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Abstract

Background: Understanding the underlying genetic structure of human populations is of fundamental interest to
both biological and social sciences. Advances in high-throughput genotyping technology have markedly improved
our understanding of global patterns of human genetic variation. The most widely used methods for collecting
variant information at the DNA-level include whole genome sequencing, which remains costly, and the more
economical solution of array-based techniques, as these are capable of simultaneously genotyping a pre-selected
set of variable DNA sites in the human genome. The largest publicly accessible set of human genomic sequence
data available today originates from exome sequencing that comprises around 1.2% of the whole genome
(approximately 30 million base pairs).

Results: To unbiasedly compare the effect of SNP selection strategies in population genetic analysis we
subsampled the variants of the same highly curated 1 K Genome dataset to mimic genome, exome sequencing
and array data in order to eliminate the effect of different chemistry and error profiles of these different
approaches. Next we compared the application of the exome dataset to the array-based dataset and to the gold
standard whole genome dataset using the same population genetic analysis methods.

Conclusions: Our results draw attention to some of the inherent problems that arise from using pre-selected SNP
sets for population genetic analysis. Additionally, we demonstrate that exome sequencing provides a better
alternative to the array-based methods for population genetic analysis. In this study, we propose a strategy for
unbiased variant collection from exome data and offer a bioinformatics protocol for proper data processing.
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Background
The investigation of the ethnogenesis of human populations
is made possible by population genetic studies, through com-
paring genetic makeup and frequencies of the selected vari-
ants or alleles, and also by computing their genetic distance
from the rest of the studied population or their level of ad-
mixture [1, 2]. Compared to their more costly whole genome
sequencing (WGS) counterparts, these assays predominantly

use array-based genotyping techniques (various Human
BeadChip arrays /610, 640, 650, 1 M/, Infinium Multi-Ethnic
BeadChip arrays from Illumina, Affymetrix Genome-Wide
Human SNP Array, Affymetrix Human Origin Array, etc.)
that include single nucleotide polymorphism (SNP) sets
based on the evaluation of previous genome sequencing data
(CEPH, HGP, HapMap databases), with the emphasis on
population-specific, ancestry-informative markers (AIMs).
AIMs were first introduced in 2008 by Halder and colleagues
[3], as a panel of 176 autosomal AIMs that were capable of
effectively distinguishing individual biogeographical
ancestry and admixture proportions from among four
continental ancestral populations. The importance of
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AIMs has palpable significance in the medical field as
well. While case-control design studies can be an effi-
cacious strategy for identifying candidate genes in
complex diseases in a population, in diversely
admixed populations (e.g. Latin Americans, with ad-
mixture of American Indians, Europeans and Afri-
cans) population stratification can affect association
studies and thereby could lead to false genetic associ-
ations [4]. This undesirable distortion can be mini-
mized by genotyping AIMs.
Ultimately, application of the Whole Exome Sequen-

cing (WES) method had spread and gained popularity,
as WES is cost effective for routine genetic diagnosis of
rare inherited diseases, and extensive databases have
been generated containing thousands of publicly access-
ible exomes (Exome Aggregation Consortium ~ 61000
exomes [5], Exome Variant Server ~ 6500 exomes [6]). A
typical WES dataset contains 100,000 to 130,000 variants
(if all the high coverage reads are also analyzed, includ-
ing the flanking regions of exons). In rare disease diag-
nostics, focus is on filtering out all non-disease specific
variants and to find the one or two causative mutations
that lead to the disease phenotype. In practice, all rare
and common variants aid the exploration of disease vari-
ants only as population controls. Since exome data by
definition contains high portion of the functional vari-
ants that are under selection pressure, in this study, we
explored whether this could lead to any bias in popula-
tion genetic analysis.
Thus, we assessed the usability of exome data in com-

parison with the other approaches in population genetic
analyses. In order to compare the practicality of each
strategy – (the genome data as unbiased standard, the
commonly used array data, and the potentially usable
exome data) – we generated three subsets of the same
publicly available experimental data (HGP ~ 2,500 unre-
lated genomes), accordingly (GENOME, EXOME and
BEADCHIP datasets). The results we obtained from
these datasets were compared using the most widely
used population genetic calculations (including Fixation
index (FST), Principal Components Analysis (PCA), f3−
and f4−statistics, admixture) by utilizing the commonly
used tools: EIGENSOFT [7], ADMIXTOOLS [8],
Admixture [9] and TreeMix [10].
Migration, admixture, adaptation, and genetic drift

lead to genetic diversity between human populations. By
studying genetic diversity within and between popula-
tions, we could reconstruct how these populations are
related to one another. Fixation index a measure of gen-
etic structure developed by Sewall Wright [11, 12] can
be estimated from genetic polymorphism data. FST is the
proportion of the total genetic variance contained in a
subpopulation (S) relative to the total genetic variance
(T). Its values can range from 0 to 1, where FST = 0

implies panmixia (absence of any differentiation among
subpopulations) and FST = 1 implies complete divergence
between populations.
Principal Components Analysis is the most widely used

