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Abstract: The pH- responsive intelligent drug release facility of 

hydrophobically modified chitosan nanoparticles (Chit NPs) (d=5.2 ± 1.1 

nm) was presented in the case of poorly water soluble Ca2+ channel 

blocker nimodipine (NIMO) drug molecules. The adequate pH- sensitivity, 

i.e. the suitable drug carrier properties of the initial hydrophilic Chit 

were achieved by reductive amination of Chit with hexanal (C6-) and 

dodecanal (C12-) aldehydes. The successful modifications of the 

macromolecule were evidenced via FTIR measurements: the band appearing at 

1412 cm-1 (C-N stretching in aliphatic amines) in the cases of the 

hydrophobically modified Chit samples shows that the C-N bond 

successfully formed between the Chit and the aldehydes. Hydrophobization 

of the polymer unambiguously led to lower water contents with lower 

intermolecular interactions in the prepared hydrogel matrix: the initial 

hydrophilic Chit has the highest water content (78.6 wt.%) and the 

increasing hydrophobicity of the polymer resulted in decreasing water 

content (C6-chit.: 74.2 wt.% and C12-chit.: 47.1 wt.%). Furthermore, it 

was established that the length of the side chain of the aldehyde 

influences the pH- dependent solubility properties of the Chit. 

Transparent homogenous polymer solution was obtained at lower pH, while 

at higher pH the formation of polymer (nano)particles was determined and 

the corresponding cut- off pH values showed decreasing tendency with 

increasing hydrophobic feature (pH= 7.47, 6.73 and 2.49 for  initial 

Chit, C6- chit and C12-chit,  respectively).  

Next the poorly water soluble NIMO drug was encapsulated with the C6- 

chit with adequate pH- sensitive properties. The polymer-stabilized NIMO 

particles with 10 wt.% NIMO content resulted in stable dispersion in 

aqueous phase, the formation of  polymer shell  increased in the water 

solubility/ dispersibility of the initial hydrophobic drug. According to 

the drug release experiments, we clearly confirmed that the encapsulated 



low crystallinity NIMO drug remained closed in the polymer NPs at normal 

tissue pH (pH=7.4, PBS buffer, physiological condition) but at pH <6.5 

which is typical for seriously ischemic brain tissue, 93.6% of the 

available 0.14 mg/ml NIMO was released into the buffer solution under 8 h 

release time. According to this in vitro study, the presented pH-

sensitive drug carrier system could be useful to selectively target 

ischemic brain regions characterized by acidosis, to achieve 

neuroprotection at tissue zones at risk of injury, without any 

undesirable side effects caused by systemic drug administration. 
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Abstract 

The pH- responsive intelligent drug release facility of hydrophobically modified chitosan 

nanoparticles (Chit NPs) (d=5.2 ± 1.1 nm) was presented in the case of poorly water soluble 

Ca
2+

 channel blocker nimodipine (NIMO) drug molecules. The adequate pH- sensitivity, i.e. 

the suitable drug carrier properties of the initial hydrophilic Chit were achieved by reductive 

amination of Chit with hexanal (C6-) and dodecanal (C12-) aldehydes. The successful 

modifications of the macromolecule were evidenced via FTIR measurements: the band 
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appearing at 1412 cm
-1

 (C-N stretching in aliphatic amines) in the cases of the 

hydrophobically modified Chit samples shows that the C-N bond successfully formed 

between the Chit and the aldehydes. Hydrophobization of the polymer unambiguously led to 

lower water contents with lower intermolecular interactions in the prepared hydrogel matrix: 

the initial hydrophilic Chit has the highest water content (78.6 wt.%) and the increasing 

hydrophobicity of the polymer resulted in decreasing water content (C6-chit.: 74.2 wt.% and 

C12-chit.: 47.1 wt.%). Furthermore, it was established that the length of the side chain of the 

aldehyde influences the pH- dependent solubility properties of the Chit. Transparent 

homogenous polymer solution was obtained at lower pH, while at higher pH the formation of 

polymer (nano)particles was determined and the corresponding cut- off pH values showed 

decreasing tendency with increasing hydrophobic feature (pH= 7.47, 6.73 and 2.49 for  initial 

Chit, C6- chit and C12-chit,  respectively).  

Next the poorly water soluble NIMO drug was encapsulated with the C6- chit with adequate 

pH- sensitive properties. The polymer-stabilized NIMO particles with 10 wt.% NIMO content 

resulted in stable dispersion in aqueous phase, the formation of  polymer shell  increased in 

the water solubility/ dispersibility of the initial hydrophobic drug. According to the drug 

release experiments, we clearly confirmed that the encapsulated low crystallinity NIMO drug 

remained closed in the polymer NPs at normal tissue pH (pH=7.4, PBS buffer, physiological 

condition) but at pH <6.5 which is typical for seriously ischemic brain tissue, 93.6% of the 

available 0.14 mg/ml NIMO was released into the buffer solution under 8 h release time. 

According to this in vitro study, the presented pH-sensitive drug carrier system could be 

useful to selectively target ischemic brain regions characterized by acidosis, to achieve 

neuroprotection at tissue zones at risk of injury, without any undesirable side effects caused 

by systemic drug administration. 

Keywords: chitosan, hydrophobically modified, tissue acidosis- responsive, nimodipine, pH- 

sensitive drug release 

 



Point-by-point response to the Reviewers' comments 

The Reviewers’ comments are always followed by our response highlighted in yellow.  

 

 

Reviewers' comments: 

 

 

Reviewer #1:  

We would like to thank the valuable discussions on this manuscript. Your comment was very useful. 

Please find our answer below: 

 

With respect,  

László Janovák 

The paper subject is interesting addressing the use of a chitosan hydrophobic derivativative to obtain 

the pH dependent release of a poorly soluble drug. I have however some observations/requests 

1.) The introduction seems a bit too long, and the part concerning release kinetics should be 

shortened. 

We appreciate the comment of Reviewer#1, the mentioned part of the introduction has been re-edited 

to a shorter form (the number of words in the relating text has been reduced from 1138 to 678) (see 

the cancelled sentences in pages 4-6) 

2.) The centrifugation to determine the swelling is not too clear: after addition of NaOH polymer NPs 

are formed (nanoparticles? which dimensions?. Are these NP centrifuged? under which conditions 

(time, rpm, g)?  

During the study of the pH- dependent solvation/ swelling properties of the C6- chit sample, the 

conformation properties of the polymer chains were varied from expanded state (acidic pH) to 

collapsed state (slightly basic pH). This conformation changes of the macromolecule chains is also 

can be seen on Fig.4A, at acidic pH (<~6.7) transparent polymer solution was obtained, while at higher 

pH (>~7) the turbidity of the sample was increased duo to the precipitation/ contraction of the polymer 

chains (see page 13, lines 5-16).   

