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Abstract: Aging affects endogenous stem cells in terms of functionality and numbers. In particular, during aging, the 

stemness property can decrease because of enhanced apoptotic cell death and senescence. In addition, aging and aging-

related co-morbidities affect the paracrine activity of stem cells and the efficiency of their transplantation. Collectively, 

this leads to a reduction of the capacity of organs to repair themselves, possibly due to a reduced functional capability of 

stem cells. Therefore, major efforts have been invested to improve the repair capability of stem cells in aged individuals 

by overexpressing antisenescence and antiapoptotic genes. In this review, we describe critical genes and signaling path-

ways in stem cell aging and discuss ex vivo genetic modification approaches aimed at stem cell rejuvenation that are of in-

terest for the cardiovascular system.  
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POTENTIAL OF STEM CELLS IN THE TREATMENT 

OF AGE-RELATED CARDIOVASCULAR DISEASES 

Diseases of aging, such as metabolic syndrome, diabe-
tes, hyperlipidemia, atherosclerosis, neurodegenerative 
diseases, osteoporosis and cancer, represent a major prob-
lem for all societies. Despite contemporary medical treat-
ments, heart failure continues to be an important cause of 
morbidity and mortality amongst the elderly of developed 
countries [1]. In addition, the incidence of cardiovascular 
disease (CVD) is rapidly increasing in developing coun-
tries. Both type 1 and type 2 diabetes are associated with 
aging and increased risk of micro- and macrovascular dis-
ease, which can lead to ischemic heart disease, heart failure 
and critical limb ischemia. Hyperglycemia leads to and 
aggravates the reduction of blood flow in cardiovascular 
tissues. This is believed to occur in a cascade in which 
ischemia induces oxidative stress, which initiates fibrosis, 
thereby increasing the thickness of microvasculature walls 
[2]. Other consequences of oxidative stress associated with 
hyperglycemia include: alteration of energy metabolism,  
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organ dysfunction, limited exercise tolerance, and greatly 
increased vulnerability to a super-imposed ischemic stressor 
(i.e., following atherosclerotic occlusion of a main artery).  

Valid therapeutic strategies that repair damaged heart 
muscle and ischemic tissue have not yet been developed. 
Heart transplantation and mechanical support devices remain 
the only effective remedy for severe cardiac dysfunction. 
However, because of the existence of major limitations in-
cluding the limited number of donor organs, immune rejec-
tion and infections, research interest has increased towards 
alternative treatments. 

Additionally, critical limb ischemia represents an impor-
tant cause of diabetes-associated cardiovascular complica-
tions [3], and still represents the most common cause of am-
putation in diabetic patients. Transplantation of stem cells, 
progenitor cells, or stem-cell derived engineered tissues 
could be an alternative treatment for tissue repair [4-6]. For 
the application of progenitor cells, different cell sources have 
been suggested, including pluripotent and adult cell popula-
tions. Unlike adult stem cells, concerns remain in regard to 
the harvesting of human embryonic stem cells, because of 
ethical concern, allogenicity, neoplasm and teratomas forma-
tion [7]. Muscle, bone marrow, blood, epidermis, brain, liver 
and adipose tissue are the major sources for adult stem cells 
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[8, 9]. In addition, skin has been utilized to generate induced 
pluripotent stem cells [10]. Besides the transplantation of 
exogenous stem/progenitor cells, it might be possible to en-
hance the endogenous regenerative capacity of the heart. 
Recent data has suggested that the adult heart retains some 
capacity for self-healing and self-renewal due to the presence 
of resident cardiac stem (CSCs) and progenitor cells (CPCs) 
[11-14]. These observations suggest the opportunity to takea 
multilateral approach for cardiac regeneration, consisting of 
boosting the endogenous regenerative capability of the heart 
in addition to stem cell transplantation. Despite these re-
markable advances, however, mortality and morbidity of 
patients with heart failure, remains high.  

Several other potential cardiac progenitor cell types have 
been reported in recent years, such as c-kit(+) cells. How-
ever, the potential of c-kit(+) cells has become controversial 
[15, 16]. Recent lineage tracing experiment suggest that en-
dogenous c-kit(+) cells contribute only minimally to the 
formation of new cardiac myocytes [17]. There are also data 
that epicardium-derived progenitor cells are capable of re-
generating the adult heart when stimulated [18]. Although 
these different progenitor cell types appear to be distinct 
from each other in situ [19], cell culture expanded adult car-
diac-derived cardiac progenitor cell populations exhibit a 
high degree of transcriptome similarity [20]. This suggests 
that more effort needs to be invested on optimizing the re-
generative potential of these cells and less on the different 
isolation methods of these cells. 

