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Prediabetic states and diabetes are important risk factors for cardiovascular morbidity 
and mortality. Determination of short-term QT interval variability (STVQT) is a non-invasive 
method for assessment of proarrhythmic risk. The aim of the study was to evaluate 
the STVQT in patients with impaired glucose tolerance (IGT). 18 IGT patients [age: 
63 ± 11 years, body mass index (BMI): 31 ± 6 kg/m2, fasting glucose: 6.0 ± 0.4 mmol/l, 
120 min postload glucose: 9.0 ± 1.0 mmol/l, hemoglobin A1c (HbA1c): 5.9 ± 0.4%; 
mean  ±  SD] and 18 healthy controls (age: 56  ±  9  years, BMI: 27  ±  5  kg/m2, fast-
ing glucose: 5.2 ± 0.4 mmol/l, 120 min postload glucose: 5.5 ± 1.3 mmol/l, HbA1c: 
5.4 ± 0.3%) were enrolled into the study. ECGs were recorded, processed, and analyzed 
off-line. The RR and QT intervals were expressed as the average of 30 consecutive 
beats, the temporal instability of beat-to-beat repolarization was characterized by cal-
culating STVQT as follows: STVQT = Σ|QTn + 1 − QTn| (30x√2)−1. Autonomic function was 
assessed by means of standard cardiovascular reflex tests. There were no differences 
between IGT and control groups in QT (411 ± 43 vs 402 ± 39 ms) and QTc (431 ± 25 vs 
424 ± 19 ms) intervals or QT dispersion (44 ± 13 vs 42 ± 17 ms). However, STVQT was 
significantly higher in IGT patients (5.0 ± 0.7 vs 3.7 ± 0.7, P < 0.0001). The elevated 
temporal STVQT in patients with IGT may be an early indicator of increased instability of 
cardiac repolarization during prediabetic conditions.

Keywords: cardiovascular autonomic neuropathy, impaired glucose tolerance, prediabetes, proarrhythmic risk, 
short-term variability of the QT interval, sudden cardiac death, QT dispersion, QT prolongation

inTrODUcTiOn

Prediabetic states and diabetes are important risk factors for cardiovascular morbidity and mortality 
(1–3). Cardiovascular death or death of unknown origin was in the 0.4–0.5% range in the subgroups 
of a 3-year follow-up study on patients with impaired glucose tolerance (IGT) and/or impaired 
fasting glucose (IFG) level (4). In a 23-year follow-up study on Japanese American men, the relative 
risks for sudden cardiac death were 2.22 in subjects with asymptomatic hyperglycemia, and 2.76 
in diabetic patients (5). Diabetes status was a strong risk factor for sudden death, but not for fatal 
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myocardial infarction in men during the population-based Paris 
Prospective Study I (6). Higher risk of sudden cardiac death was 
associated with borderline diabetes, diabetes with or without 
microvascular disease, compared to subjects without diabetes in 
a population-based case–control study of patients experienced 
out-of-hospital cardiac arrest due to heart disease (1). Out-of-
hospital sudden cardiac deaths were 1.79-fold for non-diabetic 
men with impaired fasting plasma glucose and 2.26-fold for men 
with type 2 diabetes, and a 1 mmol/l increment in fasting plasma 
glucose was related to an increase of 10% in the risk of sudden 
cardiac death in Finnish men (7).

The prevalence of confirmed cardiovascular autonomic 
neuropathy (AN), an impairment of autonomic control of 
the cardiovascular system during diabetes, was between 16 
and 20% in unselected type 1 and type 2 diabetic patients (8). 
Cardiovascular AN is a risk marker of cardiovascular morbid-
ity, and it causes a 3.65-fold increase in the relative risk of 
mortality (8). Cardiac AN promotes ventricular repolarization 
disturbances [QTc prolongation, increased QT dispersion 
(QTd)] and may increase the risk of sudden cardiac death. 
Prolongation of QT interval could lead to increased myocardial 
electrical instability, predisposing diabetic subjects with AN to 
potentially fatal ventricular arrhythmias (9). Cardiac AN with 
QT interval prolongation proved to be a poor prognostic factor 
for sudden cardiac death in diabetic patients in a 5-year follow-
up study (10). Prolonged QTc is more frequent in patients 
with IFG (30%) and with diabetes (42%) than in subjects with 
normal glucose tolerance (22%), and both IFG and diabetes 
increased the risk of prolonged QTc (11). QTc interval dura-
tion was found to be significantly higher both during the day 
and night using ECG Holter recordings in patients with IGT 
compared to subjects with normal glucose tolerance (12). IGT 
was confirmed in 15% of men and 23% of women with QTc 
prolongation (>440  ms) in the population-based Hisayama 
study in Japan (13).

