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Abstract
Objective
To examine whether interictal plasma pituitary adenylate cyclase-activating peptide 38-like
immunoreactivity (PACAP38-LI) shows correlation with the microstructural integrity of the
white matter in migraine.

Methods
Interictal plasma PACAP38-LI was measured by radioimmunoassay in 26 patients with mi-
graine (24 women) who underwent diffusion tensor imaging afterward using a 1.5-tesla
magnetic resonance scanner. Data were analyzed using tract-based spatial statistics included in
FMRIB’s Software Library.

Results
Interictal plasma PACAP38-LI showed significant correlation with mean diffusivity (p <
0.0179) mostly in the bilateral occipital white matter spreading into parietal and temporal white
matter. Axial and radial diffusivity showed positive correlation with interictal PACAP38-LI (p <
0.0432 and p < 0.0418, respectively) in the left optic radiation and left posterior corpus
callosum. Fractional anisotropy did not correlate significantly with PACAP38-LI. With disease
duration as a nuisance regressor in the model, PACAP38-LI correlated with axial and mean
diffusivity in the left thalamus (p < 0.01).

Conclusion
We report a link between PACAP38, a pathobiologically important neurochemical biomarker,
and imaging markers of the disease that may bolster further research into the role of PACAP38
in migraine.
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Pituitary adenylate cyclase-activating peptide 38 (PACAP38)
is a neuropeptide of growing importance in migraine litera-
ture. There are consistent reports of its migraine-inducing
properties,1,2 and its blood levels correspond with headache
attacks, with decreased blood levels in the interictal term.3

The exact nature of its connection to migraine, however,
remains unclear. Research points to the involvement of
PACAP38 in the activation of the trigeminovascular system,4

and it has been affiliated with headache-related photophobia
as well.5

Alterations of brain function and structure in migraine were
identified with various MRI modalities. Magnetic resonance
spectroscopy studies demonstrated neurochemical differ-
ences mainly in the cingulate and occipital cortices in patients
with migraine.6,7 Functional MRI studies found altered acti-
vation in regions related to pain processing, and the activity of
resting-state networks was also shown to be altered in mi-
graine.8 Several diffusion tensor imaging (DTI) studies found
microstructural abnormalities of the white matter in patients
with migraine in pathways related to pain sensation9 and vi-
sual processing.10 Since PACAP38 turns up as a functional
molecule in these systems,11,12 the question arises whether the
peptide’s assumed role in migraine pathophysiology is linked
to alterations of the white matter microstructure. A recent
study by Yilmaz et al.13 revealed increased ictal levels of S100B
(a marker of glial damage) and neuron-specific enolase (a
marker of neuronal damage) in migraineurs without aura.
Furthermore, infusion of PACAP38 in migraineurs changed
the plasma concentrations of S100B.14 Combined with de-
creased interictal levels of PACAP38, these results led us to
the hypothesis that PACAP38 may induce degenerative
changes in migraineurs that might be detectable with DTI.
Alternatively, PACAP38 also exerts neurotrophic and neu-
roprotective effects,15,16 and these effects might also be
detected by diffusion MRI.

Serum levels of PACAP38 seem to approximately represent
intracerebral PACAP38 metabolism in human studies since
PACAP38 passes through the blood-brain barrier by way of
a saturable transport mechanism,17 and there are also reports
of increased blood-brain barrier permeability in migraine.18

Since decreased interictal PACAP38 levels could hypotheti-
cally be a product of altered PACAP38 metabolism, which
might coexist with microstructural changes, we hypothesized
that interindividual variation of subnormal interictal
PACAP38 levels in patients with migraine might correlate
with microstructural characteristics. In this exploratory study,

we investigated this correlation in patients with migraine, as
measured by DTI.19

Methods
Participants
We recruited 26 patients with migraine from outpatients of
the Headache Outpatient Clinic at the Department of
Neurology. Patients were diagnosed according to the In-
ternational Headache Society criteria.20 Participants were
screened for depression using the Hamilton Depression
Scale,21 and those with a test result of >8 points were
excluded. Apart from migraine, participants did not have
any neuropsychiatric illnesses. Of 26 patients, 8 received
prophylactic treatment for migraine (2 topiramate, 6
iprazochrome).

Standard protocol approvals, registrations,
and patient consents
The study was approved by the local ethics committee (87/
2009), and written consent was provided by all
participants.

