shown that this method is in
fact a generalization of some probabilistic methods used to model the distribution of good solu-
tions of a function (see (Pelikan et al., 1999)). Finally, Section 5.1.6 discusses the possibilities
and limitations of implementation of the framework in real-world, large-scale problems.

5.1.2 Framework
It is important to emphasize that this section will define only a general framework which may
have many implementations depending on problem size, available time and data, etc. These
details will be discussed in the following sections.

Basic Terms

Let us first define a problem. A problem is given by its search space, and a real valued objective
function defined over it. The notation of the search space is S. The notation of the function is
f : S −→ IR. In other words f ∈ IRS . In evolutionary computation the objective function is
usually called the fitness function. Here I will adopt this convention.

The problem domain is a subset of all possible fitness functions. The problem domain will
be denoted by D = {f1, f2, . . .} ⊆ IRS. This notion is crucial from our point of view. In
practice the problem domain is given by the problem situation, e.g. a university which needs
schedules for organizing its activity. The particular variables of the particular university — i.e.
the number of employers, students, rooms, the sizes of rooms, the habits of each lecturer (who
get up early/late, work at home/in their office etc.) and so on — will make the scheduling task
special. The fitness functions in the domain will probably have a lot of features in common. At
the same time, the scheduling task is an NP-complete combinatorial optimization problem in
general. But this mathematical definition includes many more functions which are very diverse
compared to the ones actually encountered at our university. To handle problem domains as
an actual sample of functions and trying to describe them instead of using a given definition is
therefore a main constituent of the philosophy of the present approach.

A concept over S is a subset of S. The notation will be C ⊆ S while C = S \ C. In other
words, using a function notation C ∈ {0, 1}S. An encoding of S is given by an ordered list of
concepts. The encoding will be denoted by C = (C1, . . . , Cn). Using this notation, the code of
a solution x ∈ S is given by C(x) = (C1(x), . . . , Cn(x)) ∈ {0, 1}n. For the sake of simplicity
these binary codes will be used noting that generalization is possible to other kinds of codes.

Next let us define two properties of encodings. The first is very important from a practical
point of view: an encoding has to be invertible, i.e. given a code c of a solution, we should be
able to effectively compute solutions x ∈ S for which C(x) = c. Note that it is possible that x
is not unique. The second is related to the efficiency of the encoding. We want as few concepts
as possible. To express this we call an encoding independent if its concepts are stochastically
completely independent, i.e.

∀k, i1, . . . , ik Pr(x ∈ Ci1 , . . . , x ∈ Cik) = Pr(x ∈ Ci1) . . . P r(x ∈ Cik)
This seemingly contradicts other results from the GA literature, which report that non-coding
segments (introns) may improve the search (e.g. (Mitchell et al., 1994)). This may be true
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under the assumption that the encoding is not optimal and so the genetic drift introduced by the
small population-size has a larger impact. With optimal encodings which will be defined later
on the genetic drift is a smaller problem while with few concepts the search space size reduces
significantly.

Automatic Generation of Codes

The task is to generate the optimal encoding for a problem domain. If we define the notion of
optimality then the problem reduces to a search problem over the possible encodings.

First let us define the optimality of a concept over a domain. We need a concept that sepa-
rates good and bad solutions as clearly as possible in all of the functions in the domain. Good
(or bad) solutions are defined as being in the upper half (or the lower half) of the search space
with respect to a given fitness function. Let us denote the concept representing exactly the good
solutions for the fitness function f by Gf . Clearly every fitness function will define a different
notion of good and bad solutions. First we define a measure of separation of a concept over a
given fitness function. Clearly, the optimal concept over a given function f must be Gf . Then
we apply the average of the values of this measure taken over all the fitness functions as a
measure of separation quality over the entire domain.

For measuring the separation of good and bad solutions over a given fitness function infor-
mation gain is an ideal choice. Information gain is a measure of “goodness” of cutting a space.
Before cutting the space we calculate the number of bits that are needed on average to encode
if a random solution is good or bad (i.e. a member of Gf or not). This measure depends only
on the size of Gf . This value is called the entropy (E(p)) of the distribution of the probability
variable that has two values: good and bad, where p = P (good) = |Gf |/|S|. In the worst case
one bit is needed (if the number of good solutions equals the number of bad ones) and in the
best case no information is needed (0 bits) if all the solutions are good or bad. After cutting the
space in two using C so that S = C ∪ C, the entropy restricted to the two resulting subspaces
can be calculated. If the cut is good, these entropies will be smaller than the original entropy of
the whole space. The difference of the average of the entropies of the two half spaces and the
original entropy is the gain.

We use information gain as defined in the classical ID3 algorithm (Quinlan, 1986). For
a given fitness function f from the domain the information gain of a concept C is defined as
follows:

gain(Gf , C) = E(
|Gf |
S

)− |C||S|E(
|Gf ∩ C|
|C| )− |C||S|E(

|Gf ∩ C|
|C| )

where function E is the entropy defined by E(p) = −p ln p − (1 − p) ln(1 − p). Here p is the
proportion of a given concept over the space under consideration. The natural logarithm was
chosen because natural logarithm is equivalent to log2 as a measure of information according
to information theory but our formulas will become simpler using ln. E(0) = E(1) = 0 while
E(0.5) is maximal. This means that the information gain is maximal if C = Gf or C = Gf ,
and minimal (0) if C and Gf are independent. The measure we are seeking will be the average
information gain of the concept over the functions in the domain. This measure is denoted by
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C1 = arg max gain(C)
g = gain(C1)
i = 1
while(g > random gain)

Ci = arg maxC gain(C | C1, . . . , Ci−1)
g = gain(Ci | C1, . . . , Ci−1)
i←− i + 1

Figure 5.1: The algorithm for finding the optimal encoding.

gain(C). This means that a concept is an optimal concept of the domain D if it maximizes the
average information gain over D.

Since a useful encoding contains several concepts we need a method for finding additional
concepts while preserving the mutual independence between the concepts. A good heuristic
for doing this is to find the concepts iteratively, one by one, and then applying the definition of
optimality to the subdomains defined by the inverse sets of the possible codes determined so
far. For example two concepts define four possible codes. The inverse sets of these codes yield
a classification of the search space defining four subsets. These subsets define four subdomains
by restricting the functions of the original domain. An optimal concept can be found in each
of these subdomains. Now let the third concept of the encoding be the union of these four
optimal concepts. The rationale behind this heuristic is that this recursive construction ensures
independence if the optimal concepts divide the search space in two equal parts. Of course this
will not be true in general.