approach for identifying ancestry differences among a
group of individuals [13, 14]. When applied to genotype
data, it calculates principal components (or eigenvectors),
which can be viewed as continuous axes of variation that
reflect genetic variation due to ancestry in the sample. In-
dividuals with similar values for a particular top principal
component will have similar ancestry for that axes.
Application of principal components to genetic data from
European samples [13] showed that among Europeans for
whom all four grandparents originated in the same coun-
try, the first two principal components computed using
200,000 SNPs could geographically map their country of
origin quite accurately.
F-statistics measure shared genetic drift among sets of

populations and can be used to test simple and complex
hypotheses about admixture events between populations
[15]. The f3-statistics is used for testing the relationship of
three populations [16] by allowing the detection of the
presence of admixture in a population C from two other
populations, A and B. If the value F3(C; A, B) is negative,
then C does not appear to form a simple tree with A and
B, but instead appears to be a mixture of A and B. If F3 is
zero, it indicates the absence of admixture, while a positive
F3 value implies simple tree-like relations among A, B and
C (however, it does not reject admixture). Because of the
complex genetic ancestry of human populations, there
usually exists more than one possible model for any stud-
ied case. The f4-statistics has been developed in order to
test alternative hypothetical trees [17]. The f4-statistics is
used to estimate the admixture proportion of a test popu-
lation (PC) under the assumption that we have a correct
historical model. In this test, PA and PB are the potential
contributors and PI is a reference population with no dir-
ect contribution to PC.
Admixture analysis is based on the maximum likelihood

estimation of individual ancestries from multi-locus SNP
genotype datasets [9, 18]. It estimates the best possible
sources and proportions of admixing components for any
hypothetical number (K) of admixing sources. Visualization
of admixture components offers an insight into the genetic
structure of the studied populations.
Because there is no publicly available WGS data from

modern Hungarians and since our results indicate that
the use of exome data is suitable for population genetic
analysis, we carried out population genetic analysis of
modern Hungarians based on their exome data (HUN
EXOME dataset). Based on our results, we also evalu-
ated a strategy to filter exome data and offer the most
suitable parameters for using them in population genetic
analysis.
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Results
The BEADCHIP dataset contained markedly higher
amount of linked markers
Some population genetic approaches like PCA or ad-
mixture analysis are based on the assumption of link-
age equilibrium. Thus, it is important that linked
markers are pruned from the datasets as linkage dis-
equilibrium (LD) between tightly linked markers
causes certain haplotypes to be more frequent than
expected and large blocks of markers in complete LD
can seriously distort the eigenvector/eigenvalue struc-
ture [7]. This is especially important in the exome
dataset as exons of genes, or genes could be tightly
packed in small, transcriptionally active chromosome
regions. Therefore, we altered the recommended
50 kb sliding window [9] in the –indep-pairwise
algorithm of Plink to 10,000 kb, while maintaining
the recommended 10 SNPs increment and r2 thresh-
old of 0.1. The variant counts and the effect of LD
pruning on the different datasets are summarized in
Additional file 1: Table S1.
Interestingly, the BEADCHIP dataset, even with the

50 kb sliding window, contained a much higher propor-
tion of linked markers (~ 86%) compared to the GEN-
OME (~ 52%) and EXOME (~ 55%) datasets. As
expected, the larger pruning window affected mostly the
EXOME dataset (~ 19% additional markers pruned),
while the GENOME (~ 11%) and BEADCHIP (~ 9%)
datasets were affected to a lesser degree.

FST values based on the BEADCHIP dataset are
systematically overestimated between populations with
larger genetic distance
For each dataset, we calculated the pairwise FST value
between each studied population and compared the re-
sults of the different datasets (Additional file 2: Table
S3). In general, the FST distances generated from the
GENOME and EXOME datasets were found to be nearly
identical. However in the EXOME dataset we found very
small but systematic differences between the FST values
of African (except in the LWK African population) and
European populations and the African and East Asian
populations. We observed that FST values calculated on
the basis of the BEADCHIP dataset were systematically
overestimated between populations originating from dif-
ferent super-populations.

Eigenvalues are notably larger for the BEADCHIP dataset
compared to GENOME and EXOME datasets in PCA
For each dataset, we performed the PCA analysis of
all samples without outlier removal. The different
datasets show a remarkably similar overall picture by
the first two eigenvectors (Fig. 1a-c). The relative po-
sitions of the super-populations are almost the same,

and we can even pinpoint several outlier individuals
– for example, some individuals with African ances-
try, marked by red dots in the middle – that are po-
sitioned in a very similar pattern in each dataset. The
greatest difference is that the absolute values of ei-
genvectors are significantly larger for the BEADCHIP
dataset compared to the GENOME and EXOME data-
sets, while the EXOME dataset has the most similar
eigenvector values to the GENOME dataset. The
complete logs of all PCA analyses on the different
datasets (containing detailed Tracy-Widom statistics,
average divergence between populations, ANOVA sta-
tistics for population differences along each eigen-
vector, statistical significance of differences between
populations and list of eigen best SNPs) are summa-
rized in Additional file 1: DATA/PCA. According to
the detailed statistics included in the logs the three
datasets showed similar statistical power to differenti-
ate populations.
In order to investigate whether the BEADCHIP and