Acquisition of MRI data
MRI scans took place in the interictal period, at least 1 week
after the last migraine attack, using a 1.5T GE Signa Excite
HDxt MRI Scanner (GE Healthcare, Milwaukee, WI). We
obtained 3-dimensional fast spoiled gradient echo images
(echo time = 4.1 milliseconds [ms]; repetition time = 10.276
ms; matrix: 256 × 256; field of view: 25 × 25 cm; flip angle:
15°; in-plane resolution: 1 × 1mm; slice thickness: 1 mm) and
60 directional diffusion-weighted images with 6 non-
diffusion-weighted reference volumes (echo time = 93.8 ms;
repetition time = 16 ms; matrix: 96 × 96; field of view: 23 × 23
cm; flip angle: 90°; in-plane resolution: 2.4 × 2.4 mm; slice
thickness: 2.4 mm; b = 1,000 s/mm2; number of excitations =
2; array spatial sensitivity encoding technique factor = 2) for
all participants, using similar parameters as published in our
recent study.22

PACAP38-like immunoreactivitymeasurements
Blood samples were drawn interictally from the cubital vein
just before MRI scans, while patients maintained a sitting
position. The samples were collected in cooled glass tubes,
which contained 12 mg of EDTA and aprotinin, a protease
inhibitor (Trasylol 1,200 IU; Bayer Pharmaceuticals Corp.,
West Haven, CT). We kept the tubes at 4°C before centri-
fugation and stored them at −80°C afterward pending

Glossary
AD = axial diffusivity; DTI = diffusion tensor imaging; FA = fractional anisotropy; FMRIB = Oxford Centre for Functional
Magnetic Resonance Imaging of the Brain; FSL = FMRIB’s Software Library; MD = mean diffusivity; PACAP38 = pituitary
adenylate cyclase-activating peptide 38; PACAP38-LI = pituitary adenylate cyclase-activating peptide 38-like immunoreactivity;
RD = radial diffusivity.
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PACAP38-like immunoreactivity (PACAP38-LI) measure-
ment with a specific and sensitive radioimmunoassay method
published earlier.3

The PACAP38 antiserum “88111-3” was raised against
synthetic peptides bound to bovine thyroglobulin or bovine
serum albumin in rabbits. The tracers were labeled with
mono-125I and prepared in our laboratory. As standards, we
used synthetic peptides in concentrations of 0 to 1,000
fmol/mL. We prepared the assay in 1 mL of 0.05 M (pH =
7.4) phosphate buffer that contained 0.1 M sodium

chloride, 0.25% (w/v) bovine serum albumin, and 0.05%
(wt/vol) sodium azide.

Following centrifugation at 2,000 rpm, 4°C, 10 minutes,
precipitation with absolute alcohol took place and after an-
other centrifugation at 2,000 rpm, 4°C for 10 minutes, we
dried the samples under nitrogen flow and resuspended them
in 300 μL of assay buffer. Afterward, we measured the anti-
serum (100 mL, diluted 1:10,000), the tracer (100 mL, 5,000
cpm/tube), and the standard/unknown samples (100 mL)
into polypropylene tubes along with the assay buffer.

