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Abstract. We focus on the problem of data mining over large-scale fully
distributed databases, where each node stores only one data record. We
assume that a data record is never allowed to leave the node it is stored
at. Possible motivations for this assumption include privacy or a lack of a
centralized infrastructure. To tackle this problem, earlier we proposed the
generic gossip learning framework (GoLF), but so far we have studied
only basic linear algorithms. In this paper we implement the well-known
boosting technique in GoLF. Boosting techniques have attracted grow-
ing attention in machine learning due to their outstanding performance
in many practical applications. Here, we present an implementation of a
boosting algorithm that is based on FilterBoost. Our main algorith-
mic contribution is a derivation of a pure online multi-class version of
FilterBoost, so that it can be employed in GoLF. We also propose
improvements to GoLF, with the aim of maximizing the diversity of
the evolving models gossiped in the network, a feature that we show to
be important. We evaluate the robustness and the convergence speed of
the algorithm empirically over three benchmark databases. We compare
the algorithm with the sequential AdaBoost algorithm and we test its
performance in a failure scenario involving message drop and delay, and
node churn.
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1 Introduction

Making data analysis possible in fully distributed systems via data mining tools
has been an important research direction in the past decade. Tasks such as in-
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formation retrieval, recommendations, detecting spam, vandalism and intrusion
require sophisticated models that are based on large amounts of data. This data
is often generated in a fully distributed fashion on routers, PCs, smart phones
or sensor nodes. In many cases local data cannot be collected centrally due to
privacy constrains or due to the lack of computing infrastructure.

In this paper we are concerned with the scenario in which there is a very
large number of nodes, all of which store small amounts of data, such as personal
profiles or recent sensor readings. In our previous work, we have proposed the
gossip learning framework (GoLF) for data mining in such environments [19,20].
The basic idea is that models perform random walks in the network, while being
improved by an arbitrary online learning method. Convergence can be improved
significantly if nodes combine the models that pass through them, or if they use
other techniques such as voting. In this framework we have so far only studied
learning linear models.

In this paper we develop a boosting algorithm, which proves the viability
of gossip learning also for implementing state-of-the-art machine learning algo-
rithms. In a nutshell, a boosting algorithm constructs a classifier in an incremen-
tal fashion by adding simple classifiers (that is, weak classifiers) to a pool. The
weighted vote of the classifiers in the pool determines the final classification.

Our contributions are the following. First, to enable P2P boosting via gossip,
we derive a purely online multi-class boosting algorithm that can be proven to
minimize a certain negative log likelihood function. We also introduce efficient
multi-class weak learners to be used by the online boosting algorithm. Second,
we improve GoLF to make sure that the diversity of the models in the network
is preserved. This makes it meaningful to spread the current best model in the
network; a technique we propose to improve local prediction performance. Fi-
nally, we perform simulation experiments where we study our algorithm under
extreme message drop, message delay and node churn to prove its robustness.

2 System Model and Data Distribution

Our system model is a network of computers (peers). Each node in the network
has a unique network address and can communicate with other nodes through
messages if the address of the target node is locally available. We also assume that
a peer sampling service is available that provides addresses of random available
peers at any time. Here we use Newscast [26] as our peer sampling service.
Messages can be delayed or dropped, moreover, new nodes can join and leave
the network without any warning. We assume that when a node rejoins the
network it has the same state as at the time of going offline.

Regarding data distribution, we assume that the data records are distributed
horizontally, that is, all the nodes store full records. At the same time, all the
nodes store only very few records, perhaps only a single record. This excludes
the possibility of any local statistical processing of the data. Another important
assumption is that the data never leave the nodes, that is, it is not allowed to
collect the data centrally due to privacy or infrastructural constraints.



3 Background and Related Work

The problem we tackle in this paper is supervised classification that can be
formally defined as follows. We are given a training database in the form of
a set of training instances. Each training instance consists of a feature vec-
tor and a corresponding class label. Let us denote this training dataset by
S = {(x1,y1), . . . , (xn,yn)} ⊂ R

d × {−1,+1}K, where d is the dimension of
the problem and K defines the number of classes. The goal of the classification
problem is to find a function f : Rd → {−1,+1}K that can correctly classify any
samples, including those not in the training set, with high probability (gener-
alization). In multi-class classification problems—where K > 2—one and only
one of the elements of yi is +1, whereas in multi-label (or multi-task) classi-
fication yi is arbitrary, meaning that the observation xi can belong to several
classes at the same time. In the former case we will denote the index of the cor-
rect class by ℓ(xi). In classical multi-class classification the elements of f(x) are
treated as posterior scores corresponding to the labels, so the predicted label is
ℓ̂(x) = argmaxℓ=1,...,K fℓ(x) where fℓ(x) is the ℓth element of f(x). The function
f is called the model of the data.

