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Abstract

Asymptotically sharp Bernstein- and Markov-type inequalities are es-
tablished for rational functions on C? smooth Jordan curves and arcs. The
results are formulated in terms of the normal derivatives of certain Green’s
functions with poles at the poles of the rational functions in question. As
a special case (when all the poles are at infinity) the corresponding results
for polynomials are recaptured.
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1 Introduction

Inequalities for polynomials have a rich history and numerous applications in
different branches of mathematics, in particular in approximation theory (see,
for example, the books [3], [5] and [15], as well as the extensive references there).
The two most classical results are the Bernstein inequality [2]

n
[Py ()] < ﬁHPnH[fl,l], z e (=1L1), (1.1)

and the Markov inequality [14]
1Pl =101 < 22l Pl -1 (1.2)

for estimating the derivative of polynomials P, of degree at most n in terms
of the supremum norm || P,[|{—1,1) of the polynomials. In (1.1) the order of the
right hand side is n, and the estimate can be used at inner points of [—1,1]. In
(1.2) the growth of the right-hand side is n2, which is much larger, but (1.2) can
also be used close to the endpoints +1, and it gives a global estimate. We shall
use the terminology “Bernstein-type inequality” for estimating the derivative
away from endpoints with a factor of order n, and “Markov-type inequality” for
a global estimate on the derivative with a factor of order n2.

The Bernstein and Markov inequalities have been generalized and improved
in several directions over the last century, see the extensive books [3] and [15].
See also [6] and the references there for various improvements. For rational
functions sharp Bernstein-type inequalities have been given for circles [4] and
for compact subsets of the real line and circles, see [4], [7], [13]. We are unaware
of a corresponding Markov-type estimate. General (but not sharp) estimates on
the derivative of rational functions can also be found in [20] and [21].

The aim of this paper is to give the sharp form of the Bernstein and Markov
inequalities for rational functions on smooth Jordan curves and arcs. We shall
be primarily interested in the asymptotically best possible estimates and in the
structure of the constants on the right hand side. As we shall see, from this point
of view there is a huge difference between Jordan curves and Jordan arcs. All
the results are formulated in terms of the normal derivatives of certain Green’s
functions with poles at the poles of the rational functions in question. When all
the poles are at infinity we recapture the corresponding results for polynomials
that have been proven in the last decade.

We shall use basic notions of potential theory, for the necessary background
we refer to the books [1], [18], [22] or [25].



2 Results

We shall work with Jordan curves and Jordan arcs on the plane. Recall that
a Jordan curve is a homeomorphic image of a circle, while a Jordan arc is
a homeomorphic image of a segment. We say that the Jordan arc I' is C?
smooth if it has a parametrization v(¢), ¢ € [—1, 1], which is twice continuously
differentiable and v/ (¢) # 0 for t € [—1,1]. Similarly we speak of C? smoothness
of a Jordan curve, the only difference is that for a Jordan curve the parameter
domain is the unit circle.

If T is a Jordan curve, then we think it counterclockwise oriented. C\T" has
two connected components, we denote the bounded component by G_ and the
unbounded one by G;. At a point z € I' we denote the two normals to I' by
ny = ny(z) with the agreement that n_ points towards G_. So, as we move
on I' according to its orientation, n_ is the left and ny is the right normal. In a
similar fashion, if I' is a Jordan arc then we take an orientation of I' and let n_
resp. ny denote the left resp. right normal to I with respect to this orientation.

Let R be a rational function. We say it has total degree n if the sum of the
order of its poles (including the possible pole at co) is n. We shall often use
summations ) where a runs through the poles of R, and let us agree that in
such sums a pole a appears as many times as its order.

In this paper we determine the asymptotically sharp analogues of the Bern-
stein and Markov inequalities on Jordan curves and arcs I" for rational functions.
Note however, that even in the simplest case I' = [—1, 1] there is no Bernstein-
or Markov-type inequality just in terms of the degree of the rational function.
Indeed, if M > 0, then Ra(z) = 1/(1 + M2z?) is at most 1 in absolute value on
[~1,1], but |Ry(1/v/M)| = VM /2, which can be arbitrary large if M is large.
Therefore, to get Bernstein-Markov-type inequalities in the classical sense we
should limit the poles of R to lie far from I'. In this paper we assume that the
poles of the rational functions lie in a closed set Z C C \ T' which we fix in
advance. If Z = {oo}, then R has to be a polynomial.

In what follows || f||r = sup,¢r | f(2)| denotes the supremum norm on I, and
ga(z,a) the Green’s function of a domain G with pole at a € G.