This method provides us with a definition of the information gain of the concept Ci+1 given
that C1, . . . , Ci are known (denoted by gain(Ci+1 | C1, . . . , Ci)). For this let us take the infor-
mation gain values of Ci+1 restricted to each of the subspaces defined by the known concepts
as described above and let the information gain of Ci+1 be the weighted average of these gains
where the weights are proportional to the sizes of the corresponding subspaces. The algorithm
for finding the optimal encoding is given in Figure 5.1. The algorithm stops when the gain of
the new concept is not greater than the optimal information gain over a domain containing only
random functions.

5.1.3 Theoretical Foundations

In this section I will show that the algorithm described in Section 5.1.2 is optimal in an im-
portant sense: random domains are never divided by any concept if some assumptions hold.
This means that the subdomains of the original domain defined by the inverses of the codes
are either random or empty. We say that a subdomain is random if it contains only random
functions i.e. the values of the functions are drawn from the same distribution. Besides this
the random subdomains are maximal i.e. every larger domain becomes non-random. In other
words it is impossible to gain more information from the space by refining the encoding and the
information contained in the encoding cannot be expressed using fewer random classes.

According to our algorithm we have to find the optimal concept on a domain, the concept
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Figure 5.2: Illustration of the notations.

with the maximal information gain. Let as assume that our domain with search space S contains
a random subdomain S2 (see Figure 5.2 for an illustration). I will show that for every concept
that splits this random space there exists another concept which has a larger gain and which
does not split S2.

Now let us choose an arbitrary concept C. The dotted line in Figure 5.2 is the boundary of
the concept. The subspace S1 = C \ S2 is the non-random part of C and S3 = C \ S2 is the
non-random part of C. The sizes of the classes are |Si| = Ni, i = 1, 2, 3. π1 is the value for
which

E(π1) =
1

|D|
∑

f∈D

E(
|Gf ∩ C|
|C| )

There are two such values since E(p) = E(1 − p). Let π1 be the smaller one. With a similar
definition of π3 the gain of C now can be written as

gain(C) = K − |C||S|E(π1)−
|C|
|S|E(π3)

where K is a constant independent of C. Using this value we introduce a simplification as-
sumption:

gain(Cd) = K − |Cd||S| E(p1(d))−
|Cd|
|S| E(p2(d)) (5.1)

where

p1(d) =
π1N1 + 0.5d

N1 + d
, p2(d) =

0.5(N2 − d) + π3N3

N2 − d+N3
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and Cd is any concept that was created from C by adding d elements from S2. The point is that
we replace the average of the entropies with the entropy of the average of |Gf ∩C|/|C| over the
domain. This introduces some error since it is possible only for linear functions of probability
variables and entropy is not linear. This error depends on the actual distribution of |Gf ∩
C|/|C| over the domain. The lower the variance the higher the accuracy of the approximation.
Furthermore, recall that we have chosen the smaller values for π1 and π3 so we use only the first
half of the entropy function (over the interval [0, 0.5]) and here (apart from the neighborhood
of the ends of the interval) it is not very far from linearity, so the accuracy depends also on the
actual values of π1 and π2.

Now we can prove the following theorem:

Theorem 8. Using the assumption in (5.1)

Ci = arg max
C∈{C0,...,CN2

}
gain(C)

holds only for i = 0 or i = N2.

Proof. We are looking for the maximum of the information gain

gain(Cd) = K − (N1 + d)E(p1(d)) + (N2 − d+N3)E(p2(d))

N1 +N2 +N3

The problem is equivalent to finding the minima of the counter of the fraction, the average
entropy. I will show that this function is concave on the interval [0, N2] which directly proves
the theorem. It is sufficient to show that the first term (N1 + d)E(p1(d)) is concave, the other
term has a symmetrical structure and the sum of concave functions remains concave. The second
derivative of the first term is

−1

2(1− π1)N1 + d
+

−1

π1N1 + 0.5d

which is negative so the proof is complete.

This theorem means that either S2 is included in the optimal concept or it is excluded com-
pletely. Applying this to every subdomain that arises during the running of the algorithm we
get the result mentioned in the introduction of this section. It is very interesting to briefly relate
this finding to Radcliffe’s notion of a good encoding (Radcliffe, 1994). According to his model,
the equivalence classes of the encoding should have a low fitness variance. This can be applied
not only to single functions but to domains as well since it is possible to take e.g. the average of
the variances of the functions of the domain. This is a special case of our approach since if the
low variance property holds over a subdomain then according to our approach it will be a good
candidate for being an optimal concept since all the solutions will tend to be good or bad due
to low variance and therefore the entropy will tend to be low. However in the case of random
domains the variance is not necessarily low.
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5.1.4 Structure in the Linear Domain

For illustration of the potentials of the approach let us take a closer look at a domain of special
significance: the linear functions over the binary search space S = {0, 1}n. A function f :
S −→ IR is linear with the coefficient vector a ∈ IRn if

f(x) = a
>
x =

n
∑

i=1

aixi

In this section three subdomains of the general linear functions will be studied. Every sub-
domain will have prototypical functions, but the definitions are intended to be fuzzy. The closer
examination of these subdomains is useful for two reasons. The first is that we will see that
on certain subdomains the efficiency of the search can be significantly improved. The second
is that this discussion will illustrate a major point of this work: different domains may have
dramatically different structure and thus different optimal encodings even if the mathematical
description of the functions of the domains have the same form.

Some claims of the section are based on experimental data. In all the experiments 8 bit
domains were used and a concept was implemented as an explicit characteristic function (i.e. a
list of 256 truth values). The concepts were optimized using a simple multistart hillclimber run
until 10000 evaluations restarted when no one-bit change resulted in improvement. The other
specific details are given in the subsections.

Orderable Problems

The coefficient vector of an orderable function contains numbers that differ in their order of
magnitude significantly. In other words the coefficients (and thus the bits of a solution) can
be ordered according to dominance. Prototypical examples are vectors with |ai| = 2i, (i =
1, . . . , n). It is easy to see that for orderable domains the optimal encoding will be the collection
of schemata of length 1. As an additional benefit, the dominance order is also given by the
algorithm.

Counting Problems

Here the coefficients do not differ in magnitude and they have the same sign. The coefficients of
the prototypes of such problems are equal to a given constant: ai = c, (i = 1, . . . , n). We have
run experiments with domains containing 100 functions where the coefficients of a particular
function were drawn from [100, 120] (or [−120,−100]) to introduce some noise. Note that the
value of solutions which have the same number of 1s is similar. Thus they generate random
subdomains in the sense of Section 5.1.3.

The experiments confirmed our theoretical assumptions in that the concepts found during
search never divided such a subdomain in any single run, only when the whole domain to divide
was random. Surprisingly (to me), when trying to divide such a random domain the algorithm
did find structure consistently. Closer analysis showed that this structure is due to the noise we
introduced and can approximately be translated into an additional heuristic which says that in



5.1. AUTOMATIC GENERATION OF REPRESENTATIONS 127

a space of solutions containing the same number of 1s divide the space using the bit which has
the smallest coefficient on average.