As mentioned before, in this paper we focus on online boosting in GoLF.
A few proposals for online boosting algorithms are known. An online version
of AdaBoost [11] is introduced in [8] that requires a random subset from the
training data for each boosting iteration, and the base learner is trained on
this small sample of the data. The algorithm has to sample the data according
to a non-uniform distribution making it inappropriate for pure online training.
A gradient–based online algorithm is presented in [3], which is an extension
of Friedman’s gradient–based framework [12]. However, their approach is for
binary classification, and it is not obvious how it can be extended to multi-class
problems. Another notable online approach is Oza’s online algorithm [21] whose
starting point is AdaBoost.M1 [10]. However, AdaBoost.M1 requires the
base learning algorithm to achieve 50% accuracy for any distribution over the
training instances. This makes it impractical in multi-class classification since
most of the weak learners used as a base learner do not satisfy this condition.

We also discuss work related to fully distributed P2P data mining in general.
We note that we do not overview the extensive literature of parallel machine
learning algorithms because they have a completely different underlying system
model and motivation. We do not discuss those distributed machine learning
approaches either that assume the availability of sufficient local data to build
models locally (a survey can be found in [22]).

One notable and relevant research direction is gossip–based algorithms where
convergence to global functions over fully distributed data is achieved through lo-
cal communication. Perhaps the simplest example is gossip–based averaging [14,16],
where the gossip approach is extremely robust, scalable, and efficient. However,
gossip algorithms support more sophisticated algorithms that compute more
complex global functions. Examples include the EM algorithm [17], LDA [2] or
PageRank [13]. Numerous other P2P machine learning algorithms have also been
proposed, as in [18,25]. A survey of many additional ideas can be found in [7].



Algorithm 1 Skeleton of original GoLF learning protocol
1: currentModel← initModel()
2: loop

3: wait(∆)
4: p← selectPeer()
5: sendModel(p, currentModel)

6: procedure onReceiveModel(m)
7: m.updateModel(x, y)
8: currentModel ← m

This work builds on the Gossip Learning Framework (GoLF) [19,20], which
offers an abstraction to implement a wide range of machine learning algorithms.

The skeleton of GoLF is shown in Alg. 1. This algorithm runs on each node.
The algorithm consists of an active loop that runs periodically and an event
handler (onReceiveModel) which is called when a new model arrives. The
models take random walks over the network by selecting a random node (line
4) and jumping there (line 5). Procedure onReceivedModel updates the re-
ceived model using the training sample stored by the node (line 7, where x and y

represent a training example and the corresponding class label, respectively). It
then stores the model as the current model (line 8). In this skeleton the model is
an abstract class which provides the update possibility. We note that models can
also be combined [20] or they can interact through ensemble learning techniques
(like voting) [19], which results in a substantial performance improvement. Re-
garding model interaction, additional details will be given later in relation to the
boosting algorithm.

4 Multi-Class Online FilterBoost

This section introduces our main contribution, a multi-class online boosting al-
gorithm that can be applied in GoLF. We build on FilterBoost [5] where the
main idea is to filter (sample) the training examples in each boosting iteration
and to give the base learner only this smaller, filtered subset of the original train-
ing dataset, leading to fast base learning. The performance of the base classifier
is also estimated on an additional random subset of the training set resulting in
further improvement in speed.

Our formulation of the FilterBoost algorithm is given as Alg. 2. This is not
yet in a form to be applied in GoLF, but the transformation is trivial as discussed
in Section 6. This fully online formulation is equivalent to FilterBoost, except
that it handles multi-class problems as well. To achieve this, while ensuring that
the algorithm can still be theoretically proven to converge, our key contribution
is the derivation of a new weight formula calculated in line 19. First we introduce
this formula, then we explain Alg. 2 in more detail.