EXOME datasets represent similar population relations
within each super-population in comparison to the
GENOME dataset, next we performed the PCA analysis
restricted to each super-population using default outlier
removal (removing individuals with > 6 SD of topk ei-
genvectors). The detailed PCA of the populations for
each super-population showed that the indicated eigen-
vectors and values were very similar in all three datasets
(Fig. 2a-e). The greatest difference between the three
datasets was seen in the AFR super-population. The dif-
ferences between the overlap of the historically known
admixed ASW and ACB African populations and their
relations to the other African populations indicated
slightly different population affiliations in the BEAD-
CHIP dataset compared to the GENOME and EXOME
datasets.

f3-statistics of BEADCHIP dataset deviates from GENOME
dataset
In order to compare the usability of the three datasets
we calculated the f3-statistics for all possible combina-
tions of population triads and plotted the resulting F3
values Fig. 3.
Figure 3a shows that the EXOME F3 values is almost

identical to GENOME results (Pearson correlation r =
0.9998), while the BEADCHIP data (Fig. 3b) presents
less correlation (r = 0.9911) with the F3 values calculated
from the GENOME dataset. The differences are con-
fined to the larger positive F3 values in our analyzed
populations (shown as deviating red dots from green
dots in Fig. 3b). The most deviating cases were those
where F3 value were calculated between any two East
Asian populations in relation to an arbitrary African
population.
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F4(TSI, X; CHB; YRI) values were comparable in all
analyzed datasets
In the analyzed populations, all possible combinations of
any four populations result in an exceedingly large in
number. In most cases, the relations between these popu-
lation combinations would be meaningless. Therefore, in
order to test potential bias between the different datasets,
we only calculated the f4-statistic corresponding to a
well-known East Eurasian-like ancestry of Northern Euro-
pean populations [19]. The F4(TSI, X; CHB; YRI) values
where X denotes all possible test populations were calcu-
lated for each dataset (Additional file 1: Figure S1 A-C).
In all analyzed populations, the f4-statistics showed

nearly identical East Asian and African components for
each dataset. A population with negative values indicates
East Asian gene flow, while positive values indicate dom-
inant African genetic components in the test population.
The order of populations was the same for all datasets
and the relative ratios between the F4 values of different
populations was nearly identical. The absolute values
were significantly higher in the BEADCHIP dataset com-
pared to the GENOME dataset, while the EXOME data-
set was more similar to it.

Admixture analysis reveals subtle differences between
the different datasets
We performed the admixture analysis and calculated the
Cross Validation (CV) error for different models (K = 3
to 10) for each dataset. Since the absolute CV error
values were significantly higher in the BEADCHIP data-
set compared to the GENOME and EXOME datasets,
we displayed the relative CV values compared to the
lowest fitting model (K = 3) that resulted the highest CV
error for each dataset (Additional file 1: Figure S2).
The best fitting model of admixture indicated by the

minimum of cross validation error was K = 6 in the
GENOME, EXOME and HUN-EXOME datasets, how-
ever the CV error of the BEADCHIP dataset indicated
the K = 9 model as the best fitting model of admixture.
The curve of the CV errors of the BEADCHIP dataset
shows that this dataset resulted in very similar alterna-
tive models (ranging from K = 7 to 10) with almost iden-
tical CV errors. Since the analysis of the different dataset
suggested different best fitting admixture models, we vi-
sualized both models (K = 6 and K = 9) for each dataset.
The analysis of the best fitting admixture model (K = 6)

suggested by both the GENOME and EXOME datasets
produced very similar admixture results (Additional file 1:
Figure S3). Each color represents a different admixture
component (K). The major topology and admixture com-
ponents were very similar in each dataset for all analyzed
populations however, the BEADCHIP systematically over-
estimated the minor admix components compared to the
other two datasets (for example, South Asian component

Fig. 1 PCA analysis of super-populations using different datasets a)
GENOME b) EXOME c) BEADCHIP
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Fig. 2 Detailed PCA of super-populations: a) European, b) East Asian, c) South Asian, d) Admixed American, e) African
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/marked as orange/ in Italian (TSI) or British (GBR) popu-
lations denoted by arrows in Additional file 1: Figure S3).
The analysis of the best fitting admixture model (K = 9)

suggested by the BEADCHIP dataset produced very simi-
lar admixture results for each datasets (Additional file 1:
Figure S4). The major topology and admixture compo-
nents were very similar for each dataset. The major differ-
ences compared to the K = 6 model were that in each
dataset, the European super-population was split into two
and the African super-population was split into three
admixing components. The EXOME dataset was again
most similar to the GENOME dataset, and again, the ad-
mixture of the BEADCHIP dataset systematically overesti-
mated the minor admix components compared to the
other two datasets (some examples are highlighted by ar-
rows in Additional file 1: Figure S4).