Note that the length of the optimal encoding is proportional to logn so a significant re-
duction of the search space can be achieved while the fitness variance of the inverse sets of the
codes is low therefore this subdomain with the optimal encoding is much easier than the general
linear domain.

Hamming Problems

Here the coefficients do not differ in magnitude but they may have different signs. A prototyp-
ical example could be ai = (−1)n, (i = 1, . . . , n). The value of a Hamming function depends
on the Hamming distance from a given binary vector.

Experiments were run using a 100 function domain where the coefficients of a particular
function were drawn from [100, 120] and their sign was random. The maximal information gain
of the first concept that was found by the hillclimber was 0.048 with a variance of 0.003 (from
10 experiments). This value is quite low given that on completely random domains the expected
maximal gain is around 0.01 according to our simulations, and in the case of counting problems
this value is 0.39 on average. Analyzing the optimal first concepts we can define the following
heuristic: divide the space according to a one bit schema. Applying this heuristic explicitly we
get a gain of 0.046 on average with a variance of 0.002 (10 experiments).

The conclusion is that the optimal encoding is the natural encoding as in the case of or-
derable problems but the information gain is significantly lower. This indicates that Hamming
problems are harder then orderable problems since the fitness variance is much larger within
the schemata and the problems are much more sensitive to sampling error and genetic drift.

5.1.5 Probabilistic Models

The approach presented here can be considered as a generalization of search techniques that use
dynamic probabilistic models to generate good solutions (Pelikan et al., 1999). A probabilistic
model of the good region of the space has a close relationship to our notion of concept. As
mentioned earlier, a concept has to be invertible; we have to be able to generate solutions that
satisfy a given concept. A probabilistic model is in fact a fuzzy concept which is of course
invertible.

A practical implementation of the algorithm applied to a domain containing only a single
function may be very similar to algorithms using probabilistic models since during the recur-
sive building of the optimal encoding the gain of new concepts can be evaluated on solutions
generated using the inverses of available codes. Furthermore — as a trivial extension — every
subdomain can be labeled positive if the functions over it contain good solutions consistently
(recall that large information gain requires only homogeneity), and emphasis can be moved to
explore those regions further, even if the domain contains several functions.
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5.1.6 Conclusions and Future Work

Our aim was to motivate, to theoretically ground and to illustrate an automatic encoding gen-
eration technique. We have seen that the method cuts search spaces along their “natural joints”
in the sense that random domains are never cut in half. This also means — considering the
structure of the algorithm as well — that the non-empty inverses of the optimal codes define
either random domains or low fitness variance domains. It was demonstrated that even in the
case of the linear functions three subdomains can be defined that have significantly different
complexity. This also implies that similar or identical mathematical structure is not necessarily
sufficient to characterize a domain: the distribution of the parameters of the functions is also
essential.

Here I would like to touch on some problems of practical, real world applications and its
limitations. One main problem to solve when implementing the system is to chose the actual
representations of the abstract notion of concept. In the case of big spaces this representation
is naturally a function class. The literature on machine learning provides us with an endless
number of opportunities, the class of feedforward artificial neural networks (ANNs) is a good
example. The only important constraint is the invertibility condition of the encoding.

Another important issue is the bias introduced by the chosen representation. When restrict-
ing ourselves to a specific function class we risk the possibility that we cannot describe the
structure of the domain under consideration. For example if parity of bits plays an important
role in a binary domain then there is practically no chance to capture this using feedforward
ANNs. However this is not a specific problem of the present approach: it is the problem of
machine learning in general.

Finally, for finding good concepts samples of the functions in the domain are needed. Two
natural approaches seem to be reasonable. The first is to use the trajectories that were produced
by search algorithms on the functions of the domain. The other is to recursively generate new
solutions based on the available concepts and to evaluate them. Both methods assume a larger
time-scale than ordinary optimization methods but the output, the interchangeable and reusable
knowledge about important problem domains may pay off in the long term.

5.2 Human or Automated Design?

In this section the connections between the evolutionary paradigm called adaptationism and the
field of evolutionary computation (EC) will be outlined. After giving an introduction to adap-
tationism we will try to show that the so called adaptational stance can be applied in EC as
well as in biology and this application may have significant benefits. It will also be shown that
this approach has serious, inherent limitations in both cases especially in the case of EC, be-
cause we lack the language which could be used to form the theories, but these representational
limitations can be handled by devoting efforts to construct this language.
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5.2.1 Adaptationism

This section introduces adaptationism, a strategy for understanding the products of evolution.
We will discuss only biological evolution here; the discussion of the relationship with EC is
given in Section 5.2.2. Adaptationism is a controversial question (Gould and Lewontin, 1979)
and it seems that most of the misunderstandings can be originated from the insufficient and
obscure definition of the paradigm.

Basic Notions

In this section we will try to make the assumptions of adaptationism clear and explicit and
to show the role of the underlying language. First it seems that adaptationism requires the
following principles in order to be applicable:

P1 (separation): The separation of the organism under investigation and its environment is
necessary. To give an example, it is not clear whether the ant colony or a single ant counts as
an organism. To be more precise both approaches are valid; only the choice has to be fixed. If
the organism is the ant then the ant colony is a part of the environment that has to be constant
according to P3. This assumption can be difficult to maintain though it might me meaningful
if the time interval under investigation is relatively small. This is a very controversial question,
see (Dawkins, 1989) and (Wilson and Sober, 1994) for two quite different viewpoints.

P2 (constraints): It is necessary to determine the constraints that give the space of the
biologically feasible genotypes. These constraints help us exclude caws with machine-guns,
birds with jet engines, etc. This principle is needed to allow the optimality condition to be
well-defined.

P3 (frozen environment): Optimality can be given only w.r.t. a fixed environment; this
makes it possible to block the circular definition of fitness1. Since the organisms cannot change
the environment, the number of their offspring is solely the function of their properties. We
must pay the price for this however; no dynamic properties of the population or its interaction
with the environment can be examined. Of course, this limit diminishes if we choose a larger
entity such as a population or an even larger subsystem such as a food chain to be our organism.

P4 (one niche): Beside P2 it is also necessary to restrict the possible individuals further
only to those occupying a particular niche; roughly speaking the possible organisms cannot be
too different. Optimality can be defined only inside of a species; this ensures that a pig will not
be compared to a lion. Both may well be optimal in their own way but it would be a serious
mistake to consider a pig a bad quality lion or vica versa. This constraint seems to be simple
but in fact it causes major difficulties especially when fossils are analyzed since it is hard to tell
with respect to what the organism in question should be optimal (is it a bad pig or a bad lion?).
The definition of niche is itself a problem.