The use of adult stem cells is limited by the high degree 
of morbidity due to the isolation procedure itself. An exam-
ple of this is represented by the isolation of bone marrow-
derived stem cells, which requires general or spinal anesthe-
sia associated with limited cell yield and further steps for in 
vitro cell expansion, which in turn introduce a risk of bacte-
rial contamination [21, 22]. Some aspects of these problems 
have been solved by the use of more easily available stem 
cell types such as adipose tissue-derived stem cells [23], or 
by somatic reprogramming of fibroblasts into pluripotent 
stem cells [10]. These types of sources can be considered as 
the ideal stem cell source, since they allow easy stem cell 
isolation, higher cell yield and lower patient morbidity. 
However, the following limitations of current approaches 
have still to be solved: 1) inadequate recruitment of circulat-
ing or resident cardiac stem cells; 2) poor capability of adult 
stem cells to differentiate into cardiomyocytes; 3) elevated 
mortality of transplanted stem cells; 4) abnormal electro-
mechanical behavior of transplanted cells after stimulation 
and the eventual onset of arrhythmias; 5) improper structure 
of newly formed heart tissue; and 6) diminished functionality 
and number of both resident and circulating stem/progenitor 
cells or even induced pluripotent stem cells [24, 25] with the 
onset of aging and age-related CVD [26-28].  

Stem cell aging is of particular importance in patients 
with CVD. Even though CVD can affect people of all ages, 
the risk of CVD increases significantly with age [29]. Over 
the last decade, it has become clear that vascular wall integ-
rity is maintained by circulating cells, named vascular 
stem/progenitor cells dedicated to endothelial repair and an-
giogenesis (reviewed in [30]). However, patients with severe 
obstructive vascular disease, usually caused by atheroscle-
rotic plaque narrowing of arteries, are often aged and have 

tissue-resident and circulating vascular stem/progenitor cells 
with diminished functionality [31, 32]. These functional 
deficits may determine poor angiogenic activity in response 
to hypoxia or ischemia, associated with lower collateral ves-
sel formation and impaired microcirculation [33]. Thus, the 
regenerative properties of cardiac stem cells might also dete-
riorate with age resulting in a decreased repair capacity upon 
injury. Furthermore, in aged tissues, myogenic or angiogenic 
stem cells may transform into fibroblasts, which contribute 
to enhanced fibrosis [34, 35]. These combined deficits asso-
ciated with aging are likely to be the major cause of de-
creased muscle and weakened vessel regeneration after in-
jury as well as facilitation of atherosclerosis and its sequelae 
in older individuals [26].  

In recent years, evidence has accumulated that it might be 
possible to reverse stem cell aging at the organism level [36, 
37]. Thus, replenishing the function of stem cells either by 
rejuvenating aged cells or by transplanting young 
stem/progenitor cells from young donors has been consid-
ered an appropriate therapy for age-related diseases. In this 
review, we describe critical genes and signaling pathways in 
stem cell aging that are of interest for the cardiovascular sys-
tem, and discuss ex vivo genetic modification approaches 
aimed at stem cell rejuvenation. 

LIMITATIONS OF STEM CELLS IN THE TREAT-

MENT OF AGE-RELATED CARDIOVASCULAR 

DISEASE  

Aging determines the reduction in the capacity for or-
gans, including the heart, to undergo self-repair [31, 38, 39]. 
Aged organs become compromised after ischemic injury, 
partially due to the reduced functional capabilities of stem 
cells [31]. Major obstacles for stem cell therapy in aged peo-
ple are the decreased functionality of autologous stem cells 
and difficulties in the engraftment and survival of trans-
planted stem cells in the pathological microenvironment of 
the host tissue. A plausible reason for this unfavorable mi-
croenvironment is the ischemic host tissue with acidic pH, 
scar formation, as well as a vascularisation [40]. Moreover, 
stem cells may be more susceptible to ischemia/reperfusion 
injury than more developed cells; e.g. cells of the embryonic 
stem cell-derived cardiac myocyte lineage have been shown 
to be more sensitive to ischemia/reperfusion-induced injury 
than neonatal cardiac myocytes [41, 42]. In addition, aging 
determines the reduction in number, function and paracrine 
activity of both resident and circulating stem/progenitor 
cells, as well as the reduction of stem cell resistance to se-
nescence and apoptosis [43]. Furthermore, aging and aging-
related cardiovascular risk factors such as diabetes [44] and 
hyperlipidemia negatively influence endogenous cardiopro-
tective pathways [45, 46] and somatic reprogramming [47, 
48]. Collectively, this results in the problem that 
transplantation of autologous stem cells into adult patients, 
as well as the transplantation of non-autologous stem cells 
from young donors into old recipients, is often affected by 
age-related disease. Moreover, aged or diseased people 
might not be good donors as aging and/or disease may lead 
to a poor quality of the stem cell preparation, and may impair 
the source for stem cells [48]. In this context, the reintegra-
tion of stem cell function and paracrine activity by stem cell 
rejuvenation or transplantation of functional competent 