This pH- dependent solvation/ swelling properties of the C6- chit sample was also studied by 

gravimetric swelling measurements. The water uptake tests were carried out in buffer solutions with 

0.9 wt% NaCl content at 37 °C. The pH values of the buffer solutions (pH= 5.0, 6.0, 6.5, 7.0, 8.0) were 

set by means of 0.2 M phosphate or 0.1 M citrate buffer system using a Metrohm 827 pHlab pH meter. 

After 24 h of immersion time, the obtained polymer samples with pH- dependent swollen (expanded 

macromolecules) or precipitated (collapsed state) polymer chains were concentrated by centrifugation 

(20 mins; 14500 rpm; Eppendorf miniSpin Instrument), the clear supernatants were removed and the 

water contents of the obtained polymer contained sediment were determined (see page 9, lines 25-

32). 

3.) I have some concerns about the meaning of fickian / non fickian diffusion behaviour from 5 nm 

nanoparticles: do the authors really think that this analysis is relevant for the applications of their 

carriers? what's the practical meaning? 

We accept and appreciate the questions of Reviewer#1, according to the diffusion process. When 

interpreting the data obtained during the fitting of the dissolution profiles, the size of the carrier actually 

avoided our attention. In general case the diffusion of the solute, swelling of the polymeric matrix and 

material degradation are suggested to be the main driving forces for solute transport from drug 

containing polymeric particles. Fickian diffusion refers to the solute transport process while the 
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polymer relaxation time is larger than the solvent diffusion time. When polymer relaxation- and solvent 

diffusion time are nearly equal the macroscopic drug release becomes anomalous or non-Fickian. In 

this way these considerations relate to a system where the macroscopic dimension allows to 

distinguish well-defined relaxation times. Thanks to the constructive and thought-provoking questions 

of the Reviewer#1, the relating part of the manuscript has been modified or added as follows. 

“The observed release index value (n = 0.69 for NIMO/ C6-chitosan composite at pH=6.00) suggest 

the existing of an anomalous non Fickian transport where combination of diffusional and relaxational 

transport results the anomalous process. Despite this fair mathematical result, due to the extremely 

small diameter of the carrier particles, meaningful physical meaning of the last mentioned transport 

phenomenon is highly questionable.” (see page 15, lines 4-10; page 16, lines 1-12). 

 

 

 

 

Reviewer #2:  

First of all, we would like to thank the Reviewer for his very positive evaluation of the manuscript, and 

for the insightful comments which truly improved the quality of the manuscript. 

 

With respect,  

László Janovák 

 

The manuscript report a new intelligent drug release system in order to administrate selectively drugs 

in acidic enviroments. The topic is interesting and the description of the material properties is 

exhaustive but paper is not so strong in biological aspects. I would like that authors clarify some 

aspects 

As regards the biological aspects, a comprehensive in vivo study is under progress at the moment at 

the Department of Medical Physics and Informatics, University of Szeged. These experiments rely on 

a rodent global forebrain ischemia model, in which tissue pH in the cerebral cortex shifts to the acidic 

range. The pH shift is expected to initiate drug release from the nanoparticle suspensions washed 

directly on the brain surface. The outcome of nanoparticle-delivered drug treatment is being compared 

to direct drug-effect to confirm successful drug release from the nanoparticles. Tissue pH is monitored 

live, synchronous with ischemia induction and treatment. The preliminary data are encouraging. Taken 

the large scale and significance of the in vivo study, the results will be published in a subsequent 

manuscript. 

 

 

1) Chitosan have similar behaviour respect to pH that the modify polymer. Authors indicate the 

advantages to encapsulate NIMO in the new polymer due its hydrophobicity but I think it would be 

useful to include the swelling and release experiments with NIMO encapsulated in chitosan in order to 

justify the convenience of the chemical modification of the polymer and indicate the efficacy of 

encapsulation. Sometimes, drug can be included as a suspension the drug release profile is 

interesting 

The release kinetic of drug from unmodified chit was also measured in order to verify the adequate 

effect of the polymer modification on drug release properties. The difference of release profiles of C6-

chit and unmodified chit at normal tissue pH (=7.4) was obvious (Fig. 8B). At this pH the unmodified 

chit particles were partially opened (see Fig. 4A.) and thus, ~50% of encapsulated NIMO was 

released (Fig. 8B). However, the release was negligible in the case of C6- chit particles due to the 

modified pH-responsive properties and the closed, undissolved polymer structure at this pH (see Fig. 

4A.). (see page 16, lines 13-19 and Fig. 8B and 4A.) 



 

2) It would be interesting to indicate the number of replicates in each assays and include the error bars 

in graphics.  

In the case of the TG, DSC and swelling measurements, as well as drug release experiments, the 

measurements were carried out triplicate and average values are reported. Error bars refer to the 

standard deviation. (see page 9, lines 12-14; page 10, lines 2-4 and page 10, lines 19-20; Figures 3., 

4C and 8A.) 

 

3) In figure 8 release has been expressed as %. It is difficult to interpret the graphics this way. Could 

represent the release depending on the amount of drug that has been encapsulated in the np? 

Beside the percentage release profile of the drug, the absolute concentration of NIMO content was 

also presented in the manuscript. Fig. 8 presents the absolute (A.) and percentage (B.) drug release 

profiles which were carried out over a period of 8 hours and at body temperature (37 °C) and in 

physiological saline, while Fig. 9 shows the calculated (ct/c) NIMO concentration values as a function 

of release time with the fitted curves obtained by different kinetic models (see page 15, lines 4-7 and 

Figure 8.).  

 

4) It would be useful to include a stability study although it was short to demonstrate the viability of this 

formulation for biological applications in addition to a toxicity study if possible.  

It is also important to note that the drug release experiments were carried out under physiological 

conditions (37 °C; 0.9 wt.% NaCl content) and the nanodispersion was stable at pH=7.4 through the 

studied time interval (8h) without any aggregation and sedimentation. This is certainly due to the 

presence of the electrostatic repulsion among the polymer nanoparticles and indicates that the 

modified C6-chit possess positive charge at pH=7.4. Note that the pKa value of the initial chit is about 

6.5 (Rinaudo, 2006; Prabaharan, 2018) (see page 15 lines 24-29). The results of toxicity study will be 

published in our next paper (see answer for first question). 