Overrepresentation of AIMs in the BEADCHIP dataset
Our previous population genetic analyses suggested that
the variant composition of the BEADCHIP dataset is dif-
ferent from the GENOME and EXOME datasets. To test
this hypothesis we calculated the variance of minor allele

frequencies (MAF) of the analyzed populations for each
SNP and visualized it as a density plot (Fig. 4).
Figure 4 shows that SNPs that are highly variable be-

tween the test populations are overrepresented in the
BEADCHIP dataset, while the distribution observed in
the EXOME dataset is nearly identical to the distribution
observed in the GENOME dataset. Thus, our analysis
also confirms that EXOME dataset does not suffer from
the same bias as the BEADCHIP dataset given correct
processing of raw sequencing data for which we provide
a step-by-step recommendation in Fig. 5.

Analysis of the HUN-EXOME dataset
The PCA of the HUN-EXOME dataset (Additional file 1:
Figure S5A) shows that Hungarians (denoted by purple
circles) belong to the European super-population and that
Hungarians are not in close relationship with the other
European populations available in the public HGP dataset
(Additional file 1: Figure S5B).
In the case of Hungarians the F4 (TSI,HUN;CHB;YRI)

value (Additional file 1: Figure S6) showed that Hungarians
have higher East Asian genetic components than the

Fig. 3 Comparison of F3 values obtained from the GENOME, EXOME and BEADCHIP datasets. F3 values were ordered and plotted relative to all
possible combinations of population triads. a) F3 values from the EXOME vs. the GENOME dataset b) F3 values from the BEADCHIP vs. the
GENOME dataset. The arrow denotes substantial deviations from the GENOME F3 values
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British population (GBR), but these genetic compo-
nents are significantly smaller than those in the
Finnish population (FIN).
Since the analysis of the EXOME dataset was compar-

able to the other datasets, we also performed the admix-
ture analysis of the HUN-EXOME dataset for both the
K = 6 and K = 9 models.
In the K = 6 model Hungarians were again classified

into the European super-population as the major

admixture component (depicted as blue) is the same as
observed in other European populations (Additional file 1:
Figure S7A). Within the Hungarian population we can
observe a few individuals with significant South Asian
genetic components (denoted by orange). In the dataset of
analyzed populations considering the K = 9 admixture
model (Additional file 1: Figure S7B), Europeans display a
North-South gradient by the indicated two European
specific admix components (represented by the
Finnish and Italian populations). According to their
geolocation Hungarians are situated in the middle of
this gradient having approximately 50–50% portion of
these admix components.

Discussion
The WGS, the WES, and the array-based datasets are
the three main types of human genetic datasets avail-
able today. In this study, we compared the use of these
SNP-selection strategies for population genetic analysis,
as each method differs in terms of the ratio in which it
contains variants under natural selection. Our GEN-
OME dataset mainly contains non-exonic variants,
since more than 98% of the human genome consists of
non-exonic region and our coordinate-based selection
was random. The EXOME dataset contains both
non-exonic (~ 50%) and exonic variants (~ 50%), al-
though only a portion of the exonic variants are func-
tional. In order to make the various approaches
comparable, we used the same curated HGP 1 kG gen-
omic variant data to select the subsets of the
GENOME, EXOME and BEADCHIP datasets (see in
detail in the Methods section). The number of variants
was comparable in all unpruned datasets (Additional
file 1: Table S1).
Proper LD pruning is a crucial step prior to PCA ana-

lysis, as large blocks of completely linked markers may

Fig. 4 Density plot of the variation of the minor allele frequencies (MAF) of SNPs between the analyzed populations in the different datasets

Fig. 5 Preparation of WES data for population genetic analysis
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introduce bias that could result additional eigenvectors
[7]. Furthermore, it is also important in admixture ana-
lysis, because the calculations assume linkage equilib-
rium among the markers [9]. We observed that the
unpruned BEADCHIP dataset contained slightly more
variants than the GENOME dataset (567 k vs. 483 k
variants), but most of them were tightly linked, as only
~ 72 k markers (~ 12%) remained after LD pruning, while
in the GENOME dataset the ratio was ~ 43% (~ 205 k
markers) which indicates a smaller fraction of linkage. We
suppose that these differences are contributed to the
tightly linked pre-selected AIMs in the BEADCHIP data-
set. The coordinate-based EXOME dataset had somewhat
higher linkage than the dispersed GENOME dataset. This
is assumed to be a consequence of the organization of the
human genome, where genes and exons are not homoge-
neously dispersed, but rather tend to be packed tightly in
functionally active euchromatic chromosome regions.
Correspondingly, after LD pruning about 149 k, a slightly
lower proportion of variants (~ 38%) remained in the EX-
OME dataset out of the ~ 405 k unpruned variants. Com-
paring the PCA results of the EXOME dataset with the
gold standard GENOME dataset, we refined the LD pruning
parameters of exome data. We suggest extending the prun-
ing window (to 10,000 kb) – while keeping the original 0.1
squared correlation threshold – in order to counter the ef-
fect of the packed exome variant composition and to elimin-
ate the tightly linked markers. According to our results, this
modification did not significantly alter the variants of the
BEADCHIP dataset; however, it did eliminate additional
tightly linked variants in the EXOME and to a lesser degree
in the GENOME datasets Additional file 1: Table S1.
The fixation index is one of the most commonly used