Stem Cell Aging and Rejuvenation Current Drug Targets, 2015, Vol. 16, No. 1    3 

stem/progenitor cells, or by injecting factors that are usually 
secreted by the cells, can represent possible strategies to treat 
age-related CVD.  

CRITICAL GENES AND SIGNALING PATHWAYS IN 
STEM CELL AGING AND REJUVENATION 

Parabiotic pairings between mice at different ages via 
shared circulatory system, which expose old mice to factors 
present in young serum, indicated in 2005 that aging of 
skeletal muscle stem cells can be reversed [36, 37, 49]. In 
recent years, it has been suggested that aging can also be 
reversed in cardiovascular stem cells. For example, Pim-1 
kinase has been identified as an anti-senescence factor in 
cardiac stem cells. Pim-1 enhances proliferation [50], meta-
bolic activity [51] and differentiation [52, 53] of CSCs and 
mesenchymal stem cells (MSCs) in neovessels and new car-
diac myocytes. Pim-1 also serves as a pro-survival mediator 
by preserving mitochondrial integrity [54] and antagonizing 
intrinsic apoptotic cascades [55]. Moreover, Pim-1 preserves 
telomere length and telomerase activity of CSCs [56]. Fi-
nally, Mohsin and colleagues have shown that genetic modi-
fication of aged human CPCs with Pim-1 kinase results in 
remarkable rejuvenation of the CPCs associated with en-
hanced proliferation, increased telomere lengths, and de-
creased susceptibility to replicative senescence [51] (Fig. 1). 

Several signaling pathways have been identified that re-

vert the process of cardiac senescence. For example, the ac-
tivation of Notch has been shown to restore the myogenic 

differentiation capacity of satellite cells, bringing it to a level 

similar to that of young cells from 20 year old humans [57]. 
Notch also plays important roles in cardiac differentiation 

and regeneration. In mice it has been shown that Notch is 

required for cardiac development and promotes the expan-
sion of cardiac precursor cells [58-60]. Moreover, in zebraf-

ish it has been demonstrated that Notch signaling is required 

for cardiac regeneration [61] (Fig. 1). Another pathway in-

volved in stem cell aging is the telomere-telomerase axis. In 

1998 it was suggested that the life-span of human cells can 
be extended by telomerase activation [62]. Since then great 

effort has been invested to translate this finding to cardiac 

cells [63, 64]. Telomerase has been demonstrated to maintain 
telomere length, to contribute to cell survival and prolifera-

tion, and to prevent cellular senescence [65, 66] (Fig. 1). A 

subpopulation of adipose tissue–derived mesenchymal stro-
mal cell MSCs (AT-MSCs) was recently identified that ex-

presses high levels of myocardin (MYOCD) and the catalytic 

subunit of telomerase (i.e., telomerase reverse transcriptase 
or TERT) with antisenescence properties [67, 68]. MYOCD 

is a key regulator of cardiovascular myogenic development 

[67, 69-71] and nuclear co-transcription factor for myogenic 
genes, as well as genes involved in muscle regeneration and 

protection against apoptosis [69, 72, 73]. AT-MSCs have 

been shown to contain a population of adult multipotent 
mesenchymal stem cells with high cardiovascular regenera-

tive potential [67, 74-77]. AT-MSCs that co- express TERT 

and MYOCD are characterized by high endogenous levels of 
octamer-binding transcription factor 4(Oct-4), MYOCD, 

myocyte-specific enhancer factor 2c (Mef2c), and homeobox 

protein Nkx2.5 [67, 68, 78], as well as decreased cell death 
both in the form of spontaneous cell death and Fas-induced 

apoptosis [48]. Therefore TERT and MYOCD may act to-

gether to protect AT-MSCs from apoptosis and to enhance 
their cardiovascular myogenic development [48, 68, 78]. 