 

5) Authors propose the system as an alternative for isquemic treatment so, it will be useful to propose 

a formulation and administration way. Parenteral administration requires isotonicity and it will be 

necessary to study the stability of the nanoparticles in the isotonic environment 

See previous answer.  
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Abstract 

The pH- responsive intelligent drug release facility of hydrophobically modified chitosan 

nanoparticles (Chit NPs) (d=5.2 ± 1.1 nm) was presented in the case of poorly water soluble 

Ca
2+

 channel blocker nimodipine (NIMO) drug molecules. The adequate pH- sensitivity, i.e. 

the suitable drug carrier properties of the initial hydrophilic Chit were achieved by reductive 

amination of Chit with hexanal (C6-) and dodecanal (C12-) aldehydes. The successful 

modifications of the macromolecule were evidenced via FTIR measurements: the band 
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appearing at 1412 cm
-1

 (C-N stretching in aliphatic amines) in the cases of the 

hydrophobically modified Chit samples shows that the C-N bond successfully formed 

between the Chit and the aldehydes. Hydrophobization of the polymer unambiguously led to 

lower water contents with lower intermolecular interactions in the prepared hydrogel matrix: 

the initial hydrophilic Chit has the highest water content (78.6 wt.%) and the increasing 

hydrophobicity of the polymer resulted in decreasing water content (C6-chit.: 74.2 wt.% and 

C12-chit.: 47.1 wt.%). Furthermore, it was established that the length of the side chain of the 

aldehyde influences the pH- dependent solubility properties of the Chit. Transparent 

homogenous polymer solution was obtained at lower pH, while at higher pH the formation of 

polymer (nano)particles was determined and the corresponding cut- off pH values showed 

decreasing tendency with increasing hydrophobic feature (pH= 7.47, 6.73 and 2.49 for  initial 

Chit, C6- chit and C12-chit,  respectively).  

Next the poorly water soluble NIMO drug was encapsulated with the C6- chit with adequate 

pH- sensitive properties. The polymer-stabilized NIMO particles with 10 wt.% NIMO content 

resulted in stable dispersion in aqueous phase, the formation of  polymer shell  increased in 

the water solubility/ dispersibility of the initial hydrophobic drug. According to the drug 

release experiments, we clearly confirmed that the encapsulated low crystallinity NIMO drug 

remained closed in the polymer NPs at normal tissue pH (pH=7.4, PBS buffer, physiological 

condition) but at pH <6.5 which is typical for seriously ischemic brain tissue, 93.6% of the 

available 0.14 mg/ml NIMO was released into the buffer solution under 8 h release time. 

According to this in vitro study, the presented pH-sensitive drug carrier system could be 

useful to selectively target ischemic brain regions characterized by acidosis, to achieve 

neuroprotection at tissue zones at risk of injury, without any undesirable side effects caused 

by systemic drug administration. 

Keywords: chitosan, hydrophobically modified, tissue acidosis- responsive, nimodipine, pH- 

sensitive drug release 

 

1. Introduction 

 

Over the past few decades, stimuli-sensitive (bio)polymers have become an important class of 

polymers and have received much attention for their biomedical applications, leading to an 

explosive growth in the related research fields (Hoffman, 1995; Vancsó, 2003). Also termed 
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‘stimuli-responsive’, ‘intelligent’, ‘environmental-sensitive’, or ‘smart’, these polymers 

undergo extensive conformational changes in response to only small changes in the 

environmental factors (e.g., pH, temperature, light, magnetic field, reduction/oxidation 

potentials, enzymes, ionic strength, ultrasound, etc.), which often accompany significant 

molecular, microscopic, and macroscopic changes in the physico-chemical and biological 

properties of the polymers (Kutnyanszky et al., 2012). In particular, stimuli-sensitive 

polymers have been often utilized in the fields of controlled and self-regulated drug delivery 

to demonstrate an optimum drug release according to a physiological need (Song et al., 2013).  

Much attention has been directed in recent years to polyelectrolyte hydrogels that show 

different swelling behaviors in response to small variation in solution conditions such as 

temperature and pH (Caykara et al., 2000; Nonaka et al., 1998; Lee et al., 1996). These 

hydrogels are used in variety of novel applications, including controlled drug delivery 

(Horiike et al., 2000), immobilized enzyme system (Putman & Kopecek, 1995) and separation 

processes (Karadag et al., 1995). Much of the fundamental on the swelling behaviors of the 

hydrogels were investigated since Tanaka (Tanaka, 1978) has suggested the swelling theory 

that clarified the relation between the swelling behaviors and temperature of the swelling 

medium.  

The pH-sensitive polymers are probably the most commonly studied class of environmentally 

sensitive polymer systems in drug delivery research. A pH-responsive polymer consists of 

chemically or physically cross-linked polymeric backbones which bear ionic pendant groups 

(Khalid et al., 2009; Flory, 1953). When these ionic pendant groups are ionized and develop 

charges on the polymeric networks, the hydrogel swells due to the generated electrostatic 

repulsion forces (Bucholz & Graham, 1997). From the viewpoint of potential applications, 

pH-sensitive polymers seem to be of significance as the physiological pH range is from 1.2 

(stomach) to 7.4 (duodenum) and different body parts have special pH surroundings. Various 

pH-sensitive polymers have been developed for biomedical applications and recently attracted 

much attention for pH targeting nanomedicine (Kutnyanszky et al., 2012). Hydrophobically 

modified pH-responsive polymers have a sensitive balance between charged repulsion and 

hydrophobic interactions (Liu et al., 2007). When ionizable groups are protonated and 

electrostatic repulsion forces disappear within the polymer network, hydrophobic properties 

dominate, introducing hydrophobic effects that cause aggregation of the polymer chains from 

the aqueous environment (Aoki et al., 1994). 
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Among the biopolymers, chitin and its derivative chitosan (Chit) have been receiving 

increasing attention. Due to its biocompatibility, biodegradability and non-toxicity, chitosan 

has increasingly been used in the biomedical and pharmaceutical fields (Kumar, 2000). Chit is 

a linear copolymer of β(1→4) linked 2-acetamido-2-deoxy-β-D-glucopyranose and 2-amino-

2-deoxy-β-D-glycopyranose. It is easily obtained by the deacetylation of chitin, the second 

most abundant polysaccharide found in nature as a component of exoskeletons of crustaceans 

and insects (Rinaudo, 2006; Prabaharan, 2008). A typical process of extraction of chitin 

consists of a first step of deproteinization followed by a second step of demineralization 

(Dutta et al., 2004; Aranaz et al., 2009). Chitin and Chit are structurally similar to cellulose, 

except for an acetamido or amine group at C-2 instead of a hydroxyl group (cellulose) at this 

position (Dutta et al., 2004). Chemical modifications have been used to prepare Chit 

derivatives with enhanced biological and physicochemical properties. The pKa of the amine 

groups in Chit is ~6.5 and therefore it can be solubilized by diluted acids through protonation 

of its amine groups on the C-2 position of the D-glucosamine repeat unit, rendering the 

corresponding chitosan salt in solution (Rinaudo, 2006; Prabaharan, 2018). According to this 

polyelectrolyte nature, Chit exhibits pH- dependent solubility properties (Croisier & Jérôme, 

2013). 

The pH- responsive polymers are highly applicable for drug delivery system in those areas, 

where pH difference can be observed between the normal and abnormal function of a tissue. 