In the clinical setting, the risk assessment of serious ven-
tricular arrhythmias in individual patients is challenging since 
the prolongation of repolarization that manifests as QT interval 
prolongation on the ECG does not always correlate with subse-
quent development of ventricular arrhythmias (14–16). Cardiac 
repolarization reserve may be reduced even without significant 
changes in the duration of cardiac repolarization; therefore, QT 
interval prolongation cannot reliably predict the development of 
ventricular arrhythmias (17). The short-term variability of the 
QT interval (STVQT) was introduced as an early and sensitive 
indicator of repolarization instability (18) that more reliably 
predicted ventricular arrhythmias and sudden cardiac death 
than prolongation of repolarization in previous experimental 
(16, 19–22) and clinical studies (23–27). Type 1 diabetes mellitus 
moderately lengthened ventricular repolarization, attenuated 
repolarization reserve, and enhanced the risk of sudden cardiac 
death in dogs (27, 28), and similar mechanisms might also occur 
in patients suffering from prediabetic states and diabetes.

The aim of the present study was to determine beat-to-beat 
STVQT for assessment of repolarization instability and possible 
proarrhythmic risk, together with cardiovascular autonomic 
function in patients with IGT.

MaTerials anD MeThODs

Patient Population
Patients with IGT who are followed at the First Department of 
Medicine, Semmelweis University, Budapest, Hungary, were 
eligible for this study. Patients were excluded if they had excessive 
(>5%) ectopic atrial or ventricular beats, were in a rhythm other 
than normal sinus, had repolarization abnormalities (i.e., early 
repolarization pattern, T wave inversion, and complete left bun-
dle branch block or right bundle branch block), had a permanent 
pacemaker or any other disorders such as serious retinopathy, 
symptomatic cardiac and pulmonary disease, and acute meta-
bolic disease, had excessive noise on the electrocardiographic 
signal that precluded analysis of the ECG waveform, were on any 
medication likely to affect the investigated ECG parameters, or 
consumed significant amount of food within 3 h or drank alcohol, 
coffee, or smoked within 10 h.

We studied 18 IGT patients, 9 males and 9 females with the age 
of 63 ± 11 years (all values presented are mean ± SD). A total of 18 
age- and sex-matched volunteers (mean age 56 ± 9 years) without 
a history or evidence of heart disease were enrolled in the study 
as controls. All of the control individuals and IGT patients were 
of Caucasian origin.

The studies described here were carried out in accordance 
with the Declaration of Helsinki (2000) of the World Medical 
Association and were approved by the Scientific and Research 
Ethical Committee of the Medical Research Council at the 
Hungarian Ministry of Health (ETT-TUKEB), under ethical 
approval No. 4987-0/2010-1018EKU (338/PI/010). All subjects 
have given written informed consent of the study.

Data collection and analysis
Before the ECG recording, all IGT patients and controls were at 
rest, in the supine position for 10 min. Then, 12-lead electrocar-
diograms were continuously recorded for 5 min at rest, also in the 
supine position to obtain signals with the least amount of motion 
artifact. In all leads, the ECG signals were digitized at 2,000 Hz 
sampling rate with a multichannel data acquisition system 
(Cardiosys-A01 software, MDE Heidelberg GMBH, Heidelberg, 
Germany) connected to a personal computer and stored for later 
off-line analysis.