statistics in population genetics, which is a measure of
population differentiation due to genetic structure. The
FST distances between African (except the LWK popula-
tion) and the European populations were very slightly
(0.001–0.002) but systematically smaller using the
EXOME dataset. On the other hand, the FST values be-
tween the African and East Asian populations were very
slightly (0.001–0.002) but systematically larger compared
to the GENOME FST distances. Since this slight difference
was systematic between the random GENOME and the
EXOME dataset (which by definition contains functional
variants besides the non-coding and other functionally
inert variants), we hypothesize that a portion of functional
variants are accountable for this phenomenon. However,
the deviation (~ 1–3%) is still only a portion of what was
observed in the BEADCHIP dataset. The comparison of
FST values of the BEADCHIP dataset to the GENOME
dataset revealed that the pairwise FST distances between
populations of different super-populations were systemat-
ically larger (~ 1–12%), and that the extent of the differ-
ence appears to be correlated to the phylogenetic distance.

On the contrary, we detected almost no differences be-
tween the FST distances of populations within the same
super-population, except in the highly admixed AMR
super-population. We assume that this is due to a general
overrepresentation of differentiating SNPs (AIMS) and im-
balances in the selection and proportion of the marker com-
position in the pre-selected BEADCHIP dataset. This
hypothesis is also supported by the observed FST values of
the admixed ASW population. The ASW population is a
sub-population of African Americans in the Southwestern
United States who originated from West-Africa, and later
mixed with Caucasian and American Indians. Accordingly,
the BEADCHIP data places this population closer to its
admix sources - the European (EUR) and Admixed Ameri-
can (AMR) super-populations - than those of the GENOME
FST values, indicating that the overrepresentation of AIMs
distorts the true population distances. As FST can be used to
estimate coalescence times [20, 21], significant deviations in
FST values - such as observed using the BEADCHIP dataset -
may lead to bias in these estimations.
For each dataset the PCA analysis showed both similar

topology and comparable relations between the analyzed
populations. We observed that for the first two eigenvec-
tors of the whole dataset (Fig. 1a-c) the eigenvalues were
greater in the BEADCHIP dataset compared to the
GENOME dataset, while the EXOME datasets were
more similar to it. The eigenvalue with the largest abso-
lute value is known as the dominant eigenvalue and can
be used to determine the rate of growth in the popula-
tion [22]. An overestimation of the eigenvalues miscalcu-
lates the population growth rate. The largest differences
between the detailed PCA were seen in the African
super-population (Fig. 2e) where the BEADCHIP dataset
gave slightly different eigenvalues and population rela-
tions compared to the GENOME and EXOME datasets.
Similarly to the FST results, the admixed ASW and ACB
populations displayed slightly different relations to other
populations. We assume that again, the overrepresenta-
tion of AIMs in the BEADCHIP dataset is responsible
for the increased eigenvalues and the different relations
of the admixed ASW and ACB populations. Nonethe-
less, the genetic relationship among the studied popula-
tions was still comparable.
Comparison of the three datasets showed that the

GENOME and the EXOME data gave almost identical
F3 values (r = 0.9998 Fig. 3a), while the Z scores were
slightly smaller in the EXOME dataset, which was attrib-
utable to the smaller SNP count. On the other hand, the
f3-statistics of the BEADCHIP dataset showed less cor-
relation (r = 0.9911 Fig. 3b). The Z scores of the f3-statis-
tics in the BEADCHIP dataset were also higher, even
though the SNP count was about one third of the GEN-
OME dataset, which indicates higher deviation from the
mean. Plotting the corresponding F3 values revealed
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systematic differences in a large portion of population
combinations between the BEADCHIP and GENOME
datasets. Investigation of F3 values showed that tree like
split of East Asian populations from African populations
was systematically overestimated by the f3-statistics
based on the BEADCHIP dataset. We assume that this
bias is due to the overrepresentation of AIMs between
the East Asian and African populations within the
pre-selected variants of the BEADCHIP dataset. Taking
all this together, we conclude that the EXOME data is
highly suitable for f3-statistics. Although the absolute F3
value deviation from zero is meaningless if we only test
whether f-statistics is consistent with zero [8] (meaning
no admixture), the inferred magnitude of relatedness in
comparison to relations between other populations may
lead to bias or overinterpretation of data in some spe-
cific cases (such as where markers are not evenly repre-
sented in the analyzed populations) of the BEADCHIP
dataset (due to higher F3 values and optimistic Z score-
s).On the other hand our analysis supports that f4-statis-
tics is robust to SNP ascertainment (all three datasets
resulted in nearly identical proportions) and deviation
from zero is only observed if the test population is
admixed [8].
The admixture analysis of different datasets suggest

different best-fit admix modelsSince the BEADCHIP
dataset resulted in higher CV errors and a number of
very similar alternative models, it appears that this
dataset is less conclusive for pinpointing the true ad-
mixture model. Nevertheless, the admixture analysis of
the different datasets resulted very similar admixture
components for all of the tested models (Additional file 1:
Figures S3-S4). The observed overrepresentation of minor
admixture components in the BEADCHIP dataset may
lead to overestimation of their admix ratios.
In our comparative analyses, we used the same HGP