EX VIVO GENE MODIFICATION APPROACH FOR 

STEM CELL REJUVENATION 

Ex vivo cell-based gene delivery represents the most-used 
strategy to augment regeneration of old and diseased cardio-
vascular tissues. It consists of removing the cells of interest 
from the donor, infecting them with a viral vector encoding 

 

Fig. (1). Candidate genes and cell functions involved in anti-senescence and cell survival. Abbreviations: TERT, telomerase reverse 

transcriptase; MYOCD, myocardin; Pim-1, pro-viral integration site 1; Hippo, protein kinase Hpo; YAP, Yes-associated protein 
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Table 1. Pre-clinical studies of stem cell rejuvenation. 

Cell Signaling Rejuvenation Method In vivo/In vitro Model Effect Ref. 

Pim-1 kinase Lentiviral Pim-1 overexpression Human CSCs 
Anti-sentences, anti-apoptosis, pro-

liferation, differentiation 
[51,53,54] 

Notch Notch hyperactivation 

Cardiac ampulation in double Tg 

(hsp70:Gal4); Tg(UAS:NICD) Ze-

brafish 

Cardiac development, differentiation [58-62] 

TERT Lentiviral-mediated TERT expression Murine CSCs Anti-senescence, proliferation [63,64-67] 

MYOCD 
Lentiviral-mediated MYOCD overex-

pression 
Murine CSCs Anti-apoptosis [68-78] 

YAP 
Adeno-associated-mediated YAP 

overexpression 
AMI in adult murine myocardium Cariomyocyte proliferation [97] 

Hippo Hippo down-regulation 
AMI or ampulation in Hippo-

deficient adult mouse heart 
Cariomyocyte proliferation [98] 

VEGF and bFGF 
Porous collagen scaffolds releasing 

cytokines 
Human CSCs Proliferation [99] 

Legend: VEGF, vascular endothelial growth factor; bFGF, basic fibroblast growth factor; TERT, telomerase reverse transcriptase; MYOCD, myocardin; YAP, Yes-associated protein; 
Hippo, protein kinase Hpo; CSCs, cardiac stem cells; MSCs, mesenchymal stem cells; AMI acute myocardial information; Pim-1, pro-viral integration site 1. 

 
for the therapeutic transgene and then injecting them into the 
recipient organ [50, 79]. Although this approach requires 
more cell manipulation with some risk of cell contamination, 
accumulation of mutations during in vitro culture or inser-
tional activation of other genes, it avoid the direct injection 
of viral vectors in vivo [80]. Therefore, transient modulation 
of cell specification and thereby enhancing myogenic differ-
entiation via e.g. microRNAs could be beneficial ap-
proaches. For this, miR-1 and 499 are excellent candidates 
that enhance both differentiations in vitro [81] as in vivo and 
thereby enhance cardiac performance [82]. However, after 
the overexpression of the gene encoding for the rejuvenating 
factor followed by in vitro proliferation and expansion, ge-
netically modified cells may secrete high amount of the re-
generating factor, either transiently or permanently, in the 
site where they have been transplanted [83, 84]. Recently, 
the research group of Madonna examined the interplay in 
MSCs rejuvenation between TERT and MYOCD [48]. They 
determined the role of TERT and MYOCD in the rejuvena-
tion of aged MSCs [48]. It was found that delivery of the 
TERT and MYOCD genes can rejuvenate MSCs from aged 
mice by increasing cell survival, proliferation, and smooth 
muscle myogenic differentiation in vitro

 
[48]. Furthermore, 

the improved efficacy of these rejuvenated cells was demon-
strated in an in vivo hindlimb ischemia model [48]. 

PERSPECTIVE AND OPEN QUESTIONS 

Ex-vivo genetic modification of stem cells may offer an 
effective strategy for rejuvenating aged stem cells and dis-
eased organs. Additionally, lack of cellular retention is an 
ongoing problem [85] that needs attention but might be tack-
led via cardiac tissue engineering and 3D bioprinting [86], as 
highlighted elsewhere [87, 88]. Further studies, particularly 
more bench-to-bedside translational work, are needed to 
clarify the impact of aging and aging-related cardiovascular 
risk factors on stem cell regeneration and help identifying 

the genetic as well as pharmacological tools that can rescue 
aged/sick stem cells as part of personalized medicine. In par-
ticular, future research in this field should aim at achieving 
the following goals:  

(1) add fundamental novel information on the pathophysiol-
ogy of aged stem cells, isolated from aged, atherosclero-
sis-prone or cardiac infarct patients; (2) design new pro-
tocols for stem cell rejuvenation that allow improved 
preparation and clinical application of stem cells har-
vested from aged tissues and their products, and (3) de-
sign new protocols for in vivo application of rejuvenated 
stem cell therapies.  
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