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Abstract
Background or purpose Episodes of left atrial (LA) pressure
increase predispose to atrial fibrillation (AF). The adaptation
of LA mechanical function and electrophysiology to pressure
elevation in healthy adults, and in patients with AF, is largely
unknown.
Methods Eleven patients with left-sided accessory pathway
(controls) and 16 patients with paroxysmal AF undergoing
catheter ablation were studied. LA pressure (LAP) was record-
ed through transseptal catheterization, while speckle tracking-
derived peak LA longitudinal strain (PALS) was measured
using transthoracic echocardiography. Stiffness index (SI)
was calculated as mean LAP/PALS. Effective refractory peri-
od (ERP) of the LA was determined during simultaneous
atrioventricular (AV) pacing and during atrial pacing.
Results At baseline, AF patients had higher LA pressure
(mean LAP 8.3±4.7 vs. 5.1±3.1 mmHg, p=0.048), reduced
LA mechanical function (PALS 15.1±5.1 vs. 21.6±6.2 %,
p=0.006, SI 0.69±0.75 vs. 0.28±0.22, p=0.015), and longer
LA ERP (242.3±33.4 vs. 211.7±15.6 ms, p=0.017). Mean
LAP was increased to the same extent by AV pacing in con-
trols and AF patients (mean change 12.6±7.4 vs. 12.6±
7.5 mmHg, p=0.980). At the same time PALS decreased
(from 15.1±5.1 to 11.6±3.3 %, p=0.008), SI increased (from
0.69±0.75 to 1.29±1.17, p<0.001) and ERP shortened (from
242.3±33.4 to 215.9±26.3 ms, p=0.003) in AF patients,
while they remained unchanged in controls.

Conclusions The stiffened LA in patients with AF responds to
acute pressure elevation with an exaggerated increase in wall
tension and decrease in ERP, which is not seen in the normal
LA. This may underlie the propensity for AF during episodes
of atrial stretch in these patients.
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1 Introduction

Atrial pressure elevation predisposes to atrial fibrillation (AF)
by several mechanisms. Acute atrial pressure increase leads to
electrophysiologic changes, while chronic atrial stretch also
induces structural remodeling.

In animal models, acute atrial dilatation has been shown to
decrease atrial effective refractory period (ERP), result in
slowing and block of impulse conduction and increased AF
vulnerability [1–3]. This response has been termed atrial
mechanoelectric feedback [4]. Similar changes have been de-
scribed during acute pressure elevation by some [5–7] but not
by others [8–10] in the human right atrium. However, the
relation between atrial pressure and ERP has not been studied
in the human left atrium (LA), the major source of AF.

Structural changes occur in the atria of patients with septal
defect, mitral valve disease, hypertension, and heart failure
even before the first detected episode of AF [11–14]. These
changes are mediated by increased hemodynamic load on the
atria. Chronic atrial stretch-induced remodeling includes atrial
dilatation, fibrosis, loss of contractile elements, and a propen-
sity for AF [15]. Structural remodeling results in a decline of
the reservoir function of the LA, which can be estimated by
the echocardiographic measurement of peak atrial longitudi-
nal strain (PALS) during ventricular systole. In patients with
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AF, PALS has been shown to correlate with the degree of LA
fibrosis [16], thromboembolic risk [17], and the likelihood of
sinus rhythm maintenance both after cardioversion [18] and
catheter ablation [19]. However, the effect of LA pressure on
PALS has not been determined.

Our aim was to study the responses in electrical
(mechanoelectric feedback) and reservoir function to acute
pressure elevation in the normal human LA and in the LA of
patients with AF.