Our first result is a Bernstein-type inequality on Jordan curves.

Theorem 2.1 Let T be a C? smooth Jordan curve on the plane, and let R, be
a rational function of total degree n such that its poles lie in the fized closed set
Z CC\T. Ifz €T, then

0 20, @ 0 20, G
RG] < (1 o) Rfrmax | 3 Hoslo) 57 Se ) ),
a€ZNG ¢ acZNG_

(2.1)
where the summation is for the poles of R, and where o(1) denotes a quantity
that tends to 0 uniformly in R, as n — oco. Furthermore, this estimate holds
uniformly in zg € T.

The normal derivative dgq. (20, a)/Ony is 27-times the density of the harmonic



measure of a in the domain G, where the density is taken with respect to the
arc measure on I'. Thus, the right hand side in (2.1) is easy to formulate in
terms of harmonic measures, as well.

Corollary 2.2 If T is as in Theorem 2.1 and P, is a polynomial of degree at
most n, then for zg € I' we have

agG+ (ZOa OO)

1P, (z0)] < (1+ o(1))n[| Pl on,

(2.2)

This is Theorem 1.3 in the paper [16]. The estimate (2.2) is asymptotically
the best possible (see below), and on the right dga., (20,00)/0n is 27-times of
the density of the equilibrium measure of I' with respect to the arc measure on
I'. Therefore, the corollary shows an explicit relation in between the Bernstein
factor at a given point and the harmonic density at the same point.

If R, has order n + o(n) and we take the sum on the right of (2.1) only
on some of its n poles, then (2.1) still holds (i.e. o(n) poles do not have to be
accounted for). Now in this sense Theorem 2.1 is sharp.

Theorem 2.3 Let ' be as in Theorem 2.1 and let Z C C\ T be a non-empty

closed set. If {a1n,...,ann}, n = 1,2,... is an array of points from Z and
zo € ' is a point on T, then there are non-zero rational functions R, of degree
n+ o(n) such that a1 n,...,an n are among the poles of R, and

09c. (20,a5,n) 0g9c_(20,5,n)
/ > _ + J 7,
|}, (20)] > (1—0(1))[| Ry lr max Z on, ; Z —

(2.3)

aj,n,€G+ aj,nEG,

In this theorem if a point @ € Z appears k times in {ai ,...,an n}, then the
understanding is that at a the rational function R,, has a pole of order k.

Next, we consider the Bernstein-type inequality for rational functions on a
Jordan arc.

Theorem 2.4 Let T’ be a C? smooth Jordan arc on the plane, and let R, be a
rational function of total degree n such that its poles lie in the fived closed set
Z C C\T. If zo €T is different from the endpoints of T, then

0 20, @ 0 20, @
IR (20)] < (1+ 0(1))]| R max (Z Bwr0s) 5~ sl )), (2.4)

on on_
acZ + a€Z

where the summation is for the poles of R, and where o(1) denotes a quantity
that tends to 0 uniformly in R, as n — oo. Furthermore, (2.4) holds uniformly
in zg € J for any closed subarc J of T' that does not contain either of the
endpoints of T'.



Corollary 2.5 IfT" is as in Theorem 2.4 and P, is a polynomial of degree at
most n, then for zo € I', which is different from the endpoints of I', we have

0 z,00) O 20, 00
P2 (0)] < (1 o(1))l| Py mae [ 2FEurC020) O9enr o)) )
8n+ an,

This was proven in [11] for analytic T' and in [24] for C? smooth I'. More
generally, if a1, ..., a,, are finitely many fixed points outside I" and

R,(2) = Puyo +ZPW( al) (2.6)

where P,, ; are polynomials of degree at most n;, then, as ng + - - - n,, — 0o,

(20,a;) & zo,a)
R}, (20)] < (14 0(1))[| Ry || max (Zm \F - Zm ' ) ,

(2.7)
where ag = oo.
Theorem 2.4 is sharp again regarding the Bernstein factor on the right.