A boosting algorithm can be thought of as a minimization algorithm of an
appropriately defined target function over the space of models. The target func-
tion is related to the classification error over the training dataset. The key idea
is that we select an appropriate target function that will allow us to both derive
an appropriate weight, as well as argue for convergence. Inspired by the logis-
tic regression approach of [6], we will use the following negative log likelihood
function as our target function:



Algorithm 2 FilterBoost(Init(),Update(·, ·, ·, ·), T, C)

1: f (0)(x)← 0
2: for t← 1→ T do

3: Ct ← C log(t + 1)

4: h(t)(·)← Init
()

5: for t′ ← 1→ Ct do ⊲ Online base learning

6:
(

x,y,w
)

← Filter
(

f (t−1)(·)
)

⊲ Draw a weighted random instance

7: h(t)(·)← UPDATE
(

x,y,w,h(t)(·)
)

8: γ ← 0,W ← 0
9: for t′ ← 1→ Ct do ⊲ Estimate the edge on a filtered data

10:
(

x,y,w
)

← Filter
(

f (t−1)(·)
)

⊲ Draw a weighted random instance

11: γ ← γ +
∑K

ℓ wℓh
(t)
ℓ

(x)yℓ, W ← W +
∑K

ℓ wℓ

12: γ ← γ/W ⊲ Normalize the edge

13: α(t) ← 1
2 log 1+γ

1−γ

14: f (t)(·) = f (t−1)(·) + α(t)h(t)(·)

15: return f (T )(·) =
∑T

t=1 α(t)h(t)(·)

16: procedure Filter(f(·))
17: (x,y)← RandomInstance() ⊲ Draw random instance
18: for ℓ← 1→ K do

19: wℓ ←
exp

(

fℓ(x)−fℓ(x)(x)
)

∑K
ℓ′=1

exp
(

f
ℓ′

(x)−fℓ(x)(x)
)

20: return (x,y,w)

RL

(
f
)
= −

n∑

i=1

ln
exp

(
fℓ(xi)(xi)

)

K∑

ℓ′=1

exp
(
fℓ′(xi)

)
=

n∑

i=1

ln


1 +

K∑

ℓ 6=ℓ(xi)

exp
(
fℓ(xi)− fℓ(xi)(xi)

)



(1)
Note that the FilterBoost algorithm returns a vector-valued classifier f : Rd →
R

K . The rest of the definitions and notations were introduced in Section 3.
FilterBoost builds the final classifier f as a weighted sum of base classifiers

h(t) : Rd → {−1,+1}K returned by a base learner algorithm which has to be
able to handle weighted training data. The class-related weight vector assigned

to xi in iteration t is denoted by w
(t)
i and its ℓth element is denoted by w

(t)
i,ℓ . It

can be shown that selecting w
(t)
i,ℓ so that it is proportional to the output of the

current strong classifier

w
(t)
i,ℓ =

exp
(
f
(t)
ℓ (xi)− f

(t)
ℓ(xi)

(xi)
)

∑K
ℓ′=1 exp

(
f
(t)
ℓ′ (xi)− f

(t)
ℓ(xi)

(xi)
) . (2)

ensures that our target function in (1) will decrease in each boosting iteration.
The proof is outlined in the Appendix.

The pseudocode of FilterBoost is shown in Alg. 2. Here, the algorithm is
implemented according to the practical suggestions given in [5]: first, the number
of randomly selected instances is C log(t + 1) in the tth iteration (where C is
a constant parameter), and second, in the Filter method the instances are
first randomly selected then re-weighted based on their scores given by f (t)(·).
Procedure Init() initializes the parameters of the base classifier (line 4), and
Update(·, ·, ·, ·) updates (line 7) the parameter of the base classifier using the



current training instance x given by Filter(·). The input parameter T is the
number of iterations, and C controls the number of instances used in one boosting
iteration. α(t) is the base coefficient, h(t)(·) is the vector-valued base classifier,
and f (T )(·) is the final (strong) classifier. Procedure RandomInstance() selects
a random instance from the training data X,Y.

Let us point out that there is no need to store more than one training instance
anywhere during execution. Second, the algorithm does not need any global
information about the training data, such as the size, so this implementation
can be readily applied in a pure online environment.