Table Clinical and demographic data of the patients

Patient Age, y Sex
Migraine
type

Disease
duration, y

Attack frequency,
attacks/y

Allodynia
score VAS

Headache
side

1 33 F MwoA 15 36 1 7 A

2 34 F MwoA 3 52 8 8 R

3 54 F MwoA 20 12 0 10 R

4 30 F MwA 16 18 2 6 L

5 29 F MwoA 18 36 2 8 L

6 38 F MwoA 30 60 6 9 A

7 53 F MwoA 24 12 10 5 L

8 23 F MwA 8 72 2 7 R

9 21 F MwoA 1 12 0 10 L

10 27 F MwoA 3 52 9 7 L

11 38 F MwoA 13 120 0 9 A

12 24 M MwA 7 1 0 7 R

13 44 F MwoA 32 24 2 9 A

14 37 F MwA 9 3 2 7 A

15 37 F MwoA 27 36 0 9 A

16 33 F MwoA 15 48 0 9 A

17 28 F MwoA 5 120 4 7 A

18 46 F MwoA 31 30 0 8 A

19 29 F MwA 10 6 2 8 A

20 35 F MwA 18 53 4 8 L

21 28 F MwoA 4 60 3 9 A

22 25 F MwoA 7 36 8 8 L

23 47 F MwoA 11 182 6 8 R

24 38 F MwoA 12 30 2 10 A

25 24 M MwA 11 8 0 6 A

26 42 F MwA 31 36 0 7 R

Mean ± SD 34 ± 9.05 14.65 ± 9.54 44.42 ± 41.59 Median 2,
mode 0

Median 8,
mode 7

Abbreviations: A = alternating; MwA = migraine with aura; MwoA = migraine without aura; VAS = visual analog scale.
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Following incubation for 48 to 72 hours at 4°C, we separated
peptides bound by antibodies from free ones by way of adding
100 mL of separating solution (containing 10 g charcoal, 1 g
dextran, 0.5 g fat-free milk powder dissolved in 100 mL of
distilled water). After another centrifugation at 3,000 rpm,
4°C for 15 minutes, we carefully decanted the tubes’ contents
and measured the radioactivity of the precipitates in a gamma
counter (NZ310; Gamma, Budapest, Hungary). Finally, we
read the concentration values of PACAP38 in the unknown
samples from the calibration curves.

MRI analysis
We performed analysis of MRI data using FMRIB’s Software
Library (FSL version 5.0, fmrib.ox.ac.uk/fsl).23 The obtained
diffusion-weighted images underwent correction for eddy cur-
rents and movement artifacts using a 12 degrees of freedom
affine linear registration to the first reference volume without
diffusion weighting.24 Diffusion tensors were fitted in each voxel
of the motion- and eddy-corrected diffusion data using the al-
gorithm included in FSL’s FDT (FMRIB’s Diffusion Tool-
box).25 We calculated fractional anisotropy (FA), mean

diffusivity (MD), and diffusivity parallel (λ1, axial diffusivity
[AD]) and perpendicular ([λ2 + λ3]/2, radial diffusivity [RD])
to the main direction of diffusion in the whole brain.

We performed statistical analysis of the FA data in each voxel
via tract-based spatial statistics.26 All participants’ FA data
were allineated into standard space using nonlinear registra-
tion as implemented in FSL’s FNIRT (FMRIB’s nonlinear
image registration tool),27 which uses a b-spline representa-
tion of the warp field utilized during registration.28 Next,
a mean FA image was calculated and then thresholded at 0.2
to produce a mean FA skeleton representing the centers of
white matter tracts shared by the group. Each participant’s
aligned FA data were then projected onto the mean FA
skeleton, and the skeletonized images were fed into voxelwise
cross-subject statistics.

We calculated linear correlation between diffusion measures
(FA, MD, AD, RD) and PACAP38-LI in each voxel using
a standard general linear model design with permutation-
based cluster analysis as realized in FSL,29 with age and sex as

Figure 1 Correlation of PACAP38-LI and mean diffusivity

(A) The skeleton is overlaid in green on the mean fractional anisotropy image. Significant correlations are depicted in copper (maximum p value MNI
coordinates: x = 125, y = 69, z = 75). Clusters are thickened for better visualization. The color bar represents 1 − p values corrected formultiple comparisons. (B)
Scatterplot PACAP38-LI is plotted against average mean diffusivity under the significant voxels. The boxplots stand for mean, 95% confidence interval, and
range. Outliers are depicted with open circles. MNI = Montreal Neurological Institute; PACAP38-LI = pituitary adenylate cyclase-activating peptide 38-like
immunoreactivity.
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nuisance regressors in the model. Although no clinical varia-
bles correlated with interictal PACAP38-LI in the studied
patients, we also tested another model with disease duration
included as an additional nuisance regressor, as it was pre-
viously shown to correlate with interictal PACAP38-LI in
a larger sample of patients.3 Clusters were formed using the
threshold-free cluster enhancement method,30 and correction
for multiple comparisons was performed using FSL’s ran-
domise tool31 at a threshold of p < 0.05.

Data availability
Anonymized data will be shared on request through personal
correspondence after the approval of the local ethics committee.

Results
Demographic and clinical data of the patients
Twenty-six patients with migraine were recruited into the
study, 8 of whom had migraine with aura. Aura symptoms
were visual except for a male and a female patient who had
additional somatosensory symptoms. The demographic and
clinical data of the patients are summarized in the½T1� table.

Correlation of PACAP38-LI and white
matter microstructure
Interictal plasma PACAP38-LI showed significant correlation
MD (p < 0.0179, corrected for multiple comparisons) in the
bilateral occipital white matter reaching into parietal and
temporal white matter ( ½F1�figure 1).