P5 (improving fitness): We need to assume that evolution improves fitness. This will be
one of the motivations of the optimality assumption to be introduced soon.

1If the number of offspring define fitness then this fitness cannot be used to predict the number of offspring since
the claim “Individuals with high fitness will have high number of offspring” becomes a tautology. The problem is
that this claim is in the center of Darwinism
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P6 (single organism): This is partly the consequence of P1; at every time-step there is only
one organism. It may seem to be counter-intuitive at first sight. But according to P1 we have
to decide what the definition of organism is. If we choose an individual2 animal or plant then
all the other members of its species become part of the environment and according to P3 they
are not allowed to change while our organism changes. It is clearly a plain contradiction though
for short time intervals this approach could give fairly good approximations; in fact such dis-
cretization methods are quite common in mathematics for example in numeric approximations
of differential equations.

Let us introduce a notation for the most important components. Let O be the set of organ-
isms that are biologically feasible according to P2 and live in a particular niche according to
P4. Let f be the fitness function, i.e. a function of type O → R

+. For an organism o ∈ O
the number f(o) gives the expected number of offspring of o. f is also a function of the en-
vironment but since it is constant according to P3, it is not indicated. Let G be the finite3 set
of features that make it possible to describe the organism. Its elements are functions of type
O → R. Predicates are possible as well, in that case the function has only two values: 0 for
false and 1 for true. An example could be the length of the neck or the degree of flying ability.

Characterization of Features

I would like to emphasize as early as possible that the characterization will be independent of
the function of the given feature in the organism. At this level nothing is said about the roles or
the causal relationships of the elements of G. For instance we can say that the neck-length of a
giraffe is optimal without mentioning its function (which could be for example reaching leaves
at the top of the trees).

The aim of this characterization is to decide whether a given feature is relevant or irrelevant
w.r.t. the fitness and if relevant then it is optimal or not. Therefore there are three categories:
irrelevant, optimal and suboptimal. The interesting question is of course to find a method to
somehow classify G into these three classes.

First let us examine the case when the fossil record is available that show the development
of the feature under investigation. P5 will be heavily exploited. P6 is used too to ensure that
there is no variance to be taken into account (only as another feature).

In the case of the divergent behavior we can conclude that at the moment the feature at
hand is in a developing stage and therefore is suboptimal. In the case of random behavior
we classify the feature as irrelevant. The situation is somewhat more difficult however. The
random behavior can be caused by a lot of factors. The first possible explanation is that the
given feature is neutral; it is independent of the fitness of the organism. The second explanation
is that the given feature changes according to some kind of dynamics that is out of the scope of
our analysis. For example if our organism was chosen to be a species then some features may

2This choice does not mean that we are interested in a particular individual. This only means that in every
generation we are interested in one (hypothetical) individual which is subject to natural selection in its population.

3Note that it is not the set of all possible features; it contains the actual features that are used (or will be used)
by the biologists. It is awkward to emphasize that this set is finite since it is trivial. It is a habit however that some
people might miss.
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vary in accordance with evolutionary game theory (Maynard Smith, 1982). A third explanation
can be that our assumption P3 about the constant environment is false.

In the case of convergence we say that the feature is optimal. There are lot of error possi-
bilities however. The most important is that an irrelevant feature may converge as a result of
genetic drift. Note that on the other hand it is impossible that relevant features show random
behavior.

The situation without fossile record is more interesting since we do not have any ground
to classify the features. The question is very sensitive since one has to decide which features
are relevant and among the relevant features which ones are optimal. The question is also
important since a lot of interesting features of earlier generations such as behavioral patterns or
brain structure disappear almost completely. This is the point where adaptational stance comes
in with the optimality principle.

P7 (optimality): In the absence of evidence for the contrary it will be assumed that every
relevant feature is optimal. This is nothing else than a method which is suggested as a re-
placement for coin tossing. Its power lies in the fact that in real-life cases optimal features are
believed to be in majority. Another problem remains however: how do we decide which feature
is relevant and which is not. As Dennett says, the sum of the number of eyes and the number
of legs does not seem to be a relevant feature, but not much more is said about this issue. In
Section 5.2.3 a detailed discussion of this question is given.

Dependency

As it has been shown the relevant and irrelevant features can be separated without referring to
their functional role in the organism. So far the organism under investigation was handled as
a black box i.e. we have not examined the causal relationship between the features. In other
words structure has to be given to the set G in order to give an explanation and a complete
description of the organism.

The structure of G will have the form of dependency relations. The concept of dependency
has been mentioned already in Section 5.2.1. To discuss reverse engineering, this notion has to
be made more precise. We will not give a formal definition but will try to make this term as
clear as possible. If g1 and g2 are features than we say that g2 depends on g1 (and denote this
relationship by g1 → g2) if for any organism o ∈ O it is possible to predict g2(o) from the value
of g1(o) with some accuracy greater than zero. We will call this accuracy the importance or
weight of the given dependency. Note that it is not necessarily possible to do such a prediction
in the other direction; this dependency works like a (fuzzy) implication operator on predicates
of the form “g is known”.

In some cases more difficult relationships can be described. Computing a feature g may
depend on values of more than one other features g1, . . . , gn. Again, we define this relationship
as a fuzzy formula on predicates like “g is known” using conjunction and implication and denote
it by g1 ∧ . . . ∧ gn → g. If there are no other relationships of other kinds then we say that
the database containing the dependencies is in Horn normal form or simply we have a Horn
dependency database.

We are not interested in the details of the actual realization of the dependency of the features,
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Figure 5.3: A small and ad hoc subset of the feature-dependency network of a giraffe for illus-
tration only.

i.e. the underlying physical, biological or any kind of laws. Only the pure statistical fact of the
relationship is important. We are not interested in the nature or the effective procedure of
computing the features either; we only assume that such a procedure exists. At the abstraction
level of our model, these are all unimportant.

It is enough to give the dependencies between the features to give an explanation of the
fitness of the organism since mating ability itself is a feature, and the fitness can be directly
derived from the mating ability of our organism and the competing members of the population
(that are part of the environment) and some other factors of the environment like predators.
Since we have accepted P3, it can be said that fitness is a feature itself i.e. f ∈ G. The
functional role of a feature is nothing else but the way fitness depends on it. Irrelevant features
have no functional role at all because fitness does not depend on them (this is the definition of
irrelevance) though they can (and probably will) depend on other, maybe relevant, features.