5 Multi-Class Online Base Learning

For the online version of FilterBoost, we need to propose online base learners
as well. In FilterBoost, for theoretical reasons, the base classifiers are re-
stricted to output discrete predictions in {−1,+1}K and, in addition, they have
to minimize the weighted exponential loss

E
(
h, f (t)

)
=

n∑

i=1

K∑

ℓ=1

w
(t)
i,ℓ exp

(
−hℓ(xi)yi,ℓ

)
. (3)

We follow this approach and, in addition, we build on our base learning frame-
work [15] and assume that the base classifier h(x) is vector-valued and rep-
resented as hΘ(x) = sign(vϕΘ(x)), parameterized by v ∈ R

K (the vote vec-
tor), and ϕΘ(x) : Rd → R, a scalar base classifier parameterized by Θ. The
coordinate-wise sign function is defined as sign : R

K → {−1,+1}K. In this
framework, learning consists of tuning Θ and v to minimize the weighted expo-
nential loss (3).

Since it is hard to optimize the non-differentiable function hΘ even in batch
mode, we take into account only ĥΘ(x) = vϕΘ(x). This approach is heuristic as

it is hard to say anything about the relation between E
(
hΘ, f

(t)
)

and E
(
ĥΘ, f

(t)
)
,

but in practice this base learning approach performs quite well.
Since ϕΘ(·) is differentiable, the stochastic gradient descent (SGD) [4] algo-

rithm provides a convenient way to train the base learner in an online fashion.
The SGD algorithm updates the parameters iteratively based on one training
instance at a time. Let us denote Q(x,y,w,v, Θ) =

∑K
ℓ=1 wℓ exp

(
−yℓvℓϕΘ(x)

)
.

Then the gradient based parameter update can be calculated as follows:

Θ(t′+1) ← Θ(t′) + γ(t′)
▽ΘQ(x,y,w,v, Θ) (4)

v(t′+1) ← v(t′) + γ(t′)
▽vQ(x,y,w,v, Θ) (5)

This update rule can be used in line 7 of FilterBoost to update the base
classifier. A simple decision stump or AdaLine [27] can be easily accommodated
to this multi-class base learning framework. In the following we derive the update
rules for a decision stump, that is, a one-decision two-leaf decision tree having
the form

ϕj,b(x) =

{
1 if x(j) ≥ b,

−1 otherwise,
(6)



where j is the index of the selected feature and b is the decision threshold. Since
ϕj,b(x) is not differentiable with respect to b, we decided to approximate it by the
differentiable sigmoidal function, whose parameters can be tuned using SGD.
The sigmoidal function can be written as

sj,θ(x) = sj,(c,d)(x) =
1

1 + exp
(
− cx(j) − d

) .

where Θ = (c, d). And ϕj,b(·) can be approximated by ϕj,b(x) ≈ 2sj,θ(x) − 1.
Then the weighted exponential loss of this so-called sigmoidal decision stump for
a single instance can be written as

Qj = Qj (x,y,w,v, Θ) =
K∑

ℓ=1

wℓ exp (−vℓ (2sj,θ(x)− 1) yℓ)

and its partial derivatives are

∂Qj

∂vℓ
= − exp (−vℓ (2sj,θ(x) − 1) yℓ)wℓ (2sj,θ(x)− 1) yℓ

∂Qj

∂c
= −2

K∑

ℓ=1

exp (−vℓ (2sj,θ(x)− 1) yℓ)wℓvℓyℓx
(j)sj,θ(x) (1− sj,θ(x))

∂Qj

∂d
= −2

K∑

ℓ=1

exp (−vℓ (2sj,θ(x)− 1) yℓ)wℓvℓyℓsj,θ(x) (1− sj,θ(x))

The initial value of c and d were set to 1 and 0, respectively (line 4 of Alg. 2).
So far, we implicitly assumed that the index of feature j is given. To choose

j, we trained sigmoidal decision stumps in parallel for each feature and we es-
timated the edge of each of them using the sequential training data as γ̂j =∑Ct

t′=1

∑K
ℓ=1 wt′,ℓyt′,ℓsign

(
v
(t′)
ℓ ϕ

j,Θ
(t′)
j

(xt′ )
)
. Finally, we chose the feature with

the highest edge estimate j∗ = argmaxj γ̂j.
In every boosting iteration we also train a constant learner (also known as

y-intercept) and use it if its edge is higher than the edge of the best decision
stump we found. The output of the constant learner does not depend on the
input vector x, that is ϕ(·) ≡ 1, in other words it returns the vote vector v

itself. Thus only v has to be learnt but this can be done easily by calculating
the classwise edge vℓ =

∑Ct

t′=1 wt′,ℓyt′,ℓ.