2 Methods

2.1 Study group

Consecutive patients with manifest or concealed left-sided
accessory pathway, without a history of AF (controls) and
patients with paroxysmal AF scheduled for pulmonary vein
isolation, who had no symptomatic and/or documented AF
episodes in the week prior to the procedure, were included.
Exclusion criteria were persistent AF, CHADS2 (Congestive
Heart Failure, Hypertension, Age, Diabetes, Stroke
[Doubled]) score >2, previous LA ablation or open heart sur-
gery, heart failure, reduced left ventricular function, and mod-
erate to severe mitral regurgitation.

2.2 Electrophysiologic procedures

Informed consent was obtained and antiarrhythmic drugs
have been discontinued for at least five half-lives at the time
of the procedure. Using right ± left femoral vein access
single (control patients) or double (AF patients) transseptal
puncture was performed using 8.0 or 8.5 French transseptal
sheaths (Fast-Cath, St. Jude Medical, St. Paul, MN, USA),
under intracardiac echocardiographic guidance. The side
arm of the transseptal sheath was connected to a disposable
pressure transducer (Combitrans, B. Braun, Melsungen,
Germany), which was positioned and zeroed at a reference
level 5 cm below the left sternal border, at the fourth inter-
costal space [20]. Pressure was recorded at a sampling rate
of 977/s by the CardioLab EP Recording System (GE
Healthcare, Chalfont St Giles, UK).

2.3 Pacing protocol

The protocol was performed after the completion of the
catheter ablation procedure, during the waiting period.
At each site, pacing was performed with 2-ms stimulus
duration, at twice diastolic threshold. Simultaneous
atrioventricular (AV) pacing was carried out to produce
an acute increase in LA pressure. LA ERP was deter-
mined both during simultaneous AV pacing and during
atrial pacing at the same cycle length to control for the

effect of the preceding cycle length on atrial ERP
(Fig. 1). In AF patients, the atrial pacing catheter was
positioned in the LA appendage; while in control pa-
tients, LA ERP was determined by pacing from the
distal bipole of the coronary sinus (CS) catheter to
avoid the need for a second transseptal puncture. This
has been previously shown to reflect LA ERP well [21,
22]. Simultaneous AV pacing at a cycle length of
500 ms was carried out for at least 3 min to allow
stabilization of pressure. Then, after every 30th drive
stimulus progressively more premature (5-ms steps) atri-
al stimuli were introduced, without a pause in the drive
train. LA ERP was defined as the longest coupling in-
terval of the extrastimulus that failed to capture the
atrium twice in succession.

2.4 Echocardiographic measurements

All patients underwent comprehensive two-dimensional
transthoracic echocardiography examination using a
commercially available ultrasound machine (Vivid I,
GE Medical Systems, Horten, Norway) equipped with
a 2.5–3.5-MHz phased array transducer and software
application for two-dimensional speckle tracking-based
strain imaging.

LA volumes were calculated using the biplane method of
disks (modified Simpson’s rule), in the apical 4- and 2-
chamber view at end-systole (maximum LA size), and a mean
value of volume was obtained [23]. LAvolumes were indexed
(LAVI) to body surface area (BSA). Mitral annular velocity
was evaluated by tissue Doppler in the pulsed-wave mode
[24].

2.5 Assessment of left atrial reservoir function

Particular attention was paid to obtain an adequate two-
dimensional-grayscale image, allowing obvious delineation
of LA wall and extracardiac structures. The frame rate was
set between 60 and 80 frames per second. Three consecutive
heart cycles were recorded at baseline and immediately after
simultaneous AV pacing (Fig. 2). Recordings were processed
using acoustic-tracking software (EchoPac PC version
110.1.8, GE Healthcare, Horten, Norway), allowing off-line
semiautomated analysis of speckle tracking-based strain [25].
In the end-diastolic/systolic frame, the atrial endocardial bor-
der was marked by a point-and-click method. After automatic
creation of a region of interest, the LAwall was divided into
six regions, and segmental tracking quality was analyzed
(Fig. 2). The reference point was set at the onset of the QRS,
and the average positive peak atrial longitudinal strain
(PALS), which corresponds to LA reservoir function, was
measured (Fig. 2). Values from the three consecutive cycles
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were averaged [26]. The LA stiffness index (SI) was calculat-
ed as mean LA pressure (LAP)/PALS [27].