The correlation with AD was significant (p < 0.0432, cor-
rected for multiple comparisons) in the left optic radiation
and left posterior corpus callosum ( ½F2�figure 2).

RD correlated with interictal PACAP38-LI (p < 0.0418, cor-
rected for multiple comparisons) in the left optic radiation
and parietal white matter ( ½F3�figure 3). FA did not show any
significant correlation with interictal PACAP38-LI.

Correlation of PACAP38-LI and diffusion
measures with disease duration as
nuisance regressor
With age, sex, and disease duration as nuisance regressors,
interictal PACAP38-LI showed significant correlation with
MD and AD in the left thalamus (p < 0.01, corrected for

Figure 2 Correlation of PACAP38-LI and axial diffusivity

(A) The skeleton is overlaid in greenon themean fractional anisotropy image. Significant correlations aredepicted in red-yellow (maximum p valueMNI coordinates:
x = 125, y = 69, z = 75). Clusters are thickened for better visualization. The color bar represents 1 − p values corrected for multiple comparisons. (B) Scatterplot
PACAP38-LI is plottedagainst the average axial diffusivity under the significant voxels. Theboxplots stand formean, 95%confidence interval, and range.Outliers are
depicted with open circles. MNI = Montreal Neurological Institute; PACAP38-LI = pituitary adenylate cyclase-activating peptide 38-like immunoreactivity.
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multiple comparisons) (½F4� figure 4). We found no significant
correlation with FA and RD.

Discussion
Herein, we report significant correlation between diffusion
parameters of the white matter and interictal plasma
PACAP38-LI in patients with migraine in the occipital white
matter. Similar to our former results,3 the interictal
PACAP38-LI was lower than in normal healthy controls.

Interpretation of diffusion measures in terms of microstruc-
tural characteristics is a much-debated area complicated by
the fact that microstructural properties are probed in a few
millimeter large elements of the space. However, it is generally
accepted that lower FA or higher MD corresponds to reduced
white matter integrity. AD and RD are suggested to correlate
with the number of axons and the integrity of the myelin,
respectively.32,33 As such, our results could be interpreted as
follows: abnormally lower plasma PACAP38 levels in the

interictal phase are accompanied by decreased values of MD,
AD, and RD representing higher axonal density and/or
myelination, or generally more compact white matter in the
optic radiation, corpus callosum, and temporoparietal regions.
The absence of correlation with FA may be attributable to the
fact that FA is a measure that combines AD and RD; if there is
a similar change in both AD and RD, FA would change only if
the magnitude of change is different in the 2 perpendicular
directions.

Considering that interictal hyperexcitability of the cortex in
migraineurs has been demonstrated before,8,34 and this in-
creased baseline activity might also reveal to be maladaptive
plasticity leading to more compact white matter, our results
could be an indication of such maladaptive remodeling in
response to migraine symptoms that is in connection with
PACAPergic signaling. In particular, a functional MRI study
of PACAP38-induced migraine-like attacks found increased
connectivity of the left visual cortex in the default-mode
network.35 This increased connectivity and presumable ac-
tivity could also lead to increased structural connections.

Figure 3 Correlation of PACAP38-LI and perpendicular diffusivity

(A) The skeleton is overlaid in green on the mean fractional anisotropy image. Significant correlations are depicted in blue/light blue (maximum p value MNI
coordinates: x = 115, y = 64, z = 102). Clusters are thickened for better visualization. The color bar represents 1 − p values corrected formultiple comparisons.
(B) Scatterplot PACAP38-LI is plotted against the average perpendicular diffusivity under the significant voxels. The boxplots stand for mean, 95% confidence
interval, and range. Outliers are depictedwith open circles.MNI =Montreal Neurological Institute; PACAP38-LI = pituitary adenylate cyclase-activating peptide
38-like immunoreactivity.
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Of course, it might also be possible that the connection be-
tween PACAP38 and white matter integrity is purely co-
incidental and decreased interictal plasma PACAP38 levels
reflect changes in PACAPergic signaling that contribute to
disrupted neurochemical coupling in migraine, as demon-
strated by magnetic resonance spectroscopy studies.36 In the
long term, these functional alterations may prove to be
structural changes.