An example of such a dependency network for the giraffe is shown in figure 5.3. The
network structure of the dependencies must be emphasized. Taking a look at the diagram, it is
hard to accept that for example the functional role of the long neck of the giraffe is to reach the
leaves on the top of the trees. It is one of its functions but it may have several other roles as
well. In biological organisms it is typical for the components to have several different functional
roles; good examples are hormones, vitamins, muscles (motion and heat generation) and so on.
Of course it is necessary to weight the dependencies according to importance. There are more
important and less important roles but this does not change the fact that fitness depends on each
role so they must be part of the explanation of the structure of the organism.

From a historical point of view it is possible that the effect of a less important feature results
in a diminishing selective pressure related to a more important feature and can converge only
after the more important feature has converged. But this historical perspective is completely
irrelevant when discussing the dependency relations in the case of an organism. This argument
about the independence of syncronic and diachronic analysis is not new: in connection with
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the science of language Saussure (de Saussure, 1939) represents the same view which is now
widely accepted.

Reverse Engineering

Roughly speaking, when trying to understand organisms via reverse engineering we try to re-
construct the dependency relations between the relevant features. The first difficulty is to find
the relevant features. This problem will be discussed in detail later in many places from many
directions. The second problem is that our dependency diagram is too simple; a classification
of features along an additional direction needs to be introduced.

This dimension is approximately the level of abstraction. To understand this let us consider
the typical way engineers solve a problem. In the first step they are given a functional descrip-
tion of the system to be designed. This includes its main purpose which is a high number of
offspring in the case of biological organisms. This first specification is nothing else but re-
quirements w.r.t. a set of high level, abstract features. The engineer then tries to reduce these
features (or goals) into subgoals iteratively using more and more specific features while the de-
sign reaches a state where every subgoal can be implemented. This is the less abstract, physical
state.

The actual procedure of finding a good design does not necessarily follow the above itera-
tion; case based reasoning may play a major role for example but the result has the structure of
features and the dependencies between the features. Some of the features represent low level
physical properties some of them represent the highest level functional properties and there are
features at intermediate levels of abstraction. Dennett distinguishes three levels: the physical,
the organizational and the intentional levels (Dennett, 1990); we will need only the notion of
physical features and the notion of top goal(s) which is essentially the first specification the
engineer starts with. There are no clean boundaries, though: there is a practically continuous
spectrum of abstraction along the implicational chain.

Now reverse engineering can be defined more clearly. If normal engineering proceeds from
the top goals to the physical features then reverse engineering goes in the other direction: from
the observable physical features it reconstructs the top and intermediate goals. There is one
more kind of reverse engineering. In this case the to goals are also known, only the intermediate
features have to be discovered. Good examples of the first kind are the mysterious tools of
ancient cultures found by archaeologists. Here scientists have to find out the purpose of these
tools and in most of the cases all they know is the actual physical properties of the objects.

An interesting question is that in the case of the problem of explaining physical features of
animals such as long neck or big ears which kind of reverse engineering is involved. The top
goal of different organisms is the subject of debate, for example what is the top goal of an ant?
However in certain cases there are available top goals (which are actually subgoals in the strict
sense) e.g. flying. Determining the dependency relationships between the physical features of
birds and their observable flying ability is an example.

Optimality and dependency Dependency is a property of features as functions while opti-
mality is a property of a particular feature value. However while reverse engineering an organ-
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ism we usually have to rely only on particular feature values when we determine the dependency
relations. The case when the optimality or irrelevance of features is known is the simpler. Here
we ignore irrelevant features and try to guess (extrapolate) the optimal value of suboptimal fea-
tures so we can rely on optimal relevant values. When trying to find the function of a physical
feature we assume that this function is such that the physical feature is a good implementation
of it. For example if we observe strong wings we assume that their function is flying. Note that
without the optimality condition it would be possible that the wing is simply irrelevant and not
used for anything or suboptimal and used for digging for example or even harmful (as the legs
of snakes). When optimality is not known the optimality assumption P7 has to be used (see
Section 5.2.1) according to the adaptational stance.

5.2.2 Adaptation in EC
First let us take a look at the notions defined in Section 5.2.1. The easiest is P2 which requires
that the constraints of the possible organisms should be taken into account. In EC this is not a
problem since one of the first steps of any application is the exact definition of the search space
i.e. O. The particular methods of constraint handling and coding is not relevant here only the
fact that the problem is handled properly.

P1 and P3 are trickier but still easier than in the case of biological evolution. In EC it is
typical to have a population of solutions in every time step (generation) and usually an objective
function is defined over the possible solutions. The expected number of offspring (i.e. fitness)
of the members of the population is given by the objective function values of the other members
of the population thereby fitness depends on the objective function and the actual population.
Therefore we face the same problem of determining the boundaries of the organism and keeping
the environment constant.

The later goal is easier since the environment outside the population is constant in most of
the applications though nowadays the applications in dynamic environments are becoming more
and more important. This means that the earlier goal reduces to deciding whether the individual
or the population should be the organism to study. The later choice seems more reasonable
though the arguments in connection with P6 given in Section 5.2.1 apply here as well. Anyway,
the usefulness of having large populations is not proven; there are cases where one-element
populations perform best. A typical example is (Eiben et al., 1998b).

The notion of the fitness function f is also cleaner in EC. It is very interesting that in
EC there is a tradition of calling the objective function the fitness function. At first sight this
results in a dissonance between biological and computational terminology but in the light of the
restrictions expressed by P3 we saw that even in biology fitness is taken as a kind of objective
function; adaptationists emphasize the objective nature of fitness. In EC to be an adaptationist
all we have to declare that the good old tradition should be continued.
G also has traditions in EC especially in genetic algorithms (GAs). In GAs the solutions

need to be encoded so that genetic operators which are defined problem independently could
be applied to them. This encoding is analogous to the DNA sequence in which mutation is
very similar in the case of every living organism. The views expressed in this question usually
take the form of problems of encoding which is essentially nothing else but defining some
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atomic elements of G (see e.g. (Radcliffe, 1994)). These are the physical features as introduced
in Section 5.2.1. The other features called building blocks are some simple combinations of
these primitives (Goldberg, 1989). Though these building blocks can be regarded as functional
properties this approach has a number of well known difficulties and limitations as will be
discussed in Section 5.2.3.

Principle P4 which requires that only a single niche should be studied is maybe the most
problematic. There is a significant amount of work in the field of niche and species formation
in the field of EC, Chapter 2 and (Deb and Goldberg, 1989) are two examples. The common
problem is that all these methods operate with a distance measure defined over O and this dis-
tance measure typically depends on the atomic elements of G. This makes the whole procedure
ad hoc in the sense that the actual encoding of a given problem is not necessarily optimal. In
fact it is always possible to find a distance measure such that fitness has only one optimum i.e. it
is unimodal. For example the difference between the fitnesses is such a distance measure. This
makes G even more interesting.