Recently some paper was reported for example that, in ischemic tissue, acidosis augmented by 

spreading depolarization is a relevant signal that could be utilized for the initiation of drug 

release (Mutch & Hansen, 1984; Menyhárt et al., 2017). The accumulation of lactate has a 

major contribution to transient tissue acidosis during spreading depolarization, and the 

duration of the acidic shift is determined by the efficacy of pH buffering systems involving 

carbonic anhydrase enzymes. Indeed, the duration and degree of tissue acidosis together 

determine the survival of neurons, therefore marked tissue acidosis has been traditionally 

considered as a damaging component of cerebral ischemia (Nedergaard et al., 1991). Based 

on significant pH differences between ischemic (pH<6.5) and normal tissues (pH= 7.4), the 

development of pH-sensitive carriers that can respond to slightly acidic condition could be 

useful in targeted pH- mediated drug delivery.  

The applied chemical condition (solvent, ionic strength, hydrogen ion activity, temperature 

etc.) may cause significant changes in the solubility, the diffusivity and the dissolution 

properties of the drug molecules from polymeric network. Analysis of in vitro drug 

dissolution profiles helps to find the suitable release kinetic model and thereby obtaining 
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information on the mechanism of dissolution process (Csapó et al., 2016). Numerous 

mathematical models (zero-order, first-order, Weibull, Hixone-Crowell, Korsmeyere-Peppas, 

etc) have been developed to describe the release properties of the drug molecules. The 

mechanistic theories interpret the dissolution on the basis of the physical and chemical 

processes that determinate the release rate, such as diffusion, swelling, erosion, precipitation 

and/ or degradation. Widely applied semi-empirical assumptions of drug release is the 

Korsmeyere-Peppas power-law, while an ordinarily used mechanistic scheme is the Higuchi 

square root of time law. The empirical/semi-empirical models can be auspiciously used to 

evaluate experimental dissolution profiles considering the appropriate underlying mechanism, 

but mechanistic models need to relate these results to describe the drug delivery system. Until 

now it has not appeared general mathematical model in the literature that takes into account 

all the determining effects, in this way we use multiple models at the same time that are 

widely used in literature.  

The integrated rate law of the first order reaction kinetic equation is a typically used formula 

which states that the change in concentration with respect to change in time is dependent only 

on the drug concentration (Benkő et al., 2015). 

      
              (1) 

where C0 is the initial concentration of drug in the formulation, Ct is the concentration of drug 

in the drug formulation at time t, and k is the first-order release constant with units of 

reciprocal time. 

Many important biological reactions, can be described using second order kinetics. To 

describe the change of the rate of a second-order reaction with concentration of products the 

overall differential rate equation is used as well as the integrated rate equation. 

   
 

 

  
    

           (2) 

where C0 is the initial concentration of drug in the carrier, Ct is the concentration of residual 

drug in the drug formulation at time t, and k2 is the second-order release constant with units of 

concentration multiplied by reciprocal time. 

Nowadays, numerous authors utilize the semi-empirical power low equation that was 

proposed by Korsmeyer and Peppas (Peppas & Merrill, 1997). The formula was developed to 

expressly modelling the dissolution of a drug molecule from a polymeric network using the 

following relationship: 

                    (3) 
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where C0 is the initial concentration of drug in the drug formulation, Ct is the concentration of 

released drug at time t, km is the kinetic constant and n the release index, indicating the way 

of the drug dissolution. The release mechanism is a function of the diffusion exponent n, 

thereby n = 0.5 suggests a Fickian diffusion; 0.5 < n < 1.0 supports an anomalous non Fickian 

transport (both diffusional and relaxational transport); for n = 1.0, the release mechanism is 

represented by a case-II, relaxational transport, time-independent, zero-order model. The n 

values refer to the geometries of the particles; in the diffusion-controlled release if the value 

of n is between 0.45 and 0.43, the geometries are slab, cylinder or sphere, respectively. 

Hopfenberg model (Fu & Kao, 2010) is applied for the cases of release from eroding polymer 

surface in which surface area keep nearly constant value during the dissolution process. For 

arbitrary geometry following equation express the mentioned model: 

  

  
      

   

    
 
 

         (4) 

where Ct is the concentration of dissolved component in time t, C is the total concentration 

of drug dissolved when the storage amount is exhausted, ke is the erosion rate constant, C0 is 

the initial concentration of drug in the matrix and a0 is the initial radius for a sphere, cylinder 

or the half-thickness for a slab. The value of N is 1, 2 and 3 for a slab, cylinder and sphere, 

respectively. The erosion rate constant (ke), the initial concentration of drug in the matrix (C0) 

and is the initial radius for a sphere (a0) can be merged into a zero order rate constant (k0). 

Many times the drug release process can be described with the Fick's diffusion relationship or 

with the simplified Higuchi expression (Siepmann & Peppas, 2011). Mathematical formula 

for drug dissolution from matrix systems was not reported until 1961 by Higuchi. The most 

familiar form of the Higuchi model is the simplified Higuchi equation, which relates drug 

concentration to the square root of time. This expression is valid for the delivery system 

where the initial drug concentration in the matrix is much higher than the solubility of the 

drug. 

                  (5) 

where Ct is the concentration of drug in the drug matrix at time t and kH is the Higuchi 

dissolution constant. 

A general empirical equation reported by Weibull (Costa & Sousa Lobo, 2003) was adapted 

to the release process and this model can be successfully describe to almost all kinds of 

dissolution profiles. When applied to drug dissolution from pharmaceutical dosage forms, the 

Weibull equation expresses the accumulated fraction of the drug (Ct), in solution at time, t, by 
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          (6) 

where ‘a’ is the scale and ‘b’ is the shape parameter which defines the time scale of the 

process, Ti is the location parameter, represents the lag time before the onset of the dissolution 

or release process and in most of the cases will be zero. The shape parameter, b, characterizes 

the curves as either exponential (b=1), S-shaped (b>1) or parabolic (b<1).  

To evaluate the value of kinetic constants of the applied release kinetic models, the sum of the 

square of differences between the measured and predicted dissolution profiles have been 

minimalized using a self-developed spreadsheet software based application for nonlinear 

parameter estimation (Juhász et al., 2016). 

In this paper we designed and constructed intelligent, tissue acidosis- responsive drug delivery 

NPs. According to the in vitro experiments carried out under physiological condition, the 

developed NPs were released relevant drugs to the site of evolving ischemic injury (pH<6.9). 

The drug candidate to be associated with the pH- sensitive drug delivery system was the L-

type voltage sensitive Ca
2+

 channel blocker NIMO, which can inhibit the occurrence of 

spreading depolarization (Dreier et al., 2002; Richter et al., 2012).  