Longitudinal studies might help in understanding the exact
nature of these connections. The location of correlating dif-
fusion measurements suggests involvement of the visual

system, many aspects of which are affected in migraine.37

Photophobia is a prominent accompanying symptom present
in a large percentage of migraineurs, and bright light is known
to exacerbate migrainous headache. The phenomenon is
thought to originate in part from intrinsically photosensitive
retinal ganglionic cells38 that express PACAP38 to be used as
a cotransmitter in retinohypothalamic projections.12,39,40

Neurons of the suprachiasmatic nucleus on the receiving end
of these pathways connect to and modulate light-sensitive
neurons in the trigeminal nucleus caudalis,41 an area that also
contains PACAP38-expressing neurons,42 thus providing
possible linkage between the visual and trigeminovascular
system. Intrinsically photosensitive retinal ganglionic cells
also show direct connections to thalamic pain centers in rats43

and have been thought to be part of a photophobia pathway
that involves direct stimulation of trigeminal afferents in the
eye without interposition of the optic nerve.44,45

Other animal studies link PACAP38 to behavioral aspects of
photophobia: PACAP-deficient mice, after nitroglycerol-
induced activation of the trigeminovascular system, exhibit
light avoidance to a lesser degree than their wild-type coun-
terparts.46 In light of the above, it is possible that reduced
interictal PACAP38 levels reflect changes in photophobia-
associated signaling that co-occur with alterations of fiber
integrity in the optic tract, which would also be corroborated
by the finding that PACAP38 uptake peaks in the occipital
cortices after intranasal administration in mice.17

The correlation between the white matter microstructural
measures and the PACAP38 immunoreactivity was somewhat
lateralized. Formerly, we showed that the diffusion charac-
teristics of subcortical structures are asymmetric,47 which
might be present in major white matter tracts as well.48 Al-
though they did not reach significance when corrected for
multiple comparisons, there are voxels in the contralateral
white matter that mirror significant results at a more liberal
statistical threshold.

The change in the pattern of correlating diffusion measure-
ments with the inclusion of disease duration as a nuisance
regressor suggests that altered PACAP38 metabolism and its
effect might develop as a function of disease progression,
though it is unclear whether this is due to disease pathology or
accumulating effects of allostatic load. In another study, we
found that longer disease duration corresponds with de-
creased values of AD in the left parietooccipital regions in
migraine patients with aura,22 which co-occur with
PACAP38-related alterations in the current study. Consid-
ering that decreased PACAP38 levels correlate with diffusion
measures of the left thalamus irrespective of disease duration,
we would suggest that PACAP38 might have a few different
roles in the development of white matter alterations, which
should be addressed in further studies.

One limitation of our study is the heterogeneity of the pa-
tient population because of the inclusion of migraine

Figure 4 Correlation of pituitary adenylate cyclase-activat-
ing peptide 38-like immunoreactivity and axial
and mean diffusivity with disease duration as
nuisance regressor

The skeleton is overlaid in green on the mean fractional anisotropy image.
Significant correlations are depicted in red for axial diffusivity (A) and copper
formeandiffusivity (B) (maximum p valueMNI coordinates:meandiffusivity:
x = 98, y = 101, z = 85; axial diffusivity: x = 102, y = 96, z = 82). Clusters are
thickened for better visualization. The color bar represents 1 − p values
corrected for multiple comparisons. MNI = Montreal Neurological Institute.
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patients both with and without aura. Based on our recent
results, there are microstructural differences in the 2 groups
that would necessitate regarding them as separate entities.22

Hence, we repeated the analysis separately for patients with
and without aura. Since group sizes are considerably smaller,
no significant correlation was found in either group with
interictal PACAP38-LI. However, looking at the un-
corrected results, we can identify similar patterns of corre-
lation in both groups (data available from Dryad [Material]:
doi.org/10.5061/dryad.g58811v), which would indicate no
major differences in terms of correlating PACAP38-LI and
diffusion measures. Still, studies deploying greater sample
sizes are needed to assess differences between migraine
patients with and without aura.

Also, since PACAPergic signaling seems to be altered in
migraine, we decided to focus our study on the in-
terindividual variation of PACAP38-LI in patients with
migraine. However, information about the relationship be-
tween PACAP38-LI and white matter diffusion measures in
healthy controls is rare in the literature. Controlled studies
are needed to assess possible differences in the relationship
between PACAP38 levels and microstructural character-
istics in healthy controls and migraineurs.

While various MRI measures are useful biomarkers of mi-
graine, direct connection between the disease and MRI fea-
tures is still to be established. Providing connection between
a pathobiologically important neurochemical biomarker of
the disease andMRI alterations found in migraine emphasizes
the value of both markers and opens up new directions of
investigations.
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