6 GoLF Boosting

In order to adapt Alg. 2 to GoLF (Alg. 1), we need to define the permanent state
of the FilterBoost model class, and we need to provide an implementation of
the updateModel method. This is rather straightforward: the model instance
has to store the the actual strong learner f (t) as well as the state of the inner
part of the two for loops in Alg. 2 so that updateModel could simulate these
loops every time a new sample is processed.



Algorithm 3 Diversity Preserving GoLF
1: currentModel← initModel()
2: modelQueue.add(currentModel)
3: counter ← 0
4: loop

5: wait(∆)
6: if modelQueue.isEmpty() then

7: if counter = 10 then

8: p← selectPeer()
9: sendModel(p, currentModel)

10: counter ← 0
11: else

12: counter ← counter + 1

13: else

14: for all m ∈ modelQueue do

15: p← selectPeer()
16: sendModel(p,m)
17: modelQueue.remove(m)

18: counter ← 0

19: procedure onReceiveModel(m)
20: m.updateModel(x, y)
21: modelQueue.add(m)
22: currentModel ← m

This way, every model that is performing a random walk is theoretically
guaranteed to converge so long as we assume that peer sampling works per-
fectly. However, there is a catch. Since in each iteration some nodes will receive
more than one model, while others will not receive any, and since the number
of models in the network is kept constant if there is no failure (since in each
iteration all the nodes send exactly one model) it is clear that the diversity of
models will decrease. That is, some models get replicated, while others “die out”.
Introducing failure makes things a lot worse, since we can lose models due to
message loss, delay, and churn as well, which speeds up homogenization. This is a
problem, because diversity is important when we want to apply techniques such
as combination or voting [19,20]. Without diversity these important techniques
are guaranteed not to be effective.

The effects of decreasing diversity are negligible during the timespan of a few
gossip cycles, but a boosting algorithm needs a relatively large number of cycles
to converge (which is not a problem, since the point of boosting is not speed,
but classification quality). So we need to tackle the loss of diversity. We propose
Alg. 3 to deal with this problem.

This protocol works as follows. A node sends models in an active cycle (line 4)
only in two cases: it sends the last received model if there was no incoming model
until 10 active cycles (line 6), otherwise it sends all of the models received since
the last cycle (line 13). If there is no failure, then this protocol is guaranteed to
keep the diversity of models, since all the models in the network will perform
independent random walks. Due to the Poisson distribution of the number of
incoming models in one cycle, the probability of bottlenecks is diminishing, and
for the same reason the probability that a node does not receive messages for 10
cycles is also practically negligible.

If the network experiences message drop failures or churn, then the number
of models circulating in the network will converge to a smaller value due to the
10 cycle waiting time, and the diversity can also decrease, since after 10 cycles
a model gets replicated in line 9. Interestingly, this is actually useful because
if the diversity is low, it makes sense to circulate fewer models and to wait
most of the time, since information is redundant anyway. Besides, with reliable
communication channels that eliminate message drop (but still allow for delay),
diversity can still be maintained.



Table 1. The main properties of the data sets, and the prediction errors of the baseline
algorithms.

CTG PenDigits Segmentation

Training set size 1,701 7494 2100
Test set size 425 3,492 210
Number of features 21 16 19
Class labels 1325/233/143 10 classes (uniform) 7 classes (uniform)

AdaBoost (DS) 0.109347 0.060715 0.069048
FilterBoost (DS, C30) 0.094062 0.071657 0.062381

Finally, note that if there is no failure, Alg. 3 has the same total message
complexity as Alg. 1 except for the extremely rare messages sent in line 4. In
case of failure, the message complexity decreases as a function of failure rate;
however, the remaining random walks do not get slower relative to Alg. 1, so the
convergence rate remains the same on average, at least if no model-combination
techniques are used.

7 Experimental Results

In our experiments we examined the performance of our proposed algorithm as
a function of gossip cycles, which is about the same as the number of training
samples seen by any particular model. To validate the algorithm, we compared it
with three baseline multi-class boosting algorithms, all using the same decision
stump (DS) weak learner. The first one is the multi-class version of the well
known AdaBoost [24] algorithm, the second one is the original FilterBoost [5]
method implemented for a single processor, with the setting C = 30, and the
third one is the online version of FilterBoost (Alg. 2). We used three multi-
class classification benchmark datasets to evaluate our method, namely the CTG,
the PenDigits and the Segmentaion databases. These were taken from the UCI
repository [9] and have different size, number of features, class distributions and
characteristics. The basic properties of the datasets can be found in Table 1.