Out of the repolarization parameters, we analyzed the frequency 
corrected QT interval (QTc) using Bazett’s (QTc  =  QT/√RR), 
Fridericia (QTc  =  QT/[RR/1,000]1/3), Framingham (QTc  = 
QT  +  [0.154  ×  {1,000  −  RR}]) and the Hodges formulas 
(QTc = QT + 1.75 × [60,000/RR − 60]), the QTd, the PQ and QRS 
intervals, the duration of terminal part of T waves (Tpeak − Tend) 
and the short-term variability of QT interval (STVQT).

The RR and QT intervals, as well as duration of the T wave 
from the peak to the end (Tpeak − Tend) intervals were measured 
semi-automatically in 30 consecutive beats (minimum number 
of intervals needed for variability measurements) and were calcu-
lated as the average of 30 beats. The QT intervals were analyzed by 
conventional computerized QT measurement technique, all QT 
intervals were checked in a blinded manner by the same expert 
investigator of the team and fiducial cursor positions set by the 
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TaBle 1 | Clinical data of IGT patients and age-matched control subjects.

control Patients with igT

n 18 18
Sex (male/female) 9/9 9/9
Age (year) 56 ± 9 63 ± 11
Weight (kg) 79 ± 19 88 ± 17
Height (cm) 170 ± 11 168 ± 6
BMI (kg/m2) 27 ± 5 31 ± 6*
Systolic BP (mmHg) 130 ± 12 134 ± 17
Diastolic BP (mmHg) 81 ± 10 74 ± 9*
0 min glucose (mmol/l) 5.2 ± 0.4 6.0 ± 0.4**
120 min glucose (mmol/l) 5.5 ± 1.3 9.0 ± 1.0**
HbA1c (%) 5.4 ± 0.3 5.9 ± 0.4**

Values are represented as mean ± SD. Values are considered statistically significantly 
different at P < 0.05 (*), P < 0.0001 (**) compared with the control group.
IGT, impaired glucose tolerance; BMI, body mass index; BP, blood pressure; HbA1c, 
hemoglobin A1c.

TaBle 2 | Electrocardiographic parameters in patients with IGT and age-
matched controls.

 control Patients with igT

RR (ms) 900 ± 144 914 ± 163
PQ (ms) 161 ± 18 162 ± 24
QRS (ms) 94 ± 9 94 ± 8
QT (ms) 402 ± 39 411 ± 43
QTc (ms) Bazett 424 ± 19 431 ± 25
QTc (ms) Fridericia 416 ± 23 424 ± 27
QTc (ms) Framingham 417 ± 22 424 ± 26
QTc (ms) Hodges 416 ± 25 424 ± 29
QTd (ms) 42 ± 17 44 ± 13
Tpeak − Tend (ms) 86 ± 14 88 ± 23
T wave amplitude (μV) 220 ± 119 225 ± 120
STVRR (ms) 18.5 ± 14.3 10.5 ± 6.7*
STVQT (ms) 3.7 ± 0.7 5.0 ± 0.7**

Values are represented as mean ± SD. Values are considered statistically significantly 
different at P < 0.05 (*), P < 0.0001 (**) compared with the control group. n = 18 in 
each group.
IGT, impaired glucose tolerance; QTc, frequency corrected QT interval (calculated 
by the Bazett’s, Fridericia, Framingham and Hodges formulas); QTd, QT dispersion; 
Tpeak − Tend, duration of the T wave from the peak to the end; STVRR, beat-to-beat short-
term temporal variability of the RR interval; STVQT, beat-to-beat short-term temporal 
variability of the QT interval.
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software were manually corrected if needed (29). QTc interval 
duration was defined as the mean duration of all QTc intervals 
measured. The PQ and QRS intervals were measured as the aver-
age of 15 consecutive beats. All measurements were carried out 
using limb lead II and in case of excessive noise in limb lead II, 
lead V5.