 

2. Materials and methods 

2.1. Reagents 

For the synthesis of hydrophobically modified biopolymers high molecular weight (310-375 

kDa) Chit (C12H24N2O9, degree of deacetylation: 75-85%, Sigma-Aldrich), hexanal (C6H12O, 

98%, Sigma-Aldrich), and dodecanal (C12H24O, 92%, Sigma-Aldrich) were used as initial 

biopolymer and hydrophobizing agents, respectively. Sodium cyanoborohydride (NaCNBH3, 

95%, Sigma-Aldrich) was the reducing agent during the reaction. The NIMO (C21H26N2O7, 

98%,), as model drug was purchased from Alpha Aesar. The additional reagents, such as 

ethanol (C2H6O, 99.99%, MOLAR Chemicals Ltd.), acetic acid (C2H4O2, 99.5 %, Reanal), 

pentasodium triphosphate (Na5P3O10, 100 %, Merck KGaA), di-sodium hydrogen phosphate 

dodecahydrate (Na2HPO4×12 H2O, 100 %, Molar), citric acid (C6H8O7, 100 %, Molar), 

sodium chloride (NaCl, 100 %, Molar), sodium hydroxide (NaOH, 100 %, Reanal) and 

hydrochloric acid (HCl, 36.5 % aqueous solution, Molar) were used as received without 

further purification. 

 



8 
 

2.2. Synthesis of hexanal and dodecanal aldehydes modified Chit  

During the synthesis of hydrophobic Chit derivatives 4 g powdered Chit was dissolved in 96 

ml 5 vol% aqueous acetic acid solution. After the complete dissolution of the polymer 0.4 and 

0.2% diluted solutions were prepared from the viscous aqueous stock solution for the 

synthesis of hexanal (C6-chit) and dodecanal (C12-chit) modified Chit samples, respectively. 

Next, 4.19 ml hexanal and 7.75 ml dodecanal were added to 250 and 500 ml 0.4 and 0.2% 

polymer solutions, respectively. According to this amounts, 60% of the available nominal 

amine pendant groups of Chit was reacted with the aldehyde molecules. After 5 min stirring 

17.5 ml 1 M freshly prepared sodium cyanoborohydride solution was added dropwise to 

complete the reaction. The solutions were stirred overnight then the obtained hydrophobized 

Chit polymer were separated from the media with spray drying technique using a Büchi Mini 

Spray Dryer B-290 device (Tinlet= 170 °C, Toutlet= 100 °C, Aspirator: 100%).  

 

2.3. Preparation of NIMO loaded C6-chit NPs  

The NIMO containing polymer NPs were prepared by precipitation method using ethanol as 

precipitating agent.  First, 0.1 g of C6-chit was dissolved in 10 ml 5% acetic acid and the pH 

was adjusted to 5.5 with 10 M NaOH solution. Next, 2 mg powdered NIMO was dissolved in 

2 ml ethanol in order to get a 0.1% of homogeneous solution. In the second step the 1.0 % 

aqueous C6-chit solution was added dropwise to the ethanol based NIMO solution under 

vigorously stirring at 25°C. The procedure was repeated with pure distilled water without Chit 

content in order to prepare bare NIMO (micro)particles without polymer shell. The formation 

of particles, i. e. the appearing turbidity was monitored with an Ocean Optics USB2000 

(Ocean Optics Ins., United States) diode array spectrophotometer at λ = 500 nm using a 1 cm 

quartz cuvette. 

 

2.4. Methods of sample characterization 

The Fourier transform infrared (FTIR) spectroscopy measurements were performed by a 

Biorad FTS-60A FT-IR spectrometer by accumulation of 256 scans at a resolution of 4 cm
−1 

between 4300 and 300 cm
−1

. All spectral manipulations were performed using Thermo 

Scientific GRAMS/AI Suite software. 
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The X-ray diffractograms of the powdered NIMO and polymer coated NIMO were recorded 

on a Philips X ray diffractometer (XRD) with CuK (= 0.1542 nm) as the radiation source at 

ambient temperature in the 2–35° (2Θ) range applying 0.02° (2Θ) step size. 

The morphology and the particle size of the prepared biopolymer coated NIMO NPs and the 

bare NIMO were examined by a transmission electron microscope (TEM). The investigation 

was performed using a Tecnai G2 20 X-Twin type instrument (FEI, Hillsboro, OR, USA), 

operating at an acceleration voltage of 200 kV. For TEM measurements the samples were 

dropped on a copper mounted lacy carbon film (200 Mesh) and dried. 

The thermal behavior of the initial Chit and its modified derivatives with various 

hydrophobicity were investigated with differential scanning calorimetry (DSC) and 

thermogravimetric (TG) measurements. The polymer samples were swelled in 5% acetic acid 

solution for the thermoanalytic measurements. From each samples 1 wt% solutions in acidic 

media were prepared and the systems were stirred for 48 h to reach the swelling/ dissolution 

equilibrium. Following this, solutions were centrifuged (15 mins; 14500 rpm; Eppendorf 

miniSpin Instrument), then the resulting supernatant was isolated and the obtained sediment 

was measured. The water content of the prepared concentrated hydrogel sample was 

determined by TG measurements: the samples were heated from 30 to 130 °C at a heating rate 

of 2.5°C/min (Mettler-Toledo TGA/SDTA 851
e
 Instrument). The value of desorption enthalpy 

for each water content of the gels was measured by DSC. The measurements were performed 

using a Mettler-Toledo 822e differential scanning calorimeter in the temperature range of 30-

130 °C at a heating rate of 2.5 °C/min. Both the TG and DSC measurements were carried out 

triplicate, and average water content and desorption enthalpy values are reported. Error bars 

refer to the standard deviation. 

 

2.5 pH-dependent solubility properties of the Chit and its modified derivatives 

The solubility properties of the samples as the function of pH was monitored with an Ocean 

Optics USB2000 (Ocean Optics Ins., United States) diode array spectrophotometer at λ = 500 

nm using a 1 cm quartz cuvette. During the measurements 1 M NaOH solution was added 

dropwise to 5 ml 1% polymer solution dissolved in 5% acetic acid, under vigorously stirring 

at 25°C and the absorbance of the polymer solution was continuously measured. The evolved 
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turbidity of the dispersion during the dropwise addition of the NaOH solution was indicated 

the formation of polymer NPs.  

The pH- dependent solvation/ swelling properties of the C6- chit sample was also studied by 

gravimetric swelling measurements. The water uptake tests were carried out in buffer 

solutions with 0.9 wt% NaCl content at 37 °C. The pH values of the buffer solutions (pH= 

5.0, 6.0, 6.5, 7.0, 8.0) were set by means of 0.2 M phosphate or 0.1 M citrate buffer system 

using a Metrohm 827 pHlab pH meter. After 24 h of immersion time, the obtained polymer 

samples with pH- dependent swollen (expanded macromolecules) or precipitated (collapsed 

state) polymer chains were concentrated by centrifugation (20 mins; 14500 rpm; Eppendorf 

miniSpin Instrument), the clear supernatants were removed and the water contents of the 

obtained polymer contained sediment were determined. Water uptake (g/g) of a samples was 

calculated as follows: Swelling= (wt - wd)/wd, where wd and wt are the weights of dry and wet 

samples, respectively. The experiments were carried out triplicate, and average swelling 

values are reported. Error bars refer to the standard deviation.  