In the P2P experiments we used the PeerSim [23] simulation environment to
model message delay, drop and peer churn. We used two scenarios: a perfect net-
work without any delay, drop or churn; and a scenario with heavy failure where
the message delay was drawn uniformly at random from the interval [∆; 10∆],
a message was dropped with a probability of 0.5 and the online/offline session
lengths of peers were modeled using a real P2P bittorrent trace [1]. As our per-
formance metric, we applied the well known 0-1 error (or error rate), which is
the proportion of test instances that were incorrectly classified.

Figure 1 illustrates the effect of parameter C. Larger values result in slower
convergence but better eventual performance. The setting C = 30 represents a
good tradeoff in these datasets, so from now on we fix this value.

We compared our online boosting algorithm to baseline algorithms as can be
seen in Figure 2 (left hand side). The figure shows that the algorithms converge
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Fig. 1. The effect of parameter C in online FilterBoost (Alg. 2).
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Fig. 2. Comparison of boosting algorithms (left column) and P2P simulations (right
column). FB and AF stand for FilterBoost and the “all failures” scenario, respectively.

to a similar error rate, which was expected. Moreover, our online FilterBoost

converges faster than the AdaBoost algorithm and it has almost the same con-
vergence rate as that for the sequential FilterBoost method. Note that since two
of these algorithms are not online, we had to approximate the number of (not
necessarily different) training samples used in one boosting iteration. We used a
lower bound to be conservative.

In our P2P evaluations of GoLF Boosting we used the mean error rate of
100 randomly selected nodes in the network to approximate the performance of
the algorithm. Figure 2 (right hand side) shows that without failure the perfor-
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Fig. 3. The improvement due to estimating the best model based on training perfor-
mance. The Segmentation dataset is shown.

mance is very similar to that of our online FilterBoost algorithm. Moreover,
in the extreme failure scenario, the algorithm still converges to the same error
rate, although with a delay. This delay can be accounted for using a heuristic
argument: since message delay in itself represents a slowdown of a factor of 5 on
average, message drop and churn contributes approximately another factor of 2.

Finally, we demonstrate a novel way of exploiting model diversity (see Sec-
tion 6): through gossip-based minimization one can spread the model with the
best training performance, thus the best model can be made available to all
nodes at all times. Figure 3 demonstrates this technique for different algorithms.
We include results over the segmentation database only, the other two datasets
produce similar results.

The top left plot shows results with GoLF Boosting. It can be seen that
the best model based on training performance is not necessarily the best over
the test set, but it is reasonably good, and results in a speedup of about a factor
of 2. The top right plot belongs to the original GoLF implementation (Alg. 1).
Due to the complete lack of diversity, the best model’s performance is almost
identical to the average one. The bottom left plot is a baseline experiment that
represents the case with the maximal possible diversity, based on 100 completely
independent runs of the online FilterBoost algorithm. Finally, the bottom
right plot collects the most interesting curves from the other three plots allowing
a better comparison.



8 Conclusions

We demonstrated that the GoLF is suitable for the implementation of multi-
class boosting. The significance of this result is that boosting is a state-of-the-art
machine learning technique from the point of view of the quality of the learned
models, which is now available in the P2P system model with fully distributed
data. To achieve this, we proposed a modification of FilterBoost that allows it
to learn multi-class models in a purely online fashion, and we proved theoretically
that the resulting algorithm optimizes a suitably defined negative log likelihood
measure. Our experimental results demonstrate the robustness of the method.
We also identified the lack of model diversity as a potential problem with GoLF.
We provided a solution that was demonstrated to be effective in preserving the
difference between the best model and the average models; this allowed us to
propose spreading the best model as a way to benefit from the large number of
models in the network.
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Appendix

The second order expansion of multi-class negative log likelihood for fixed α and
h(x) = 0 can be written as

RL
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)
. Let us note that the last term does not

depend on h(·), consequently minimizing this approximation of RL

(
f (t) + αh

)

with respect to h(x) is equivalent to maximizing the weighted accuracy and the
weight of the ℓth label is
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