2.6 Statistical analysis

Continuous variables are presented as mean±standard
deviation and were tested for normality using the
Kolmogorov-Smirnov test and compared by the
Student’s t test or Mann-Whitney test as appropriate.
Categorical variables are expressed as percentage and
compared using the chi-square test. All statistical anal-
yses were performed using SPSS software (SPSS Inc.,
Chicago, IL, USA). A p value <0.05 was considered
statistically significant.

3 Results

3.1 Clinical characteristics and baseline values of the two
groups

Eleven patients undergoing left-sided accessory pathway ab-
lation (controls) and 16 patients with paroxysmal AF were
included. Controls were younger and had smaller LA volume
index (LAVI), without further differences in clinical charac-
teristics (Table 1).

Patients with AF had higher mean (mLAP) and peak
(pLAP) invasive LA pressures at baseline (8.3±4.7 vs. 5.1±
3.1 mmHg, p=0.048 and 20.8±8.8 vs. 14.6±5.7 mmHg, p=
0.015, respectively), compared to controls. Baseline LA PALS
was significantly lower (15.1±5.1 vs. 21.6±6.2 %, p=0.006),

Fig. 1 Determination of LA
effective refractory period (ERP)
during atrial pacing (a) and during
simultaneous AV pacing (b). LAA
LA appendage, LAP left atrial
pressure, RV right ventricle.
Coupling intervals (CI) of
extrastimuli are shown in
milliseconds. ERP is defined as
the longest CI without atrial
capture

Fig. 2 Measurement of peak atrial longitudinal strain (PALS) immediately after simultaneous AV pacing. The dashed curve represents the average PALS
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while baseline SI was higher (0.69±0.75 vs. 0.28±0.22,
p=0.015), pointing to diminished LA reservoir function in
patients with AF. At the same time, LA ERP was longer at
baseline in AF patients, compared to controls (242.3±33.4 vs.
211.7±15.6 ms, p=0.017).

3.2 Left atrial pressure elevation

During simultaneous AV pacing, mLAP rose by the same ex-
tent in controls and AF patients (mean change 12.6±7.4 vs.
12.6±7.5 mmHg, p=0.980). At the same time, LA PALS

decreased (from 15.1±5.1 to 11.6±3.3 %, p=0.008) and SI
increased (from 0.69±0.75 to 1.29±1.17, p<0.001) in patients
with AF, while they remained unchanged in controls (from
21.6±6.2 to 22.9±7.1 %, p=0.405 and from 0.28±0.22 to
0.45±0.43, p=0.10, respectively). With pressure elevation,
LA ERP decreased in AF patients (from 242.3±33.4 to 215.9
±26.3 ms, p=0.003) but was not changed significantly in con-
trols (from 211.9±16.7 to 206.3±19.6 ms, p=0.276) (Fig. 3).

3.3 Follow-up

Four of 16 AF patients (25 %) experienced arrhythmia recur-
rence after pulmonary vein isolation, during 16±7 months of
follow-up. Patients with recurrence had lower baseline LA
reservoir function (PALS = 10.7±3.2 vs. 16.7±4.0 %,
p=0.036), compared to those without.