2. 6. In vitro drug release experiments 

The in vitro experiments of the NIMO were carried out using a cellulose membrane 

(Munktell&Filtrak GmbH, grade: 390). The amount of released NIMO from the C6-chit NPs  

was measured spectrophotometrically by following the intensity change of the characteristic 

absorbance peak of NIMO at λ = 360 nm. Based on the previously determined calibration 

curve, within the range of 0-0.145 mg/ml the concentration of NIMO was directly 

proportional to the absorbance maximum values measured at 360 nm [cNIMO (mg/ml) = (Aat 

360nm -0.0556)/4.763; R
2
 = 0.99572]. NIMO-loaded NPs suspensions (10 ml) (corresponding 

to 0.145 mg/ ml of NIMO) were placed in cellulose membrane, closed, and dropped into 100 

ml of a buffer solution media with pH=7.4 (PBS buffer solution) and pH=6.0 (37 °C; 0.9 

wt.% NaCl content). NIMO is a poorly water-soluble drug with an equilibrium solubility of a 

2.55- 3.86 g/ml in pure aqueous media (Hu et al., 2003; Zhao et al., 2014). Therefore, the 

release curves of samples were tested under sink condition by adding 0.5% sodium dodecyl 

sulfate (SDS) into the dissolution media. At selected time intervals, 3 ml of aqueous solution 

was withdrawn from the release media and the concentration of the NIMO content was 

measured. The release experiments were also carried out triplicate, and average values are 

reported with the calculated standard deviations. 
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3. Results and discussion 

3.1. Structural characterization and swelling properties of the synthetized hydrophobic Chit 

samples  

In order to achieve the appropriate pH- responsive property and the cut- off pH the initial Chit 

was modified with aldehydes with varied chain- length (Figure 1.) (Janovák et al., 2014). 

According to Figure 1. our final procedure of reductive amination was to split the formation 

of chitosan – aldehyde derivatives into imine and amine Chit  derivative (Ahmadi et al., 

2015). Figure 2. illustrates the FTIR spectra of the synthesized hydrophobic C6-chit and C12-

chit  samples and the initial unmodified Chit, as well. The absorbance of the bands at 2920 

and 2855 cm
-1

 (CH2 symmetric and asymmetric stretching (Tipson, 1968)) increased in the 

case of C6-chit and more significantly in the case of C12-chit. This indicates that the 

hydrophobic alkyl chains are present in the hydrophobically modified polymers, and the 

difference in intensity shows that the C12-chit contains more methylene groups. The absence 

of bands in the 2830-2695 cm
-1

 region (C-H stretching in the H-C=O group of aldehydes 

(Tipson, 1968)) and in the 1740-1720 cm
-1

 region (C=O stretching (Tipson, 1968) shows that 

no residual aldehydes were remained in the samples after the washing process. In the case of 

pure Chit the band at 1650 cm
-1

 (amide I peak (Subramanian & Vijayakumar, 2012)) was 

shifted to 1623 and 1626 cm
-1

, respectively and the absorbance decreased, which shows that 

the amide groups of pure Chit disappeared due to the effect of sodium cyanoborohydryde, and 

primary amine groups formed which explains that the absorbance maximum is near 1620 cm
-1

 

(N-H deformation for primary amine group in D-glucosamine (Tipson, 1968)).  This band can 

also be attributed to the -C=N- stretching (1624-1635 cm
-1

 (Hoffmann et al., 2009)) which 

shows that the chitosan primary amine groups and the aldehydes successfully reacted and 

formed an imine, as shown in Figure 1. The band appearing at 1412 cm
-1

 (C-N stretching in 

aliphatic amines (Tipson, 1968)) in the cases of the hydrophobically modified Chit samples 

shows that the C-N bond successfully formed between the Chit and the aldehydes. They can 

be derived from the hydrogenation of the previously formed imines, and also explains why the 

intensity of peaks at 1623 and 1626 cm
-1

 were so weak. Moreover, the peak at 1576 cm
-1

 

(pure Chit, amide II. peak (Tipson, 1968; Subramanian & Vijayakumar, 2012)) shifts to 1562 

cm
-1

 (N-H deformation in secondary amines (Tipson, 1968) in the case of hydrophobically 

modified samples and its absorbance increases, which further proves that the reaction was 

successful. The further bands present in all samples are: 3363 and 3295 cm
-1

 (N-H stretching 

for primary and secondary amines (Hoffmann et al., 2009)), overlapped with a broad band for 

O-H stretching. The band at 2875 cm
-1

 can be attributed to C-H stretching (probably CH3 
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(Rahmi et al., 2015)) and the band at 1380 cm
-1

 is for C-H deformation in CH3 group (Rahmi 

et al., 2015). Amide peaks (Subramanian & Vijayakumar, 2012): I. at 1650, II. at 1576, III. at 

1326 cm
-1

, and C-O-C deformation at 1060 cm
-1

.  

After the structural characterization, the swelling of the samples were also examined in order 

to quantify, by thermoanalytical methods, the different hydrophilicities of the samples. Figure 

3. shows the thermoanalytical (TG and DSC) curves of the initial Chit  and the 

hydrophobically modified polymers. Before the TG measurements, the diluted 1 wt.% 

polymer solutions were concentrated by centrifugation, the supernatants were removed and 

the water contents of the obtained hydrogel based sediments were measured. Figure 3.A. 

represents the TG curves of the prepared Chit hydrogel samples. In all cases, a significant 

weight loss can be observed between 30 and 150 °C. This is obviously due to the water 

evaporation of the sample. The inserted grey columns show the determined water content 

values of the gels calculated from the corresponding weight (water) losses. The results 

indicate that the initial hydrophilic Chit has the highest water content (78.6 wt.%) and the 

increasing hydrophobicity of the polymer resulted in decreasing water content (C6-chit: 74.2 

wt.% and C12-chit: 47.1 wt.%), The value of desorption enthalpy for each water content of the 

gels was measured by DSC (Figure 3.B.). In all cases endothermic peak was observed after 

the evaporation of the water content of the gels. In the course of the evaluation of DSC 

curves, values of enthalpy of vaporization (Hw) were calculated from the areas under the 

peaks and normalized to water contents determined from TG values (Janovák et al., 2009). 

The diverse hydrophilicities of the polymers swollen under identical conditions also manifest 

themselves in the course of DSC measurements: the most hydrophilic initial Chit produced 

the highest peak, followed by C6- and C12- chi samples. The corresponding desorption 

enthalpy values were 32.85, 30.15 and 24.39 kJ∙mol
-1

, respectively. Furthermore, the minima 

of DSC peaks are shifted to lower temperatures with increasing hydrophobicity: the minima 

of initial Chit, C6- and C12- chit are at 112.8, 106.5 and 96.3 °C, respectively. It can therefore 

be established that the hydrophobicity of the initial Chit can be controlled via modification 

with various carbon chain lengths aldehydes.  