Theorem 2.6 Let I' be as in Theorem 2.4 and let Z C C\ T be a non-empty
closed set. If {a1n,...,ann}, n=1,2,... is an arbitrary array of points from
Z and zg € T is any point on I different from the endpoints of I, then there are
non-zero rational functions R, of degree n + o(n) such that a1y, ..., anrn are
among the poles of R, and

095\ r(20,a 0g9a\r(%0,a
IR (20)] > (1= 0(1))]| R max (Z %})n( 00 5 %\8;_0 )>. (2.8)

a€EZ + a€Z

Now we consider the Markov-type inequality on a C? Jordan arc I' for ra-
tional functions of the form (2.6). Let A, B be the two endpoints of I'. We need
the quantity

0 z,a
Ou(A) = lm A gow=9)

2.
z—A, zel 8ni(z) ( 9)

It will turn out that this limit exists and it is the same if we use in it the left
or the right normal derivative (i.e. it is indifferent if we use n; or n_ in the
definition). We define Q,(B) similarly. With these we have

Theorem 2.7 Let T’ be a C? smooth Jordan arc on the plane, and let R,, be

a rational function of total degree n of the form (2.6) with fived ag,ay, ..., am.
Then
m m 2
IR Ie < (1 + o(1))[| Rn|r2 max (Zniﬂai(A)’ZniQai(BO ;- (2.10)
i=0 i=0

where o(1) tends to 0 uniformly in R, as n — oo.



Theorem 2.7 is again the best possible, but we shall not state that, for we
will have a more general result in Theorem 2.8.

Actually, there is a separate Markov-type inequality around both endpoints
A and B. Indeed, let U be a closed neighborhood of A that does not contain
B. Then

[R5 Irnw < (14 o(1)) ]| Rn|r2 (Z mQai(A)) ; (2.11)
=0

and this is sharp. Now (2.10) is clearly a consequence of this and its analogue for
the endpoint B. Note that the discussion below will show that the right-hand
side in (2.10) is of size ~ n?, while on any closed Jordan subarc of T' that does
not contain A or B the derivative R, is O(n).

Let us also mention that in these theorems in general the o(1) term in the
1+ o(1) factors on the right cannot be omitted. Indeed, consider for example,
Corollary 2.2. It is easy to construct a C? Jordan curve for which the normal
derivative on the right of (2.2) is small, so with P;(z) = z the inequality in (2.2)
fails if we write 0 instead of o(1).

It is also interesting to consider higher derivatives, though we can do a
complete analysis only for rational functions of the form (2.6). For them the
inequalities (2.1) and (2.4) can simply be iterated. For example, if I is a Jordan
arc, then under the assumptions of Theorem 2.4 we have for any fixed k =
1,2,...

k

\rl20,ai) I8 Oger (20, ai)
81’1+ ’ Z i on_

(2.12)
uniformly in zy € J where J is any closed subarc of I' that does not contain the
endpoints of I'. It can also be proven that this inequality is sharp for every k
and every zg € I in the sense given in Theorems 2.3 and 2.6.

The situation is different for the Markov inequality (2.10), because if we
iterate it, then we do not obtain the sharp inequality for the norm of the k-th
derivative (just like the iteration of the classical A. A. Markov inequality does
not give the sharp V. A. Markov inequality for higher derivatives of polynomi-
als). Indeed, the sharp form is given in the following theorem.

IR (20)| < (14 0(1)) | R max (Z m—
=0

Theorem 2.8 Let I' be a C? smooth Jordan arc on the plane, and let R, be
a rational function of total degree n of the form (2.6) with fixved ag, a1, ..., am.
Then for any fixed k = 1,2,... we have

2k
2k m m
(k) _ , ,
IRl < (14 o(D) 1 Ballr =3 max (;} niQa, (A),gnlgai(3)> :
(2.13)
where o(1) tends to 0 uniformly in R, as n — oco. Furthermore, this is sharp,
for one cannot write a constant smaller than 1 instead of 1+ o(1) on the right.



Recall that 2k —1)!!'=1-3----- (2k - 3) - (2k - 1).
As before, this theorem will follow if we prove for any closed neighborhood
U of the endpoint A that does not contain the other endpoint B the estimate

X m 2k
IR® e < (1+ 0(1))“Rn\\rﬁ (Z niQ, (A)) L (21
" \i=0

Corollary 2.9 IfT" is as in Theorem 2.8 and P, is a polynomial of degree at
most n, then

k
2 2k

1Pl < (14 o(1) | Pallr 75" max (oo (4), Qoo (B)) . (2.15)

(2k — 1)1

This was proven in [24, Theorem 2].

The outline of the paper is as follows.

After some preparations first we verify Theorem 2.1 (Bernstein-type in-
equality) for analytic curves via conformal maps onto the unit disk and
using on the unit disk a result of Borwein and Erdélyi. This part uses in
an essential way a decomposition theorem for meromorphic functions.

Next, Theorem 2.4 is verified for analytic arcs from the analytic case of
Theorem 2.1 for Jordan curves via the Joukowskii mapping.

For C? arcs Theorem 2.4 follows from its version for analytic arcs by an
appropriate approximation.