Finally P5 and P6 has to be mentioned. P5 usually holds in EC if the applied selection
mechanism is elitist which means that the best member of every generation will be the member
of the next generation. The elitist strategy usually performs quite well so it is typically applied.
P6 can be interpreted similarly as in the case of biological evolution.

It should be clear by now that there are no basic incompatibilities between EC and the
adaptationist stance. All that remains is to take a look at the possible applications of the methods
of the adaptationist stance such as optimality analysis and reverse engineering.

Characterization of Features

In this area EC has a major advantage namely that it is possible to perform virtually any number
of experiments and thereby collecting as many “fossils” as necessary. It is possible to predict
with a much greater degree of confidence if a feature is optimal or not by performing statistical
experiments since for optimal features convergence to the same value should occur in the ma-
jority of the experiments. Of course premature convergence and other well known effects can
alter the results. The most difficult problem is to ensure that the algorithm should stay in the
same niche every time the experiment is run.

There is another advantage: a hypothesis about the characterization of a feature can be tested
experimentally. For example if a feature is suggested to be irrelevant it is easier to vary its value
while leaving the other features unchanged and calculate the fitness of the resulting solutions.

Reverse Engineering

The dependency relations between features have the same status as their optimality since they
were also defined in statistical terms. Any number of experiments can be performed to test and
refine the hypothesis. In spite of the fact that there are much greater possibilities in testing the
dependency relations between any kind of features (which are the result of reverse engineering)
there is very little work in the literature that would describe such reverse engineering results.
The reason probably is that the success of reverse engineering which usually results in a deeper
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understanding of the engineering problem at hand and so also faster and better algorithms than
plain EC algorithms is usually considered a failure of EC for some reason. People seem to
forget that the way the faster and better algorithm are developed is largely dependent on the
performance of EC algorithms; in fact it is impossible without them.

In this section it is attempted to show that it may be useful to at least try to understand
the outcome of the optimization process, the solutions suggested by EC algorithms since these
solutions form a good starting point to a reverse engineering process that makes it possible to
translate the information accumulated by evolution into engineering knowledge. If this process
results in better heuristics then it is the success of EC and the engineers of course.

A simple example of the successful applications of reverse engineering was presented in
Section 4.2. There we developed a heuristic for solving subset sum problem instances that were
generated in a special way. This heuristic outperformed all other methods we tried including
the GA that originally lead us to the heuristic. There are more sophisticated examples as well
such as network design (Cox et al., 1996).

5.2.3 Representational Bottleneck
The language of biology is particularly rich and in a way it is very close to natural language.
The terms (features) used to describe organisms such as color, shape, organs and body-parts
like heart, lungs and arms and behavioral patterns like aggression are typically understandable
by anyone. Biology inherited a large, detailed terminology of describing the living world. This
may be a result of our own evolution and the evolution of our culture; animals and plants have
been around us since language and culture emerged and have been playing a crucial role in our
lives as food, enemy, building material and so on ever since. Our sensory and cognitive system
is likely to be specialized in describing living organisms, among other things.

This makes the job of finding problems in biology relatively easy since the features to be
explained are there. The situation is radically different in EC. The description of solutions
lacks even the simplest terms and usually reduced to the encoding of the solution. This means
that we talk only about genes as if biologists could describe a monkey only with the help of its
DNA sequence. The insufficiency of this description may be evident to some of the readers but
actually in EC the practice is accepting that the encoding provides us with a language sufficient
for describing the solutions. This is motivated by the need of developing a domain independent
theory of EC, and this need may be originated from the analogy with other optimization methods
like the method of steepest descent or the different Newtonian iterations. The problem is that
the application area of EC is much larger than any of these restricted methods. This is why
domain specific information plays a more important role.

The elephant picture function When it comes to reverse engineering and giving an expla-
nation of the solutions developed we need to find features to create a model of the particular
problem class. To see this let us give an example: the elephant picture function. In this problem
the organisms are two-dimensional bitmaps where the physical features are the pixels of the
picture. The fitness of a given picture is the degree of resemblance to an elephant; any kind of
elephant in any position as illustrated by Figure 5.4.
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Figure 5.4: Examples of bitmaps with a good fitness.

Figure 5.5: An elephant picture and one of its permutations.

The fitness is independent from a particular pixel since the degree of resemblance of a
negative picture is the same as of the original. The elephant picture function does depend on
lower-level features such as lines, curves and similar basic components but these are still too
abstract to depend on particular pixels; we need another abstraction level closer to the physical
features. To convince those who are still in doubt imagine that the positions of the pixels of
the picture are mixed by a deterministic and invertible algorithm so the elephant cannot be
recognized anymore by looking at the picture (see Figure 5.5). Let the fitness function be the
original elephant picture function applied to the result of the inverse of the above transformation
on the given bitmap. The most predictive high-level feature is still resemblance to elephants
before mixing the pixels. If one cannot “decode” the image then it is almost impossible to
predict fitness.

On the other hand an EC algorithm could probably find a good solution of the elephant
picture problem provided that somehow this function was available. Interactive applications
i.e. applications that use the human user as a fitness function indeed exist; one example is the
iterative evolution of textures where the fitness is a kind of artistic or aesthetic value (Ibrahim,
1998).

Finally let us note that the features used in biology to describe organisms are practically
independent of the level of DNA as well since it would be extremely hard to predict the shape
or behavior of an unknown animal from its DNA only. Genes connected to higher level features
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are often described and known species with similar DNA can be used but this process proceeds
in a top-down fashion: the features are described first and then the corresponding genes are
looked for.

Similar problems Self-organizing maps (SOMs) are devices that are capable of finding struc-
ture or a clustering in their input data-set. One good example is Kohonen’s phoneme recog-
nizer (Kohonen, 1988). SOMs are usually based on the physical features of these vectors only
so in many cases it has serious problems finding clusters that are similar in some important
sense but are not in the physical level (e.g. elephant pictures). In the case of instance based
learning and case based reasoning (see e.g. (Mitchell, 1997)) it is well known that one of the
main problems is the selection of the distance measure. To find a good distance measure, one
has to understand the problem domain to be able to tell the difference between important and
irrelevant features or at least to find features to start with. Just like in SOMs for the interesting
problems it is not sufficient to rely only on the physical, lowest level features like pixels in an
image or elements of a vector as usually done.

The spaceship picture function To illustrate that the elephant picture function is indeed a
very serious problem let us give another example: the spaceship picture function. The situation
is like with the elephant pictures but the difference is that e.g. 500 years ago nobody had an idea
about spaceships. The interesting thing is that the function did exist nevertheless though no one
could predict its values. Engineers of that time would have been in great trouble when trying to
understand a spaceship function computing machine. Note that no low-level “decoding” would
have helped them in this case as we have seen in Section 5.2.3. The problem is that spaceships
can be very different and some of them are very similar to aircrafts, saucers etc.