To characterize the temporal instability of beat-to-beat heart 
rate (HR) and repolarization, Poincaré plots of the QT and RR 
intervals were constructed, where each QT and RR value is plot-
ted against its former value. STVQT and STVRR were calculated 
using the following formula: STV  =  Σ|Dn+1  −  Dn| (30x√2)−1, 
where D represents the duration of the QT and RR intervals. 
This calculation defines the STV as the mean distance of points 
perpendicular to the line of identity in the Poincaré plot and relies 
on previous mathematical analysis (30).

Autonomic function was assessed by means of five standard 
cardiovascular reflex tests: the HR responses to deep breathing 
and to standing up (30/15 ratio), the Valsalva maneuver, the 
systolic blood pressure response to standing up, and the diastolic 
pressure change during a sustained handgrip (31). A score was 
created to express the severity of AN, based on the results of the 
five tests (normal: 0, borderline: 1, abnormal: 2). The total score 
was in the interval of 0–10.

Fasting venous blood samples were obtained from each patient 
and controls for the determination of serum glucose and hemo-
globin A1c (HbA1c) levels. Oral glucose tolerance test (OGTT) 
was carried out with 75 g glucose to confirm the diagnosis of IGT 
according to the World Health Organization recommendation 
(120 min value in 7.8–11.0 mmol/l range).

statistical analysis
All data are expressed as mean ± SD. Comparisons between IGT 
patients and controls for the study variables were done using 
the unpaired Student’s t-test for normally distributed param-
eters (D’Agostino-Pearson test was used to assess normality of 
distribution), and linear regression for revealing correlations. 
The statistical analyses were performed using the Statistica 12 
software package. Statistical significance was defined by P < 0.05 
level.

resUlTs

clinical Data of igT Patients and  
control subjects
In 18 IGT patients studied, mean body mass index (BMI) was 
significantly higher (P < 0.05) than among age- and sex-matched 
healthy volunteers. Mean systolic blood pressure did not differ 
significantly between control subjects and IGT patients; how-
ever, IGT patients had lower diastolic blood pressure (74  ±  9 
vs 81  ±  10  mmHg; P  <  0.05). Significant differences were 
seen between IGT and control groups in mean serum glucose 
(6.0 ± 0.4 vs 5.2 ± 0.4 mmol/l; P < 0.0001), HbA1c (5.9 ± 0.4 vs 
5.4 ± 0.3%; P < 0.0001), and serum glucose 120 min level during 
OGTT (9.0 ± 1.0 vs 5.5 ± 1.3 mmol/l; P < 0.0001). Clinical data 
of IGT patients and control subjects are shown in Table 1.

electrocardiographic Parameters  
in study subjects
Comparison of the two groups (IGT patients vs controls) revealed 
no significant differences in HR, the PQ, QRS, QT and Tpeak − Tend 
intervals and the QTd. In order to reliably assess the duration 
of ventricular repolarization and to minimize the influence 
of changing HR on the QT interval, the frequency corrected 
QT interval (QTc) was calculated by the Bazett’s, Fridericia, 
Framingham and Hodges formulas. QTc values calculated with 
all the four formulas showed no significant differences between 
IGT patients and controls. Electrocardiographic parameters in 
study subjects are presented in Table 2.

short-term Beat-to-Beat Variability  
of the QT and rr intervals
As it has been shown that T wave amplitude may affect STVQT 
(32), we have also compared the T wave amplitudes in both 
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TaBle 4 | Correlation of short-term QT interval variability (STVQT) with laboratory 
data and AN parameters in patients with IGT.

sTVQT in patients with 
igT (ms)

Pearson r P value 
(two-tailed)

HbA1c (%) 0.2708 0.277
OGTT 0 min (mmol/l) 0.2118 0.399
OGTT 120 min (mmol/l) −0.1118 0.659
Heart rate (HR) variation during deep breathing (1/min) −0.0379 0.881
Valsalva ratio 0.1101 0.664
30/15 ratio −0.4729 0.048*
Systolic BP fall after standing up (mmHg) −0.0163 0.949
Diastolic BP increase after sustained handgrip (mmHg) −0.0685 0.787
AN score −0.1353 0.593

Values are represented as Pearson correlation coefficient. Values are considered 
statistically significantly different at P < 0.05 (*).
STVQT, beat-to-beat short-term temporal variability of the QT interval; IGT, impaired 
glucose tolerance; HbA1c, hemoglobin A1c; OGTT, oral glucose tolerance test; 
30/15 ratio, immediate HR response to standing; BP, blood pressure; AN, autonomic 
neuropathy.