4 Discussion

4.1 Main findings

We could not show the operation of mechanoelectric feedback
or a change in the reservoir function of the normal LA during
acute pressure elevation. We have seen, on the other hand, a
dramatic fall in ERP and reservoir function in response to

Table 1 Baseline clinical and echocardiographic parameters

Controls AF patients p value

Age (year) 42.2±21.1 60.3±8.8 0.019

Female (%) 22 31 0.629

BSA (m2) 1.91±0.22 1.98±0.22 0.381

Hypertension (%) 27 56 0.137

Diabetes (%) 0 0

CHADS2 score 0.22±0.44 0.75±0.68 0.084

LVEF (%) 64.7±6.8 59.8±3.7 0.189

Ea (cm/s) 12.0±2.6 10.4±3.3 0.331

LAVI (ml/m2) 32.4±11.4 59.4±12.1 <0.001

BSA body surface area, LVEF left ventricular ejection fraction, Ea mitral
annulus early diastolic velocity, LAVI LA volume indexed to BSA

Fig. 3 Changes in mean LA pressure (LAP), LA strain (PALS), stiffness index (SI), and refractory period (ERP) in response to simultaneous AV pacing
in controls and AF patients. Stars mark significant (p<0.05) changes

116 J Interv Card Electrophysiol (2015) 44:113–118



pressure rise in patients with AF. We conclude that the normal
adaptation to acute elevations in LA pressure is lost in patients
with AF, even during sustained sinus rhythm.

Even when in sinus rhythm, patients with paroxysmal AF
show diminished LA reservoir function estimated by LA
strain [28, 29]. We have shown in this study that LA strain
is also dependent on LA pressure in patients with AF, and an
acute rise in pressure leads to a decline in LA reservoir func-
tion and increased stiffness, a response not observed in the
normal LA.

In patients with paroxysmal AF, but without a recent epi-
sode, LA ERPmeasured at the LA appendage has been shown
by some [30, 31], but not by other reports [32] to be longer
than in controls, while it was consistently shorter in patients
with persistent AF. The reason for this inconsistency might be
the dependence of atrial refractoriness on pressure, a phenom-
enon known as mechanoelectric feedback [4].

Mechanoelectric feedback is well described in the ventri-
cles, has been shown at the atrial level and in the human right
atrium, but has not been studied in the human LA, the major
source of AF [5–8, 33]. Acute atrial stretch increases vulner-
ability to AF in both animal models and humans [1, 34]; the
mechanism most commonly considered behind this is a short-
ening of refractoriness and slowing of impulse conduction
[2, 4, 6, 35], both promoting the development of reentry. We
have shown in this study that pressure-related shortening of
refractoriness—mechanoelectric feedback—is magnified in
the LA of patients with AF, which likely facilitates the persis-
tence of the arrhythmia.

Paroxysmal AF itself leads to atrial pressure elevation [36].
According to our study, increased atrial pressure can result in
increased stiffness and wall tension with shortened atrial re-
fractoriness favoring AF maintenance. This way, a vicious
circle is established, which may culminate in persistent AF.

4.2 Limitations

Due to inherent differences between the patient populations
and procedures, the control and AF groups could not be well
matched in all baseline characteristics. Therefore, the main
outcome of this study was not the absolute value of electrical
and mechanical parameters but rather the difference in the
magnitude of pressure-related change between the two
groups. Subjects in the control group were slightly younger,
related to differences in the typical age of presentation of the
two arrhythmias. Therefore, it cannot be excluded that some
of the baseline differences between groups are also age-relat-
ed. However, our paroxysmal AF population was otherwise
relatively healthy and comparable in other clinical parameters
to the control group, except for AF-related LA remodeling.
The pacing protocol was carried out after ablation, during the
waiting period for ethical reasons, to avoid prolonging left
atrial access. It cannot be excluded that more extensive

ablation in the AF group influenced the results. However,
ablation in these patients was limited to the posterior LA,
around the pulmonary veins (PVs), which is a region that is
relatively immobile due to tethering by PVs, and this part of
the LA is not included in echocardiographic strain analysis.

5 Conclusions

The normal LA can adapt to episodes of acute pressure eleva-
tion without a substantial change in reservoir function and
ERP. On the other hand, patients with AF show an exaggerat-
ed fall in their already diminished LA reservoir function in
response to pressure rise, with an out of proportion increase
in wall tension leading to a decline in LA ERP, which likely
further promotes the development of AF.
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