What the engineers lacked 500 years ago is the knowledge about spaceships, space, artificial
flying, science fiction movies etc. To be short the term spaceship was not part of their language.
I assume that there are more unknown than known terms: this is what I call the representational
bottleneck. The situation in the abstract domains such as flow control or combinatorial problems
that are likely to have a rich and complex yet undiscovered structure is even worse.

5.2.4 Conclusions
It was demonstrated that the adaptational stance and reverse engineering is strongly connected.
Adaptational stance is a strategy of reverse engineering that might fail in certain kinds of cir-
cumstances but it seems to be useful in many cases. It was shown that reverse engineering is
applicable and in fact it has been applied in EC. The bottleneck of this method however is the
language that is available for describing the abstract problem domains. As we have seen, biol-
ogy has a much larger and effective vocabulary partly inherited from natural language though
this vocabulary is constantly growing as other sciences develop so adaptationist explanations in
biology also have the representational bottleneck.

It is also important to emphasize that the performance of an EC algorithm may well be
very good even if reverse engineering is not successful and domain specific knowledge is not
available. This is the main power of evolution: it only works with the physical features and
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does not care about any explanations because explanations or dependency models of features of
different abstraction levels are simply tools for us human beings to handle predictions with our
limited cognitive capacity. It is very much like the relationship between axioms and theorems in
mathematics. Axioms have the status of physical features; knowing the axioms means knowing
everything4. Theorems are needed only because it exceeds our abilities to tell the truth value
of a formula directly from the axioms. This is why the representational bottleneck is a problem
though the physical features (encoding of a solution in EC) are known; explanations need higher
level features because of our cognitive limits.

While EC algorithms often provide good solutions without much domain knowledge they
can be exploited also as a ladder leading to an understanding of the problem domain making
reverse engineering possible and thus leading to faster and better specific algorithms. The rep-
resentational bottleneck problem should be solved by scientific research in each domain. Since
experiments can be repeated any time with any settings this research is much easier than in
biology though the vocabulary to start with may be poor. The contribution of EC to the new
algorithms is essential since without known good solutions reverse engineering is impossible
therefore the success of such results is definitely a success of EC as well.

4It is not always true because of Gödel’s theorem but practically this is the case in traditional maths. Theorems
that may be true or false in different models are very hard to find.
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Summary

Here the main points of the thesis are briefly summarized touching on the open problems and
possible future research directions.

GAS is a GA with niching via maintaining a subpopulation structure. The motivation of
developing GAS was that other known niching techniques like fitness sharing cannot handle
situations where the distribution of the local optima are not even, in other words they do not
solve the niche radius problem. GAS solves the niche radius problem via maintaining not only
a set of subpopulations but also a recursive tree structure which allows subpopulations to adapt
to certain regions in the search space while avoiding the low quality regions. The exploration
is concentrated recursively in subspaces occupied by subpopulations and it is more and more
focused as the search proceeds. Thus we achieve a sort of cooling effect which is very similar
to the technique applied in simulated annealing.

The bias of GAS follows from the above motivation: if the search problem at hand contains
a huge number of local optima of similar quality that are evenly spread then the application
of the algorithm is not justified. On the other hand, the performance of the algorithm depends
heavily on the distance function that is used to determine the difference between solutions. An
advantage is however that the general framework does not make any assumptions about the
distance function so it can be replaced without a problem.

UEGO is a generalization of GAS. The motivation for developing UEGO was mainly to con-
vert the ideas behind GAS into a true general paradigm in which any global optimizer can be
plugged in. The structure was simplified and modifications were made to make parallel im-
plementation easier. Extensive empirical tests have also been performed that allowed us to
understand the parameters better. An open question that is related to both algorithms is to suf-
ficiently characterize their application domain. In this thesis ideas are presented but obviously
more empirical and theoretical work is necessary to pin down the key characteristics.

In the second part of the thesis models of the genetic search are presented. These include a
technique that is useful for measuring problem difficulty and it also provides a way of visual-
ization of the structure of the space. The advantage of the method is that it is based on transition
probabilities between solutions that are calculated using the actual operators. The disadvantage
of the method is that it is computationally more expensive than e.g. fitness distance correlation.

Problems with the schema-based approaches are also tackled. The motivation behind intro-
ducing implicit formae is that models operating only with sets defined using the applied encod-
ing overlook the fact that what actually counts is only the disruptive effects of the algorithm
components like operators and selection. Therefore in a model of this type it is necessary to
consider predicates over the space which are not defined by the encoding but which are not dis-
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rupted by the algorithm even if the operators were originally designed to respect the encoding.
Several examples are given for such implicit formae for different problems. The wave model
extends these ideas. The predicates it operates with are decomposed further so it is possible that
some predicate is important only at the beginning of the search while another only at the end.
The search is modeled as a wave that spreads via paths formed of such predicates.

An open problem related to this research is that since the predicates we use are not related
to the encoding we must face the problem of finding them. Using only predicates defined easily
by the encoding (e.g. schemata) is comfortable and easy but insufficient. Using more general
predicates is sufficient but very hard in general. In fact finding such predicates for our models
is a serious research task by itself. Furthermore in abstract domains it is not clear whether we
can hope to find useful predicates. One way of solving this problem is to do it automatically.
A method for automatic knowledge extraction is also presented in the form of an automatic
encoding generation framework that can apply any appropriate machine learning algorithm.

This later framework raises many interesting questions. The main problem is its imple-
mentation. To implement it one has to chose a machine learning algorithm. But every machine
learning algorithm has a bias that automatically becomes the bias of the code generation. Thus if
the domain at hand is not suitable for the algorithm we use then no good result can be expected.
To find the appropriate learning algorithm experimenting is necessary. The consequence is that
we only push this uncertainty one level higher. I think that this problem is not the problem of
our approach. it is an inherent limit of every kind of learning: every learning algorithm has its
bias except random search. So the highest level of problem solving must always be random
search.

This highest level is not the engineer’s or the scientist’s mind however. It is the product of
evolution and culture so it is full of different biases. Of course culture is a result of a sort of
evolution. The highest level is not even evolution itself since it is clearly not random search:
every solution is a modification of an already existing one. This question would deserve a
separate book so let us leave it open for a while. . .