TaBle 3 | AN parameters of IGT patients and age-matched control subjects.

control Patients with igT

Heart rate (HR) variation during deep  
breathing (1/min)

16 ± 7 11 ± 8*

Valsalva ratio 1.7 ± 0.3 1.2 ± 0.1**
30/15 ratio 1.3 ± 0.3 1.2 ± 0.1
Systolic BP fall after standing up (mmHg) 8 ± 8 6 ± 7
Diastolic BP increase after sustained  
handgrip (mmHg)

11 ± 6 14 ± 6

AN score 2.4 ± 1.2 2.7 ± 1.3

Values are represented as mean ± SD. Values are considered statistically significantly 
different at P < 0.05 (*), P < 0.0001 (**) compared with the control group. n = 18 in 
each group.
IGT, impaired glucose tolerance; 30/15 ratio, immediate HR response to standing; BP, 
blood pressure; AN, autonomic neuropathy.

FigUre 1 | Representative Poincaré plots illustrating short-term temporal 
variability of the QT interval in a control individual and in a patient with 
impaired glucose tolerance (IGT).
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groups. T wave amplitudes did not differ significantly between 
IGT patients and control subjects (225 ± 120 vs 220 ± 119 μV, 
P = 0.882).

To characterize the instability of cardiac ventricular repolari-
zation, the short-term beat-to-beat variability of the QT interval 
was calculated in IGT patients and age-matched controls. Since 
it is reasonable to assume that STVQT can be, at least in part, 
influenced by the short-term variability of the RR interval, the 
STVRR was also calculated in both groups (33). Patients with 
IGT exhibited a significantly lower STVRR compared to controls 
(10.5 ± 6.7 vs 18.5 ± 14.3 ms, P = 0.0373). No significant correla-
tion was found between STVQT and STVRR values in IGT patients 
(r = −0.3152; P = 0.203).

As individual representative examples (Poincaré plots) illus-
trate (Figure 1) and grouped average data show (Table 2), STVQT 
was significantly increased by 36% in IGT patients compared to 
controls (5.0 ± 0.7 ms vs 3.7 ± 0.7 ms, P < 0.0001).

cardiovascular autonomic Function
Standard cardiovascular reflex tests indicated significant dete-
riorations in Valsalva ratio (P < 0.0001) and the HR responses 
to deep breathing among IGT subjects compared to controls 
(P = 0.033). However, no significant differences in 30/15 ratio, 
systolic blood pressure response after standing up, diastolic blood 
pressure response after sustained handgrip, and AN score were 
detected between the two groups. Autonomic parameters of IGT 
patients and age-matched control subjects are shown in Table 3.

correlation of short-term QT interval 
Variability (sTVQT) with laboratory Data 
and an Parameters in Patients with igT
Pearson correlation coefficient values indicated that neither lab-
oratory data nor autonomic parameters correlated with STVQT, 
these data are presented in Table 4. However, 30/15 ratio had sig-
nificant negative correlation with STVQT (r = –0.4729; P = 0.048).

DiscUssiOn

Cardiac autonomic dysfunction present in prediabetes may 
lead to repolarization disturbances and may increase the risk of 
ventricular arrhythmias and sudden cardiac death. In this study, 
we show for the first time that beat-to-beat STVQT, an early and 
sensitive parameter of repolarization instability, is increased even 
before QTc prolongation or enhanced QTd could be detected in 
patients with IGT.