For C? curves Theorem 2.1 will be deduced from Theorem 2.4 by intro-
ducing a gap (omitting a small part) on the given Jordan curve to get a
Jordan arc, and then by closing up that gap.

The Markov-type inequality Theorem 2.8 is deduced from the Bernstein-
type inequality on arcs (Theorem 2.4, more precisely from its higher
derivative variant (2.12)) by a symmetrization technique during which the
given endpoint where we consider the Markov-type inequality is mapped
into an inner point of a different Jordan arc.

Finally, in Section 10 we prove the sharpness of the theorems using con-
formal maps and sharp forms of Hilbert’s lemniscate theorem.

3 Preliminaries

In this section we collect some tools that are used at various places in the proofs.



3.1 A “rough” Bernstein-type inequality

We need the following “rough” Bernstein-type inequality on Jordan curves.

Proposition 3.1 Let T' be a C? smooth Jordan curve and Z C C\ T a closed
set. Then there exists C' > 0 such that for any rational function R, with poles
in Z and of degree n, we have

IRl < Cn|| Rl -

Proof. Recall that G_ denotes the inner, while G denotes the outer domain
to I'. We shall need the following Bernstein-Walsh-type estimate:

|Ry ()| < |[Bulpexp | D ges (2,0) (3.1)
acZNG 4+

where the summation is taken for a € ZN Gy if z € G4 (and then g, is used)
and for a € ZNG_ if z € G_. Indeed, suppose, for example, that z € G_. The
function

log [Ra(2)| = | Y g (2,0)

acZNG_

is subharmonic in G_ and has boundary values < log||R,|r on T, so (3.1)
follows from the maximum principle for subharmonic functions.

Let zg € T" be arbitrary. It follows from Proposition 3.10 below that there is
a 0 > 0 such that for dist(z,I') < § we have for all a € Z the bound

gay (z,a) < Cidist (2,T) < C1 |z — 20

with some constant C7.

Let Cy/p(20) = {z| |2 — 20| = 1/n} be the circle about 2z of radius 1/n
(assuming n > 2/0). For z € C/,(20) the sum on the right of (3.1) can be
bounded as

Z ga, (z,a) <nCilz — 2| < Cy
a€ZNG
if 2 € G4, and a similar estimate holds if z € G_. Therefore, |R,(z)] <
e || Ru|lp-
Now we apply Cauchy’s integral formula

1 n
7/ 7R (Z)de
2mi C1/n(20) (2 — 20)

which proves the proposition.

L 27 | Rl €€
< 20l ®
~—2rn n=2

C,

| Ry, (20)| = = [[Bnl[p ne™,
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Figure 1: The two conformal mappings ®;1, P2, the domain D; and the possible
location of poles

3.2 Conformal mappings onto the inner and outer do-
mains

Denote D = {v| |v| <1} the unit disk and Dy = {v| |v| > 1} U {oo} its
exterior.

By the Kellogg-Warschawski theorem (see e.g. [17, Theorem 3.6]), if T" is
C? smooth, then Riemann mappings from D, D, onto G_, G, respectively, as
well as their derivatives can be extended continuously to the boundary I'. Under
analyticity assumption, the corresponding Riemann mappings have extensions
to larger domains. In fact, the following proposition holds (see e.g. Proposition
7 in [11] with slightly different notation).

Proposition 3.2 Assume that I' is analytic, and let zo € T" be fized. Then
there exist two Riemann mappings ®1 : D — G_, &9 : Dy — G such that
®; (1) = z and |®3 ()| =1, j = 1,2. Furthermore, there exist 0 < ry <1 <
r1 < 0o such that @1 extends to a conformal map of Dy := {v| |v| <71} and
D, extends to a conformal map of Dy := {v| |v] > ra} U {o0}.

Since the argument of @;(1) gives the angle of the tangent line to I' at zg,
the arguments of ®}(1) and of ®4(1) must be the same, which combined with
|7 (1)] = |®5(1)] = 1 yields ®}(1) = P4(1). Therefore,

01(1) = 05(1) = 20, 1(1) = 05(1), [Y(1)] = [25(1)|=1.  (3.2)

From now on, for a given zy € I' we fix these two conformal maps. These
mappings and the corresponding domains are depicted on Figure 1. We may
assume that D; and ®;'(Z) N G4, as well as Dy and ®;*(Z) N G_ are of
positive distance from one another (by slightly decreasing r; and increasing 2,
if necessary).