The last section of the thesis elaborates on a part of the above mentioned philosophical
problem, namely the possibility of creating a vocabulary for describing evolutionary algorithms.
It also draws a parallel between adaptational stance which is a way of thinking about evolution
and EC.
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Samenvatting

Het centrale thema van dit proefschrift is de structuur van de zoekruimtes van globale opti-
malisatieproblemen. Er zijn veel vragen die op een antwoord wachten op dit gebied, bij voor-
beeld, hoe deze ruimtes te karakteriseren? Hoe ze te beschrijven, hoe ze te classificeren? Hoe
kan men het mogelijk maken dat een algoritme zich aanpast bij een speciale ruimte struc-
tuur? Ik ben vooral geı̈nteresseerd in die ruimtes die geen voor de hand liggende structuur
hebben die in gangbare termen, zoals bijvoorbeeld discreet, stochastisch, of niet differentiabel,
te karakteriseren valt. Zulke problemen vormen het voornaamste applicatiegebied van menig
(meta)heuristiek, bijvoorbeeld evolutionaire rekentechnieken, simulated annealing, tabu-search,
ant colony optimization, enzovoort. Combinatorische problemen zijn voorbelden bij uitstek:
beschikbare effectieve algoritmen gebruiken heel weinig informatie over de zoekruimte, er
uithalen van deze structuur kan dus een manier zijn om aanzienlijke verbeteringen te bereiken.

Het eerste hoofdstuk bevat een introductie tot de basisbegrippen in dit proefschrift. De
rest van het proefschrift wordt in vier verdere hoofdstukken ingedeeld. Hofdstuk 2 (Jelasity
and Dombi, 1998) en 3 (Jelasity et al., 2001) beschrijfen globale optimalisatietechnieken die de
structuur van de verzameling van locale optima verkennen. De eerste methode is GAS genaamd.
Dit algoritme is in staat om structurele informatie op een adaptieve manier te benutten, door een
subpopulatie-benadering te gebruiken die het vormen van soorten simuleert. Dit betekent dat
de zoekruimte is opgedeeld in clusters (die we soorten noemen) en deze clusterstructuur wordt
voortdurend aangepast volgens de resultaten van globaal zoeken beperkt tot deze clusters. De
cluster-structuur weerspiegelt de verdeling van de locale optima. De bias van het algoritme
kan expliciet worden gecontroleerd door een willekeurige afstandsfunctie over de ruimte te ge-
bruiken. Het automatisch instellen van sommige belangrijke parameters is mogelijk op basis
van deze afstandfunctie en andere door de gebruiker in te stellen parameters. De uitvoer van
het algoritme bevat structurele informatie en de eindoplossing. De tweede methode is genaamd
UEGO. Het verschil met GAS is dat de optimalisatie techniek die binnen een soort werkt kan
willekeurig zijn. Dit maakt de hele aanpak tot een algemeen paradigma dat in combinatie met
elke willekeurige optimalisatie techniek gebruikt kan worden als de structuur van de verza-
meling van locale optima belangrijk is, of als er stabiele oplossingen nodig zijn. Een ander
verschil is dat de structuur van het algoritme vereenvoudigd is om parallelle implementaties te
vergemakkelijken. Voor resultaten van parallelle implementaties zie (Ortigosa et al., 2001).

De secties binnen Hoofdstuk 4 zijn gerelateerd aan de manier waarop de werking van evo-
lutionaire rekentechnieken beschreven is. Sectie 4.1 (Jelasity and Dombi, 1996) toont aan dat
het gebruiken van een beperkt woordenboek – zoals gedaan bij sommige traditionele theore-
tische aanpakken – is onvoldoende en stelt een manier voor om het raamwerk uit te breiden. Dit
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werk is nauw verbonden aan de epistemologische problemen van de computerwetenschappen
laat zien dat theoretische studies die gebaseerd zijn op een vooraf vastgestelde collectie van
eigenschappen van de zoekruimte tot falen gedoemd zijn. Sectie 4.2 (Jelasity, 1997) presenteert
een alternatief model met nadruk op onbekende doch mogelijk belangrijke informatie over de
structuur van de zoekruimte. Deze aanpak is gebaseerd op de voorafgaande sectie. Het verschil
is dat alle aspecten van de oude manier van problemen bekijken verworpen worden en het wordt
voorgesteld om het zoekproces te beschrijven als een pad door een ruimte van eigenschappen
die relevant zijn voor de zoekruimte in kwestie. Sectie 4.3 (Jelasity et al., 1999) stelt een manier
voor om de structuur van zoekruimtes te visualiseren en geeft tevens een maat voor de moei-
lijkheidsgraad van problemen. In dit geval is de visualisatie gebaseerd op de evaluatie functie en
het gebruikte algoritme, dus het is een middel om vanuit het perspectief van het zoekalgoritme
naar de door de evaluatie functie gedefinieerde structuur te kijken.

Hoofdstuk 5 introduceert een filosofisch probleem omtrent de grenzen van menselijk ont-
werp. In sectie 5.2 (Jelasity, 1999) is het aangetoond dat de manier waarop binnen het gebied
van evolutionaire rekentechnieken naar evolutie gekeken wordt, veel lijkt op de zogenaamde
adaptational stance. Het wordt ook gesteld dat naast de overeenkomsten er significante ver-
schillen zijn, en deze verband houden met de epistemologische crisis van computerwetenschap-
pen. Waar het om gaat is, dat terwijl biologen een natuurlijk woordenschat hebben om over
eigenschappen van dingen te praten (bijvoorbeeld, vleugel, oog, hart, enz.), de situatie in de
computerwetenschappen is radicaal anders. Om dit te verduidelijken, stel eens voor om over
een olifant te praten door alleen naar zijn DNA sequentie te kunnen refereren. In evolutionaire
rekentechnieken heeft men geen andere informatie (terminologie) dan wat de meest elementaire
technische taal toelaat. Het wordt ook aangetoond dat dit een diepliggend probleem is en er geen
reden is om te veronderstellen dat het ooit door mensen opgelost zou worden. Menselijke in-
telligentie evolueerde in een specifieke omgeving voor specifieke taken. Hoewel het ontstaan
van taal het mogelijk maakte om hoge abstractie niveau’s te bereiken, het goed beschrijven
van zulke abstracte ruimtes en het benutten van hun structuur is wellicht alleen mogelijk door
kunstmatige intelligentie en machine learning technieken die in staat zijn om voor mensen totaal
onnatuurlijke concepten te ontwikkelen en te gebruiken. Sectie 5.1 (Jelasity, 2000) oppert een
manier om dit proces te automatisch te laten verlopen. Er wordt een raamwerk gepresenteerd
waarin binaire coderingen van een probleem domein geleerd kunnen worden door ideeën uit
machine learning te gebruiken. De werkelijke leerprocedure kan willekeurig zijn. Door deze
aanpak wordt het misschien mogelijk om het reverse engineering probleem in de toekomst op te
lossen op een ”natuurlijke” manier. De evolutie van taal resulteerde in een vocabulaire dat voor
mensen belangrijke dingen omvat. In abstracte domeinen wordt een soortgelijke ontwikkeling
steeds meer mogelijk.



Curriculum Vitae
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