dataset to make an unbiased assessment of the different
strategies of variant selection. However, comparing data-
sets from different sources may lead to bias due to the
differences in the applied NGS variant calling tools,
pipelines, thresholds, and quality of sequences. The ma-
jority of genotyping uncertainties stem primarily from
the fact that various NGS pipelines use slightly different
(only partially overlapping) quality parameters and pipe-
line specific fix tresholds which is not always optimal for
analyzing all genomic regions with different read depths
(due to inter-sample and/or target region variances)..
Thus, in order to minimize the bias, we applied a num-
ber of criteria for exome data processing before using
them for population genetic analyses. Hence, we ex-
cluded the low-coverage data, based on the real coverage
profile of our aligned NGS reads, as these data may have
led to ambiguous variant calls. We excluded all read
length variations (INS/DELS/DUPS) from the analysis

since the same variant may be represented ambiguously
by different variant callers. We also excluded potentially
pseudogenic, conservative and repetitive regions where
reads could be ambigiously mapped to multiple genomic
regions and the proportion of the alternatively aligned
sequencing reads may lead to differences depending on
the threshold values or the pipeline applied for the
analysis.
Using these strict criteria, we merged the Hungarian ex-

ome data and analyzed the resulting HUN-EXOME
dataset with the appropriate population genetic tools.
Both the PCA and admixture analysis of the modern
Hungarian exome dataset confirms that genetically,
modern Hungarians are Europeans (Additional file 1:
Figure S5 PCA; Additional file 1: Figure S7 K = 6, K = 9
admixture plots). We note here that our admixture ana-
lysis (K = 9) indicated two genetic components with a
North-South European gradient which has a ~ 50–50%
portion in Hungarians. Admixture analysis also detected a
portion of a South Asian component in a few individuals of
the Hungarian population, which in our view can be attrib-
uted to the Gypsies living as an ethnic minority (~ 5%) in
Hungary. F3 analysis of HUN-EXOME dataset also suggests
a small but significant (high Z scores) South-Asian-HUN
admixture (Additional file 1: Table S2).
Historically, gypsy tribes left India in the 9th and 10th

centuries as a result of Muslim attacks in areas they
inhabited and first appeared in territory of the medieval
Kingdom of Hungary in the 14th and 15th centuries,
probably fleeing from the conquering Turks in the Bal-
kans [23]. This assumption is also supported by the fact
that the South-Asian genetic component is confined to
only a few Hungarian individuals with high contribu-
tions indicating a recent admixture. Unfortunately we
cannot explicitly verify the ethnic origin as our exome
data was anonymous and therefore we had no informa-
tion on ethnicity. Modern Hungarians identify them-
selves as having originated from the Hungarian
Conquerors, who are deemed to have arrived to the
Carpathian Basin in the ninth Century migrating from
around the Ural Mountains, which is the natural border
between Europe and Asia. The f4-statistic indicated a
small East Asian admixture component in modern Hun-
garians (Additional file 1: Figure S6) that was also seen
as minor admixture components in few Hungarian indi-
viduals (Additional file 1: Figure S7). The minor East
Asian component detected in modern Hungarians is
possibly the genetic trace of Hungarian Conquerors as
also suggested by mtDNA analysis [24, 25]. Because the
publicly available HGP dataset contains worldwide pop-
ulations with no or very little genetic relation to modern
Hungarians, our analysis indicated only known and
plausible relations of modern Hungarians in relation to
the analyzed populations (such as general European
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ancestry with small-scale East-Asian components and a
recent admixture with South-Asian components). How-
ever, this systematic analysis confirms the usability of
WES data in population genetic analysis and leads us to
conclude that exome data from populations having shared
ethnogenesis with Hungarians could result in an even bet-
ter understanding of their genetic history.

Conclusion
Overall, our comparative analysis indicates that the
array-based preselected SNP-set (BEADCHIP dataset)
deviates most from the GENOME dataset. The reason
behind this phenomenon may be twofold. First, the
pre-selection of SNPs in the array is not necessarily a
uniform representation of all of the analyzed popula-
tions, and second, the increased proportion of AIMs is
shifting the balance towards highlighting the differences
between populations. The increased proportion of AIMs
makes the BEADCHIP dataset suitable for sensitive ex-
ploration of admixture components. However, it could
also lead to deviations of the Fixation index, specific
cases of f3-statistics, PCA eigenvalues, suggested admix-
ture model, and admixture rates. Thus, all derived pa-
rameters (e.g. coalescent time, population growth rate)
estimated from these statistics are prone to bias in case
of array-based data. WES data, on the other hand, is not
affected by this bias and is suitable for population gen-
etic analyses. Based on the usability of the EXOME data-
set we would encourage everyone to use and to publicly
share WES sequences with the correct indication of eth-
nic and geographical origin, which could contribute to-
wards a better understanding of the genetic relationships
among human populations.