 

3.2. pH- dependent solubility properties of the modified Chit   

After the solubility properties of the polymers the pH- dependent behaviors were also studied. 

Figure 4A. represents the solvation properties of the initial and the hydrophobically modified 
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chitosan derivatives as a function of pH. As it can be seen, transparent homogenous polymer 

solutions exist at lower pH, while the appearing turbidity at higher pH indicates the formation 

of polymer (nano)particles. This pH- dependent solubility of Chit is known from the literature 

(Croisier & Jérôme, 2013) and this is due to the polycationic nature of the polymer: the amino 

groups are protonated at low pH and deprotonated at high pH. However, it also can be seen, 

that the turbidity, i.e. the solubility properties of the polymers are strongly depended on the 

side chain length of the hydrophobizing agent. Figure 4B. shows the calculated cut- off pH of 

the polymers determined from the inflexion points of the precipitation curves. The determined 

cut- off pH values show decreasing tendency with increasing hydrophobic nature of the 

polymer. The explanation is that in polycationic Chit supplemented with hydrophobic side 

chains, a three-dimensional lattice is formed as a result of associative interactions between 

hydrophobic parts; furthermore the hydrophobic regions partially inhibit the dissociation of 

the hydrophilic amino groups (Janovák et al., 2014). In case of C6-chit, the presence of the 

polymer NPs resulted in a turbid opal dispersion above pH=7, however, up until pH=6 the 

measured absorbance values were almost decreased to zero. This pH- dependent solvation 

properties of the C6-chit was also characterized by water uptake measurements under 

physiological conditions. During the study of the pH- dependent solvation/ swelling 

properties of the C6- chit sample, the conformation properties of the polymer chains were 

varied from expanded state (acidic pH) to collapsed state (slightly basic pH). This 

conformation changes of the macromolecule chains is also can be seen on Figure 4A, at 

acidic pH (<~6.7) transparent polymer solution was obtained, while at higher pH (>~7), the 

turbidity of the sample was increased duo to the precipitation/ contraction of the polymer 

chains. According to the swelling studies, the water uptake of copolymers starts to increase 

below pH = 7.0 (Figure 4C.). Below the normal nervous tissue pH (<7.1-7.4), the measured 

swelling values are high (>13.2 g/g) and this high water content means increasing solvation of 

the polymer chains which causes the dissolution of the polymer particles. This is in good 

agreement with the presented particle formation/ precipitation properties of the polymer 

(Figure 4A.). The appearing low absorbance value below pH=6.0 is obviously due to the 

complete dissolution of the polymer NPs which was occurred in a narrow pH range 

(pH=~0.6-0.8). This pH change- driven NPs formation or disintegration can be preferably 

applied for pH- induced drug release, more precisely for the treatment of spreading 

depolarization. According to the literature data the tissue acidosis accompanying the 

spreading depolarization causes that the normal (~7.4) tissue pH decreases to lower value due 

to the accumulation of lactate (Menyhárt et al., 2017). 
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3.3. Characterization of NIMO loaded C6- chit NPs 

NIMO, a Ca
2+

 channel blocker, has low oral bioavailability due to poor solubility and 

insufficient dissolution rate (Kumar et al., 2010). However, the formation of water- soluble 

polymer shell on the surface of poor water soluble drug NPs can be solved this problem. 

Furthermore, the advantageous pH sensitive properties of the outer polymer shell can be also 

used for the pH- responsive and controlled drug release of the encapsulated drugs (Janovák et 

al., 2014; Yoshida et al., 2013). Figure 5 shows that the dropwise addition of distilled water 

to the NIMO solution containing 0.1 % of ethanol results an opaque NIMO suspension due to 

the precipitation of the drug molecules. This was achieved when the ethanol (as good solvent) 

content was lower than 30 volume% and the appearance of the  larger flakes/ aggregates 

indicates the formation of rough disperse heterogeneous system with low dispersibility. It 

should be also noted that the stability of the obtained suspension was very low, immediately 

after the formation of the particles significant sedimentation was experienced. However, when 

this precipitation procedure was repeated in the presence of C6-chit, a homogeneous and 

smooth dispersion was obtained, indicating the colloidal state of the particles with high 

dispersibility. The resulted polymer-stabilized NIMO particles (nominal NIMO content: 10 

wt.%) exhibit kinetic stability in aqueous phase, because no aggregation or sedimentation was 

observed after the preparation. In other word, the polymer shell increased the water solubility/ 

dispersibility of the initial poorly water soluble NIMO drug.  

After the precipitation of the NIMO molecules the morphological properties and the size of 

the dry precipitate were also studied. As the TEM pictures indicate, the bare NIMO molecules 

are formed micron- sized needle like crystals during the precipitation/ crystallization process 

(Figure 6A.). The crystalline phase of the obtained product was also evidenced via XRD 

measurements: the appearing sharp peaks are characteristic for the NIMO (Gorajana et al., 

2011) and confirm the highly crystal state of the drug (Figure 7). However, the TEM images 

also show that in the presence of C6- chit well-defined spherical NIMO NPs with 5.2 ± 1.1 nm 

of average diameter are formed (Figure 6B). The corresponding XRD pattern of the NIMO 

loaded C6-chit NPs show lower intensity than the bare, uncoated NIMO which corresponds to 

the lower crystallinity of the drug (Figure 7). The lower crystallinity is advantageous, because 

the solubility of the drug molecules depends on the formation of intermolecular hydrogen 

bonds between the solvent and the solute molecules. The crystalline form is more stable than 
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the amorphous form and has a lower energy at the molecular level with stronger bonding 

(mostly ionic bonds) between molecules that require higher energy to break. So, higher 

solubility means higher dissolution rate and better bioavailability (Khadka et al., 2014; Jeong 

et al., 2003).  

 

3.4. In vitro acidosis- induced drug release properties of NIMO from C6- chit nanoparticles 

Considering the goal of this study, the C6-chit NPs showed adequate pH- sensitive properties, 

because the hydrophobized macromolecules formed NPs at normal nervous tissue pH (=7.1- 

7.4), but complete dissolution was occurred with a slight change (tissue acidosis) of the pH 

(pH=~0.6-0.8) at physiological conditions (Fig. 4.). In order to verify the pH- induced drug 

release properties of the polymer NPs, the release profile of NIMO were studied at the pH of 

normal tissue (pH=7.4, PBS buffer solution) and at ischemic tissue pH (=6.0), as well. The 

release study of the bare uncoated NIMO have also been performed at pH=7.4 as reference. 