Proposition 3.3 The following hold for arbitrary a € G_, b € G4 with o’ :=
o (a), b =05 (b)
d9¢_ (20,a) _ dgp (1,d") _1- |a’\2
on_ on_ 11— a?
99c. (20,0) _ dgp. (LY) |y -1
on on 11—

if b # oo,

and if b’ = oo, then

09a, (20,0) _ Jgp, (1,00)
8n+ a 8n+

=1.

This proposition is a slight generalization of Proposition 8 from [11] with
the same proof.

3.3 The Borwein-Erdélyi inequality

The following inequality will be central in establishing Theorem 2.1 in the ana-

lytic case, it serves as a model. For a proof we refer to [4] (see also [3, Theorem

7.1.7)).
Let T denote the unit circle.

Proposition 3.4 (Borwein-Erdélyi) Let aq,...,a,, € C\ T and let
%=1 1—Jay|?
B* = L]l B = -
|aj|>1 |Cl]“<1
and By, (v) := max (B} (v), B, (v)). If P is a polynomial with deg(P) < m
and Ry, (v) = P (v) /H;":1 (v —a;) is a rational function, then

R (0)| < B (0) || B |2, v €T

Since the Green’s function gp(z,a), a € D, is log(|1 — @az|/|z — a|), simple
computation shows that

1— al? _ dgp (v, a)
la — v]? on_

and a similar relation is true for the outer domain D, and for |a| > 1. Hence,
Proposition 3.4 can be written as follows (see [11, Theorem 4]).

Proposition 3.5 Let R,, (v) = P (v) /Q (v) be an arbitrary rational function
with no poles on the unit circle, where P and @ are polynomials. Denote the
poles of Ry, by ai,...,a,,, where each pole is repeated as many times as its
order. Then, for v e T,

dg9p., (v,a;) Agp (v, a4)
/ < A + J et
Riy ()] < 1Rl e | 3 Ho0) 57 p (ens)

la;|>1 laj|<1

10



3.4 A Gonchar-Grigorjan type estimate

It is a standard fact that a meromorphic function on a domain with finitely many
poles can be decomposed into the sum of an analytic function and a rational
function (which is the sum of the principal parts at the poles). If the rational
function is required to vanish at oo, then this decomposition is unique.

L.D. Grigorjan with A.A. Gonchar investigated in a series of papers the
supremum norm of the sum of the principal parts of a meromorphic function
on the boundary of the given domain in terms of the supremum norm of the
function itself. In particular, Grigorjan showed in [9] that if K C D is a fixed
compact subset of the unit disk D, then there exists a constant C' > 0 such that
all meromorphic functions f on D having poles only in K have principal part R
(with R(o0) = 0) for which ||R|| < C'logn]| f]||, where n is the sum of the order
of the poles of f (here | f|| := limsup¢|_;_ [f({)])-

The following recent result (which is [10, Theorem 1]) generalizes this to
more general domains.

Proposition 3.6 Suppose that D C C is a finitely connected domain such that
its boundary 0D consists of finitely many disjoint C? smooth Jordan curves. Let
Z C D be a closed set, and suppose that f: D — C is a meromorphic function
on D such that all of its poles are in Z. Denote the total order of the poles of
f by n. If f. is the sum of the principal parts of f (with f,. (c0) =0) and f, is
its analytic part (so that f = f. + fa), then

Ifrllop » I[fallop < Clogn | fllop »
where the constant C = C (D, Z) > 0 depends only on D and Z.
In this statement

Ifllop == limsup |f(¢)],

¢eD, (—0D

but we shall apply the proposition in cases when f is actually continuous on
oD.

3.5 A Bernstein-Walsh-type approximation theorem

We shall use the following approximation theorem.
Proposition 3.7 Let 7 be a Jordan curve and K a compact subset of its interior
domain. Then there are a C > 0 and 0 < q < 1 with the following property. If

f is analytic inside T such that |f(z)] < M for all z, then for every wy € K and
m =1,2,... there are polynomials Sy, of degree at most m such that Sy, (wo) =

f(wo), S, (wo) = f'(wo) and
[f = Smllx < CMq™. (3.3)

11



Proof. Let 7 be a lemniscate, i.e. the level curve of a polynomial, say
71 = {z||Tn(2)| = 1}, such that 7, lies inside 7 and K lies inside 71. According
to Hilbert’s lemniscate theorem (see e.g. [18, Theorem 5.5.8]) there is such a

71. Then K is contained in the interior domain of 79 = {z | [Ty (2)| = 6} for
some 6 < 1. By Theorem 3 in [26, Sec. 3.3] (or use [18, Theorem 6.3.1]) there
are polynomials R,, of degree at most m = 1,2, ... such that

1f = Runllsy < C1 Mq™ (3.4)

with some C; and ¢ < 1 (the ¢ depends only on 6 and the degree N of Ty).
Actually, in that theorem the right hand side does not show M explicitly, but
the proof, in particular the error formula (12) in [26, Section 3.3] (or the error
formula (6.9) in [18, Section 6.3]), gives (3.4).