Patients with prediabetic conditions or diabetes have higher 
risk for sudden cardiovascular death (1, 5–7). Cardiac AN and 
instability of cardiac repolarization, detected by QTc prolonga-
tion or increased QTd, contribute to the increased risk for sudden 
cardiac death (9, 10). Prolonged QTc was related to a progressive 
worsening of glucose tolerance after adjustment for possible 
confounding factors in elderly women with IGT or diabetes (34). 
Impairment of cardiac parasympathetic and sympathetic inner-
vation as well as QT interval prolongation may play a partial role 
in the pathogenic mechanism of sudden unexpected death in dia-
betic patients. Cardiovascular adaptation mechanisms, including 
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baroreflex sensitivity and HR variability, are also impaired in 
diabetic AN that may further increase the risk for arrhythmia 
development (35).

However, decreased repolarization capacity and increased 
arrhythmia susceptibility is not necessarily preceded by sig-
nificant changes in the duration of cardiac repolarization, and in 
these cases, cardiac repolarization reserve may be reduced with-
out manifest QT interval prolongation (17). Importantly, a wide 
range of non-cardiovascular drugs or even dietary constituents 
with only mild repolarization blocking effects can increase the 
risk for serious ventricular arrhythmias and sudden cardiac death 
in patients with impaired repolarization reserve (17). Therefore, 
in this clinical setting, the prediction of lethal ventricular 
arrhythmias is especially challenging. STVQT has been suggested 
as an early and sensitive indicator of temporal repolarization 
instability based on previous experimental and clinical studies 
(16, 18, 20, 24–26).

Our present study is the first to indicate that patients with 
IGT, a prediabetic condition, have repolarization instability 
indicated by elevated beat-to-beat STVQT. This study was not 
designed to assess the exact mechanisms responsible for repo-
larization disturbances in patients with IGT; however, several 
possible mechanisms may be considered. Compelling recent 
evidence suggests a direct link between type 2 ryanodine recep-
tor (RyR2) dysfunction in the endo/sarcoplasmic reticulum 
leading to altered intracellular calcium homeostasis, glucose 
intolerance, and impaired insulin secretion in patients with cat-
echolaminergic polymorphic ventricular tachycardia (CPVT) 
(36, 37). The known RYR2 mutations identified in these CPVT 
patients were previously linked to reduced binding affinity of 
calstabin2 to the RyR2 channel resulting in intracellular Ca2+ 
leak (37–39). In knock-in mouse models where these CPVT-
linked mutations leading to RyR2-mediated Ca2+ leak were 
reconstituted, mitochondrial dysfunction and blunted ATP 
production with concomitantly increased sarcolemmal KATP 
channel function (reversible by the KATP blocker glibenclamide) 
were found in pancreatic β-cells to cause reduced insulin secre-
tion and consequently, IGT (36). In addition to causing altered 
glucose metabolism and providing triggers for cardiac arrhyth-
mias (CPVT), the RyR2-mediated Ca2+ leak—by depleting Ca2+ 
stores—may also contribute to arrhythmia substrate creation via 
reduced IKs current, i.e., decreased Ca2+-dependent IKs activation 
(40) and consequently, impaired repolarization reserve (17). 
Interestingly, and in accordance with this mechanism, reduced 
IKs density, impaired repolarization reserve, and increased risk 
for sudden cardiac death were described in diabetic dogs (28). 
Although there is no doubt that RyR2 channel dysfunction is 
directly linked to heart failure (41), cardiac arrhythmia develop-
ment (42, 43), IGT, and reduced insulin release (36, 44), however, 
further clinical studies are needed to determine whether RYR2 
mutations leading to leaky RyR2 channels are frequently present 
in patients diagnosed with IGT in general.

Repolarization instability can be a long-standing risk fac-
tor for cardiovascular morbidity and mortality in prediabetic 
states and during development of diabetes. However, the role of 
additional cardiovascular risk factors cannot be excluded in early 
prediabetic conditions. Early sympathetic nerve dysfunction 

and insulin resistance may also play a role in the development of 
decreased coronary flow reserve in patients with normoglycemia 
(45). In this regard, increased QT interval variability associated 
with sympathetic dysinnervation was observed in patients with 
type 2 diabetes in the supine position and the QT variability was 
further elevated in the context of sympathetic activation upon 
standing (46).