Methods
Preparation of Hungarian exome data
Our previously published BAM files of Hungarian whole
exomes [26] were aligned by the BWA-MEM algorithm
[27]. Using the whole cohort, we identified the high
coverage regions (all samples in the cohort had coverage
>10x) using samtools bedcov (version 1.3.1) algorithm
[28] with the SureSelect V5 all exon plus UTR kit mani-
fest bed coordinates. Since some of the regions may con-
tain repetitive elements or pseudogenic regions with
non-unique sequences, we excluded all regions that had
any MAPQ0 reads (mapping quality 0, indicating that the
read could be mapped to multiple genomic regions). We
excluded sex chromosomes from the analyzed regions. As
a result, we generated a BED coordinate list (Additional
file 1: Data/HighCov_HighQual_EXOME.bed) that con-
tained the high coverage, unique genomic regions of the
exome kit. Variant calling was performed by the GATK
HaplotypeCaller (version 3.5) best practice [29] using the
parameters -stand_emit_conf 10 -stand_call_conf 30 in the

HaplotypeCaller module, and --ts_filter_level 99.0 in the
variant recalibration (ApplyRecalibration) module. We fil-
tered the variants to include only high quality SNPs (PASS
filter) in the final high coverage/unique bed regions. We
also filtered out multi-allelic variants and variants that had
< − 0.5 InbreedingCoeff (indicating variants that violate
HW equilibrium, which would potentially be technical er-
rors since our cohort consisted of unrelated patients).

Preparation of public datasets
We used the publicly available variants from the higly cur-
rated VCF files of the Human Genome Project 1 kG phase
3 dataset [30]. We excluded the geographically inaccurate
CEU population and all of the related individuals from our
analysis. Our final dataset included sequence data of 2,369
individuals originating from 25 available populations, as
follows: European (EUR: GBR - British in England and
Scotland; FIN - Finnish in Finland; IBS - Iberian popula-
tions in Spain; TSI - Toscani in Italy), South Asian (SAS:
BEB - Bengali in Bangladesh; GIH - Gujarati Indian in
Houston TX; ITU - Indian Telugu in the UK; PJL - Punjabi
in Lahore, Pakistan; STU - Sri Lankan Tamil in the UK),
East Asian (EAS: CDX - Chinese Dai in Xishuangbanna,
China; CHB - Han Chinese in Bejing, China; JPT - Japanese
in Tokyo, Japan, KHV - Kinh in Ho Chi Minh City,
Vietnam; CHS - Southern Han Chinese, China), Admixed
Americans (AMR: CLM - Colombian in Medellin,
Colombia; MXL - Mexican Ancestry in Los Angeles,
California; PEL - Peruvian in Lima, Peru; PUR - Puerto
Rican in Puerto Rico), and African (AFR: ASW - African
Ancestry in Southwest US; ACB - African Caribbean in
Barbados; ESN - Esan in Nigeria; GWD - Gambian in
Western Division, The Gambia; LWK - Luhya in Webuye,
Kenya; MSL - Mende in Sierra Leone; YRI - Yoruba in
Ibadan, Nigeria).
To compare the capabilities of the sequencing-based

(WES and WGS) and array-based approaches, we cre-
ated three SNP datasets (denoted as EXOME, GENOME
and BEADCHIP) established upon the following rules:
first, the EXOME dataset (Additional file 1: Data/EX-
OME) was prepared by filtering the public 1 kG variants
with the bedtools intersect algorithm using the genomic
coordinates of the high-coverage high-quality exome
BED coordinate list that we established using the
Hungarian exome data. Second, the GENOME dataset
was created on the basis of a homogeneously dispersed
genomic coordinate list that spanned all somatic chro-
mosomes (Additional file 1: Data/GENOME.bed). The
first and last 5 Mb of the telomeric regions of chromo-
somes were excluded in order to eliminate uncertain se-
quences, such as repetitive elements. The remaining
genomic regions on each chromosome was equally di-
vided; the first 258 base pairs in every 10 kb DNA
stretch were used by the bedtools intersect algorithm for
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extracting homogeneously dispersed variants across the
genome (Additional file 1: Data/GENOME). The resulting
unbiased genomic region coordinates were found to have
a cumulative size (68.7 Mb), which is similar to the cumu-
lative size of the high-coverage exome regions (68.9 Mb).
In order to prepare the BEADCHIP dataset (Additional

file 1: Data/BEADCHIP), the genome coordinates of a fre-
quently used Human genotyping array kit (Illumina
Human610-Quad BeadChip) were used from the kit’s
manifest file and converted to BED coordinates. The bed-
tools intersect algorithm was used to filter the correspond-
ing variants from the 1 kG genomic variants. From all
three datasets, we removed all multi allelic variants, along
with variants that were found in less than 10 individuals
(or in all but 10 individuals in case of refseq error). This
resulted in comparable variant numbers for each dataset
(567 k BEADCHIP, 405 k EXOME, 483 k GENOME). The
1 kG annotated joint VCF was re-coded to plink.ped and
plink.map formats. Plink (version 1.9) was used to gener-
ate the binary bed format files used in the downstream
analysis [31].