Now (3.4) pertains to hold also on the interior domain to 74, so if § is the
distance in between K and 79 and wg € K, then for all |§£ — wg| = & we have
|f(&)—Rn(§)] < C1Mg™. Hence, by Cauchy’s integral formula for the derivative

we have O Ma™
£ (w0) = Rip(wo)] < 5.

Therefore, the polynomial
Sm(2) = R (2) + (f(wo) — Rim(wo)) + (f'(wo) — Ry, (wo))(2 — wo)

satisfies the requirements with C' = C1(2 + diam(K)/d) in (3.3).

3.6 Bounds and smoothness for Green’s functions

In this section we collect some simple facts on Green’s functions and their normal
derivatives.

Let K C C be a compact set with connected complement and Z C C\ K
a closed set. Suppose that ¢ is a Jordan curve that separates K and Z, say K
lies in the interior of o while Z lies in its exterior. Assume also that there is a
family {~,} C K of Jordan arcs such that diam(vy;) > d > 0 with some d > 0,
where diam(y;) denotes the diameter of ;.

First we prove

Proposition 3.8 There are cg,Coy > 0 such that for all 7, z € 0 and all a € Z
we have

o < gg\,, (2,a) < Co. (3.5)

Proof. We have the formula ([18, p. 107])

+ [1oglz a0

gé\’y.,. (27 OO) = log Cap(’y )

12



where fi,, is the equilibrium measure of . and where cap(y,) denotes the
logarithmic capacity of -y,. Since (see [18, Theorem 5.3.2])

diam(vy,) S d

> —
cap(yr) 2 — 2 5
and for z € 0, t € v, we have |z — t| < diam(o), we obtain
1
9e\, (2,00) < log s + log diam(o) =: C4.

Let © be the exterior of ¢ (including oo). By Harnack’s inequality ([18,
Corollary 1.3.3]) for any closed set Z C €2 there is a constant Cz such that for
all positive harmonic functions u on €2 we have

1

—u

Cz
Apply this to the harmonic function gg\, (2,a) = gg\,, (a,2) (recall that

Green’s functions are symmetric in their arguments), z € o, a € Z, to con-
clude for z € o

(00) < ufa) < Czu(c0), a€Z.

96\, (2,0) = gg\, (4, 2) < Czga,,, (00,2) = Czgg,,, (2,00) < CzCh.

To prove a lower bound note that
96\%(2, OO) 2gé\K(Z7OO) chv z E€o,

because 7 C K and gg, x(2,00) is a positive harmonic function outside K.
From here we get

C1
96\71_(27a)207z7 ZEO', ana

exactly as before by appealing to the symmetry of the Green’s function and to
Harnack’s inequality.
|

Corollary 3.9 With the cg,Cy from the preceding lemma for all T, a € Z and
for all z lying inside o we have

Co C()
C—Ogrc\% (z,00) < gé\%(z,a) < a%\% (z,00). (3.6)

Proof. TFor z € o the inequality (3.6) was shown in the preceding proof.
Since both gg,,, (2,00) and gg,, (z,a) are harmonic in the domain that lies
in between v, and ¢ and both vanish on ~,, the statement follows from the
maximum principle.

Next, let T be a C? Jordan curve and G4 the interior and exterior domains
to I' (see Section 2). Assume, as before, that Z C C\ I" is a closed set.
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Proposition 3.10 There are constants Cy,c1 > 0 such that

_ d46_(20.0)
- on_

C1

<Cy, a€ZNnG_ (3.7)

and
< 89G+ (ZO7 a)

C1 S 81’1+ S Cl, a€ZnN G+. (38)

These bounds hold uniformly in zo € T'. Furthermore, the Green’s functions
9ga.(z,a), a € Z, are uniformly Hoélder 1 equi-continuous close to the boundary

Proof. It is enough to prove (3.7). Let by € G_ be a fixed point and let ¢
be a conformal map from the unit disk D onto G_ such that ¢(0) = by. By
the Kellogg-Warschawski theorem (see [17, Theorem 3.6]) ¢’ has a continuous
extension to the closed unit disk which does not vanish there. It is clear that

go_(z,bg) = —log|p~1(2)], and consider some local branch of —log ¢ ~!(z) for
z lying close to zp. By the Cauchy-Riemann equations
9gc_ (20, bo)

= ‘(—log 07! (2))

on_

zZ =2

(note that the directional derivative of g_ in the direction perpendicular to n_
has 0 limit at zp € 0G_), so we get the formula

99c_(20,b0) 1
on_ " (0™ (20)|”
which shows that this normal derivative is finite, continuous in zy € I' and
positive.