Fig. 8 presents the absolute and percentage drug release profiles which were carried out over 

a period of 8 hours and at body temperature (37 °C) and in physiological saline, while Fig. 9 

shows the calculated (ct/c) NIMO concentration values as a function of release time with the 

fitted curves obtained by different kinetic models. In the case of the bare, uncoated NIMO, 

percentage amount of the released drug molecules were continuously increased up 210 min 

and after three and a half hours it was almost reached the 100% plateau value. In this case the 

following rate constant value (k) was provided: 4.48 · 10
-3

 mg cm
-3

 s
-1 

at pH=7.4 via the fitted 

(Fig. 9) second-order rate model (Eq. 2). As regarding the encapsulated NIMO sample, the 

drug release profile at pH= 6.0 exhibits a delayed drug release rate compared to the bare 

NIMO. This is because the kinetic of the release process is controlled by the disintegrating 

polymer shell, so the diffusion rate is decreased. Moreover, a significant difference can be 

seen on the release rate of NIMO between pH= 7.4 and 6.0 under the same experimental 

condition. Due to the continuous dissolution of the C6-chit shell at pH= 6.0 (ischemic tissue), 

the released amount of NIMO was almost the same (93.6%, 0.131 mg/ml), as the amount of 

the uncoated drug (98.1%, 0.137 mg/ml). However, at normal tissue pH (=7.4), the NPs were 

remained in undissolved/ closed state and thus, the release of the encapsulated NIMO was 

negligible under the studied time interval. This dissolved and undissolved state of the 

polymeric NPs at pH of ischemic (pH= 6.0) and normal (pH =7.4) tissue, respectively can 

also be seen in the inserted photos: at pH=6.0 a homogenous, transparent polymer solution 
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was obtained after the release process, while at pH=7.4 the dispersion was preserved its 

turbidity indicating the presence of NPs in the medium. It is also important to note that the 

drug release experiments were carried out under physiological conditions (37 °C; 0.9 wt.% 

NaCl content) and the nanodispersion was stable at pH=7.4 through the studied time interval 

(8h) without any aggregation and sedimentation. This is certainly due to the presence of the 

electrostatic repulsion among the polymer nanoparticles and indicates that the modified C6-

chit possess positive charge at pH=7.4. Note that the pKa value of the initial chit is about 6.5 

(Rinaudo, 2006; Prabaharan, 2018). According to the results the drug release profile for 

NIMO/C6-chit at pH=7.40 was exhibited a completely retarded, while at pH=6.00 delayed 

drug release rate compared to the pure uncoated NIMO. This is because the kinetic of the 

release process is controlled by the C6-chit, so the diffusion rate is significantly decreased. 

The determined k2 value was 9.05 · 10
-3

 mg cm
-3

 s
-1

 in this case.  

The corresponding half-life value (t1/2 = 2.52 in
 
NIMO/ C6-chitosan composite

 
at pH=6.00) is 

near five times larger than the half-life of bare drug sample (t1/2 = 0.44 h for NIMO at 

pH=7.40). The kinetic constants, release indexes and correlation coefficients (R
2
) values, 

which are summarised in Table 1 indicate what processes are controlled by the suggested 

release mechanism. Based on the values of correlation coefficients release of the NIMO from 

the polymer network was well described by the Weibull and Hopfenberg equations, while the 

drug release from concentrated solutions agreed with the second-order reaction kinetic model. 

The observed release index value (n = 0.69
 
for NIMO/ C6-chitosan composite

 
at pH=6.00) 

suggest the existing of an anomalous non Fickian transport where combination of diffusional 

and relaxational transport results the anomalous process. Despite this fair mathematical result, 

due to the extremely small diameter of the carrier particles, meaningful physical meaning of 

the last mentioned transport phenomenon is highly questionable. 

Finally, the release kinetic of drug from unmodified chit was also measured in order to verify 

the adequate effect of the polymer modification on drug release properties. The difference of 

release profile of C6-chit and unmodified chit at normal tissue pH (=7.4) was obvious (Fig. 

8B). At this pH the unmodified chit particles were partially opened (see Fig. 4A.) and thus 

~50% of encapsulated NIMO was released. However, the release was negligible in the case of 

C6- chit particles due to the modified pH-responsive properties and the closed, undissolved 

polymer structure at this pH (see Fig. 4A.). 
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Thus, it can be concluded, that the adequate pH sensitive properties of the C6-chit NPs were 

also expressed in the drug release behaviors and according to the in vitro experimental results 

the prepared NPs could be used for the treatment of ischemic injury.  

Table 1. Interpretation of the release experiments using different kinetic models 

Kinetic models 
bare NIMO (pH=7.40) encapsulated NIMO (pH=6.00) 

ki R
2
 ki R

2
 

First order (s
-1

) 4.75 × 10
-5

 0.9757 9.54 × 10
-5

 0.9923 

Second order (mg cm
-3 

s
-1

) 4.48 × 10
-3

 0.9786 7.89 ×10
-4

 0.9797 

Korsmeyer–Peppas (s
-n

) 
4.96 

0.9600 

0.09 

0.9744 
n = 0.31 n = 0.69 

Hopfenberg (mg cm
-2 

s
-1

) 5.03 ×10
-6

 0.4015 3.73 × 10
-6

 0.9963 

Higuchi (s
-1/2

) 9.34 × 10
-3

 0.3208 9.96 × 10
-1

 0.9723 

Weibull (mg cm
-3 

s
-1

) 6.87 × 10
-3

 0.4127 6.41 × 10
-5

 0.9935 

4. Conclusion  

Based on significant pH differences between seriously ischemic (pH<6.5) and normal 

(pH=7.1-7.4) nervous tissue, the development of pH-sensitive carriers that can respond acidic 

pH could be useful in targeted pH- mediated drug delivery. In this paper we designed and 

constructed intelligent, tissue acidosis- responsive drug delivery NPs (d=5.2 ± 1.1 nm). 

According to the in vitro experiments the developed hydrophobized Chit NPs  with C6-side 

chains were released the Ca
2+

 channel blocker NIMO drug at the pH of ischemic  tissue 

(=6.0), while at normal pH (=7.4) the drug molecules was remained closed in polymer shell. 

At pH=6.0 93.6% (0.131 mg/ml) of the available NIMO was released into the environment, 

while at pH= 7.4 the amount of drug was negligible.  

Beside the relevant pH- dependent drug release properties, it was also presented, that the 

modified Chit samples possess changed wetting properties: increasing hydrophobicity of the 

polymer resulted decreasing water content (C6-chit.: 74.2 wt.% and C12-chit.: 47.1 wt.%) 

compared to the initial Chit (78.6 wt.%). According to the TEM and XRD measurements, the 

bare NIMO molecules were formed micron- sized needle like crystals with well- developed 

crystal phase, however, in the presence of C6-chit spherical NIMO NPs  were formed with 

lower crystallinity. This lower crystallinity of the poorly water soluble NIMO is 

advantageous, because the solubility of the drug molecules depends on the crystallinity and 
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the higher solubility of amorphous form means higher dissolution rate and better 

bioavailability.  
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