Merging Hungarian exome data with public dataset
In order to create the merged HUN-EXOME dataset, we
used the same high-coverage high-quality exome BED co-
ordinate list, which we established using Hungarian ex-
ome data, and the bedtools intersect algorithm for filtering
the variants in both the Hungarian exome data and the
1 kG datasets. The filtered exome and 1 kG variants were
merged with the GATK CombineVariants algorithm. We
removed multi allelic variants, as well as variants that were
only found in less than 10 individuals (or all but 10 indi-
viduals in case of refseq error). The resulting joint VCF
were re-coded to plink.ped and plink.map formats and we
used plink to generate the binary bed format file (Add-
itional file 1: Data/HUN-EXOME).

LD pruning of datasets
LD pruning was carried out using the –indep-pairwise
algorithm of plink (version 1.9). Because of the structure
of the human genome, it was expected that exome vari-
ants would yield non-homogeneously dispersed markers.
Therefore, we performed the LD pruning using different
sliding window sizes (the recommended 50 kb of admix-
ture protocol, and an extended 10,000 kb) to prune
linked markers in order to identify the best parameters.
For both window sizes, we kept the recommended 10
SNPs increment and r2 threshold of 0.1 to allow pruning
of markers by the same linkage criteria. In order to allow
unbiased comparison of the three methods, we used the
same LD pruning parameters (10,000 kb sliding window,
0 SNPs increment and r2 threshold of 0.1) for each
dataset.

FST and PCA calculations
The pairwise FST matrix and the PCA analysis of popula-
tions were performed by the EIGENSOFT software (ver-
sion 6.1.3) [7] on the LD pruned datasets. For each
subset of data (whole dataset and the different
super-populations), the LD pruning of linked variants
and the subsequent PCA calculations were performed
separately. PCA analysis was carried out without outlier
removal for the whole datasets and with outlier removal
(SmartPCA config file, outliersigma tresh SD = 6) for the
analysis of individual populations for each super-popula-
tion. PCA plots were visualized by ggplot2 (version
2.2.1) [32].

f3 and f4-statistics
The F3 tests were carried out by the qp3Pop program of
ADMIXTOOLS [8] for each population triad of the ana-
lyzed populations. The F4 tests were calculated using the
fourpop algorithm of TreeMix software (version 1.13).
For each dataset, the corresponding F4(TSI,X;CHB,YRI)
values were calculated (where X refers to the given test
population). F3 and F4 values of the tests were visualized
by ggplot2.

Admixture analysis
Admixture analysis was performed by the ADMIXTURE
software (version 1.3.0) using the LD pruned datasets
with the --cv option for K = 3 to 11 values using 20 itera-
tions and randomized seeds [9]. The best admixtures
suggested by the cross-validation plots of genome/ex-
ome and BEADCHIP datasets were visualized by a cus-
tom Perl script using Linux ImageMagick software
(version 6.7.7–10).

Additional files

Additional file 1: Table S1. Number of high-quality biallelic variants in
GENOME, EXOME, BEADCHIP, and HUN-EXOM datasets before and after
LD pruning. Table S2. f3-statistics of Hungarian and selected South Asian
populations indicate admixture which could be attributed to the Gypsies
living as an ethnic minority in Hungary. Figure S1. The f4 (TSI, X; CHB;
YRI) statistics estimates the East Asian and African components for each
dataset. Negative values indicates East Asian gene flow, while positive
values indicate dominant African genetic components. Figure S2. Calcu-
lated CV error for different admixture models (K=3 to 10). The best fitting
model of admixture indicated was K=6 in the GENOME, EXOME and
HUN-EXOME datasets, however, it was K=9 in case of the BEADCHIP data-
set. Figure S3. Admixture analysis of 25 populations with the K=6 admix-
ture model. The major topology and admixture components were very
similar in each dataset for all analyzed populations but the minor admix
components were systematically overestimated using the BEADCHIP
dataset. Figure S4. Admixture analysis of 25 populations with the K=9
admixture model. Besides the minor admix components overestimation
using BEADCHIP this admixture model suggested that the European
super-population was split into two and the African super-population
was split into three admixing components. Figure S5. PCA of the HUN-
EXOME dataset confirms that genetically, modern Hungarians belong to
the European super-population and within the Europeans, two genetic
components exist with a North-South European gradient. Figure S6.
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F4(TSI, X; CHB, YRI) values of the HUN-EXOME dataset indicates that Hun-
garians have higher East Asian admixture component than British but
lower than Finnish population. Figure S7. Admixture analysis of 25 popu-
lations using the HUN-EXOME dataset for the A) K=6 and B) K=9 admix-
ture models. Besides the major Europian admixture component in few
Hungarian individuals minor East Asian admixture components also de-
tected. Data Supplementary Data was deposited to: https://figshare.com/
s/e91794c7141a7eb16255. (PDF 2255 kb)

Additional file 2: Table S3. The calculated FST and FST difference data
used for analyses. FST matrix of populations based on the GENOME,
EXOM, BEADCHIP datasets. The difference between the FST matrix of the
GENOME and EXOME, GENOME and BEADCHIP datasets. FST matrix of
populations based on the HUN-EXOME dataset. (XLSX 34 kb)
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