Let now o be a Jordan curve that separates (ZNG_)U{bg} from I". Map G_
conformally onto C \ [~1,1] by a conformal map ® so that ®(by) = oo. Then
ga_(2,a) = gg\j—1,1)(®(2), ®(a)), and (o) is a Jordan curve that separates
®((ZNG_)U{bp}) from [—1,1]. Now apply Proposition 3.8 to C\[~1, 1] and to
®(0) to conclude that all the Green’s functions gg\|_; 1;(w, ®(a)), a € ZU{bo},
are comparable on ®(o) in the sense that all of them lie in between two positive
constants co < Cy there. In view of what we have just said, this means that
the Green’s functions gg_(z,a), a € ZU{bo}, are comparable on ¢ in the sense
that all of them lie in between the same c; < C5 there. But then they are also
comparable in the domain that lies in between I' and o, and hence

(3.9)

2 9ga_ (20, bo) < 09a_(20,a) < C2 9gc_(20,bo)

A
Co On_ On_ co On_ ’ @<

which proves (3.7) in view of (3.9).

The uniform Holder continuity is also easy to deduce from (3.9) if we compose
© by fractional linear mappings of the unit disk onto itself (to move the pole
©(0) to other points).
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4 The Bernstein-type inequality on analytic curves

In this section we assume that I' is analytic, and prove (2.1) using Propositions
3.5, 3.6 and 3.7.

Fix zp € T and consider the conformal maps ®; and ®5 from Section 3.2.
Recall that the inner map ®; has an extension to a disk D; = {z | |z| < r1}
and the external map ®5 has an extension to the exterior Dy = {z | |z| > 72}
of a disk with some r < 1 < ry. For simpler notation, in what follows we shall
assume that ®; resp. P- actually have extensions to a neighborhood of the
closures D resp. Dy (which can be achieved by decreasing 71 and increasing 7o
if necessary).

In what follows we set T(r) = {z||z| = r} for the circle of radius r about
the origin. As before, T = T(1) denotes the unit circle.

The constants C,c below depend only on I' and they are not the same at
each occurrence.

We decompose R, as,

Rn:f1+f2

where f; is a rational function with poles in ZNG_, f1(c0) = 0 and f5 is a
rational function with poles in ZNG4. This decomposition is unique. If we put
Ny = deg (f1), Na := deg(f2), then Ny + No = n. Denote the poles of f; by
aj, j =1,..., Ny, and the poles of fy by ;, j =1,..., No (with counting the
orders of the poles).

We use Proposition 3.6 on G_ to conclude

[fillps [1f2llp < Clogn || Rl (4.1)

By the maximum modulus principle then it follows that

1f1lle,(op,) < Clogn || Rnllp (4.2)

and
[ f2llg,0m,) < Clogn || Ryly- (4.3)

Set Fy := f1(®1) and Fy := fo(P2). These are meromorphic functions in Dy
and Dy resp. with poles at o} := &7 (), j=1,...,N; and at B}, := &5 (B),
k=1,...,Ns.

Let Fy = F1, + F1, be the decomposition of F; with respect to the unit
disk into rational and analytic parts with Fj ,.(co) = 0, and in a similar fashion,
let Fy = F5, + F5 4 be the decomposition of F» with respect to the exterior of
the unit disk into rational and analytic parts with F5,.(0) = 0. (Here r refers to
the rational part, a refers to the analytic part.) Hence, we have by Proposition
3.6

||F',r|

T7||F',a||TSC]Og””Fj”Tv Jj=12.

Thus, Fi, is a rational function with poles at a;- € D, so by the maximum

modulus theorem and (4.1) (applied to T rather than to I') we have

|Fillng,) < Clogn | Filly < Clog?n | Raullr (4.4)
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where we used that ||Fy|T = || fi]|r- But (4.2) is the same as
Il oy < Clognl[Rallr,
so we can conclude also
1P allp () < Clog”n || Rullp - (4.5)

Thus, Fy, is an analytic function in Dy with the bound in (4.5). Apply
now Proposition 3.7 to this function and to the unit circle as K (and with a
somewhat larger concentric circle as 7) with degree m = [\/n]. According to
that proposition there are C,c > 0 and polynomials Sy = S; 5 of degree at
most /n such that

1F1a = Sillp < Ce VP |Rylle, S1(1) = Fra(1), Si(1) = Ff 4(1).