Relative sympathetic predominance was observed in car-
diovascular reflex tests during IGT, as sympathetic parameters 
(systolic BP fall after standing up and diastolic BP increase after 
sustained handgrip) were unchanged, whereas two of three para-
sympathetic parameters measured (HR variation and Valsalva 
ratio) were significantly decreased. In addition, a significant 
negative correlation was seen between the values measured in the 
third parasympathetic test (30/15 ratio) and STVQT in our study. 
The significantly lower STVRR values observed also represent this 
parasympathetic dysinnervation and subsequent relative sym-
pathetic predominance in patients with IGT. Sympathetic pre-
dominance acutely evoked by graded head-up tilt test resulted in 
similar changes, such as decreased variance of HR and increased 
variance of repolarization duration (47, 48).

The prevalence of distal symmetric polyneuropathy that may 
result in weakness, sensory loss, pain, autonomic dysfunction, 
gait impairment, falls, and disability has been reported to be 11% 
in patients with IGT (49). It is known that IGT is present in about 
40% of patients with idiopathic peripheral neuropathy and abnor-
mal microvascular endothelial dysfunction is common in both 
patient groups (50). It has long been known that IGT is associated 
with AN and a shift is observed in sympathovagal balance to 
sympathetic overactivity (51–54). Prevalence of parasympathetic 
dysfunction was 25%, whereas the prevalence of sympathetic 
dysfunction was 6% in 268 patients with IGT in the Finnish 
Diabetes Prevention Study (55). Abnormal sinus arrhythmia test 
(55 vs 33%; P = 0.004) and abnormal Valsalva maneuver (34 vs 
7%; P = 0.004) were significantly more frequent in patients with 
IGT than in control subjects; however, the frequency of abnormal 
postural test was not different in these two groups (P = 0.334) 
(51). Insulin resistance was associated with global autonomic 
dysfunction and an increased LF/HF (low frequency/high fre-
quency) ratio indicating sympathetic overactivity (52). However, 
the autonomic dysfunction was less significant in IGT patients 
than in diabetic subjects (52). IGT induced decrease in parasym-
pathetic modulation (decreased HF power and 30/15 ratio) and a 
shift toward augmented sympathetic tone (increased LF/HF ratio) 
were also confirmed in an epidemiological study (54).

Putz et al. (53) described a mainly subclinical, asymptomatic 
small-fiber neuropathy, and mild impairment of cardiovascular 
autonomic function in IGT subjects. Similar to our present 
findings, HR variation and Valsalva ratio were decreased, 
whereas 30:15 ratio was unchanged among the tests evaluating 
parasympathetic activity; however, sympathetic function was 
also mildly impaired in patients with IGT (53). Moreover, these 
IGT patients also have abnormal circadian blood pressure regu-
lation and increased diastolic blood pressure (56). Abnormal 
HR recovery was more common in patients with IFG (42%) 
and diabetes (50%) than in participants with normal glucose 
tolerance (31%) in a population-based Italian study; the relative 
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risks were 1.34 (95% confidence intervals = 1.2–1.5) and 1.61  
(95% CI = 1.35–1.92), respectively (57).

Fasting plasma glucose found to be an independent predictor 
of abnormal HR recovery (P < 0.0003) even after adjustments for 
other confounders (57). Moreover, impaired glucose regulation 
significantly (P <  0.006) correlated with adrenergic autonomic 
dysfunction when age, an important confounder, was removed 
from the model (58). The self-assessment of autonomic symp-
toms by patients with IGT and early diabetes correlated to the 
degree of autonomic dysfunction defined by abnormal 30:15 
ratio and reduced quantitative sudomotor axon reflex test sweat 
volume (59).

limitations
Further clinical studies are warranted and needed to evaluate 
whether there is a direct link between the increased STVQT 
detected in the present study and increased risk for sudden 
cardiac death in patients with IGT, preferably in a large patient 
cohort.

cOnclUsiOn

The present study is the first to show that short-term QT interval 
variability is higher in patients with IGT. The elevated temporal 
STVQT and concomitant cardiac AN may serve as early indicators 
of the increased instability of cardiac repolarization and elevated 
risk for sudden cardiac death in patients with prediabetic states.
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