Therefore, Ry := Fy .+ 5 is a rational function with poles at 04;, ji=1,...,N;
and with a pole at co with order at most y/n which satisfies

| =Ri|| < 0V IR, Ri) = B R = F1) (46)

In a similar vein, if we consider F5(1/v) and use (4.3), then we get a poly-
nomial Sy of degree at most y/n such that

1F2,0(1/0) = Sa(v)llp < Ce™ V™ |[Rullr,  S2(1) = Foa(1), Sy(1) = —F} 4(1)

But then Ry(v) := Fp,(v) + Sa(1/v) is a rational function with poles at 3,
k=1,..., Ny and with a pole at 0 of order at most /n that satisfies

|| < VR, Ra(1) = Ba1), RAD) = D). (47

What we have obtained is that the rational function R := 7~21 + 7%2 is of
distance < C’e*C‘/ﬁHRan from Fi + F5 on the unit circle and it satisfies

R(1) = (F1 + F2) (1) = f1(20) + fa(20) = Rn(20) (4.8)
and using (3.2),
R'(1) = (F{ + F3) (1) = fi(20)P1(1) + f5(20)5(1) = Ry, (20) @1 (1), (4.9)
Consider now Fj + F; on the unit circle, i.e.
Fi(e") + Fa(e") = fu(®2(e")) + fa(@2(e™)) + f1(@1(e™)) — f1(@a(e™)).

The sum of the first two terms on the right is R, (®2(e®)), and this is at most
IRy |l in absolute value. Next, we estimate the difference of the last two terms.
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The function ®4(v) — P2(v) is analytic in the ring ro < |v| < r1 and it is
bounded there with a bound depending only on I',ry, 79, furthermore it has a
double zero at v = 1 (because of (3.2)). These imply

|1 (e™) — By(e™)| < Cle™ — 12 < C2, te[—m, |,
with some constant C'. By Proposition 3.1 we have with (4.1) also the bound
I fllr < Cnlogn||Rullr,

and these last two facts give us (just integrate f; along the shorter arc of T’
in between ®;(e’) and ®5(e’) and use that the length of this arc is at most
C|®1(e™) — Pa(e™)])

[f1(®1(e") = fi(@2(e"))] < Ctnlogn|| Ry r.

By [23, Theorem 4.1] there are polynomials @ of degree at most [n%/®] such
that Q(1) =1, ||Q]|T < 1, and with some constants ¢, Cop > 0

Q)| < Coexp(—con*®lu —11>2), o] = 1.

With this Q consider the rational function R(v) = R(v)Q(v). On the unit circle
this is closer than Ce~*V"||R,||r to (F} + F3)Q, and in view of what we have
just proven, we have at v = et

(Fy(2) + By(0))Q(0)| < [[Rulle + Ctnlog nChexp (—eon®’?[1/21*?) | Rylr.
On the right
t?nlogn exp (—c0n4/5\t/2\3/2)

29\ 4/3 : logn logn
=4 <n4/5\t/2|3/2) exp (fcon4/5|t/2|5/2> 115 < C’nl/l5

because |z|*/3 exp(—co|z|) is bounded on the real line.

All in all, we obtain
[RlT < (14 0(1))|Rnllr, (4.10)

and

R = [R'(1)QM) + RMQ'(1)] = [R'(V)] + 0 (IRM)IQ'(1)])
= |Ry,(20)| + O(n*®) || Ru|r,
where we used Q(1) = 1, (4.8)—(4.9), |®7(1)] = 1 and the classical Bernstein
inequality for Q'(1), which gives the bound n*/® for the derivative of Q.
The poles of R are at a;, 1<j<Nj,and at 3, 1 <k < N, as well as a

< n!/? order pole at 0 (coming from the construction of S, ,,) and a < n'/24n*/5
order pole at oo (coming from the construction of S; , and the use of Q).
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Now we apply the Borwein-Erdélyi inequality (Proposition 3.5) to |R’(1)| to
obtain
| Ry, (20)] [R'(1)] +O(n*®) || Rullr

IRl max (Z %o, (15 | (n/2 4+ n“ﬂM,

IN

IA

% 8n+ 8n+

Z dgp (1, O‘;) 4+ nl/2 dgp(1,0)

4/5
811_ an_ +O(n )HRn”F

J

If we use here how the normal derivatives transform under the mappings @,
and @5 as in Proposition 3.3, then we get from (4.10)

agG+ (207 OO)

dg9c. (20, a) 1/2 4/5
IR, 