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Uron herbicides polluting the environment represent a serious concern for environmental health and may be regarded as
endocrine-disrupting compounds (EDCs), which influence the regulation of human homeostasis. We aimed to investigate the
effect of EDC urons (phenuron: PU, monuron: MU, and diuron: DU) and chlorobenzenes on the basal release of the
adrenocorticotropic hormone (ACTH), which is a part of the adenohypophysis-adrenocortical axis. Hormone secretion in the
presence of EDC was studied in two cell types: normal adenohypophysis cells (AdH) and cells of prolactinomas (PRLOMA).
PRLOMA was induced in female Wistar rats by subcutaneously injecting them with estrone acetate for 6 months. AdH and
PRLOMA were separated from treated and untreated experimental animals, dissociated enzymatically and mechanically in order
to create monolayer cell cultures, which served as an experimental in vitro model. We investigated the effects of ED agents
separately and in combination on ACTH and prolactin (PRL) release through the hypophyseal-adrenal axis. Hormone
determination was carried out by the luminescent immunoassay and the radioimmunoassay methods. Our results showed that
(1) uron agents separately did not change ACTH and PRL release in AdH culture; (2) ACTH secretion in arginine vasopressin-
(AVP-) activated AdH cells was significantly increased by EDC treatment; (3) ED agents increased the basal hormone release
(ACTH, PRL) in PRLOMA cells; and (4) EDC exposure increased ACTH release in AVP-activated PRLOMA cells. We conclude
that the herbicides PU, MU, and DU carry EDC effects and show human toxicity potential.

1. Introduction

Chemical agents (e.g., halogenated hydrocarbons and uron
herbicides [1–3]) which pollute the environment represent
a serious concern for environmental health [4, 5] and may
be regarded as endocrine-disrupting compounds (EDCs),
which influence the regulation of human homeostasis [6].
They may change the potential [7, 8] and capacity [9, 10]
of the psycho-neuro-endocrine-immune regulation net-
work and may bring about disturbances in the regulatory

process [11, 12] which result in serious homeostatic
alteration even in healthy individuals [13, 14]. Human
adaptation patterns induced by environmental burdens
are obviously modified when the exposition reaches an
individual who suffers from functional and/or structural
disorders (illnesses) [15, 16]. An open dynamic system
which forms a unit with its environment, for example, a
living human organism, can stabilize its equilibrium pro-
cesses as determined by the direct environmental conditions
(attraction range) [17] defined by its genetic and functional
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adaptation potential (algorithmic networks characterizing
the local properties of the living system [18]). In human
homeostasis, hormones are the creative elements of the
neuroendocrine regulation [19, 20]. Human neuroendocrine
regulation can be interpreted as a network of open, dynamic
biological systems [21] in the outlined context. Biological
cycles that can be described with the “AND” function
are those essential for life (e.g., human hypothalamus-
adenohypophysis-adrenal cortex axis functional disorder)
[22]. The “OR” function-related control systems are not
essential at the organizational level of the given individual
(e.g., PRL); life functions can be maintained in their absence.
The disturbance of the healthy (control) processes of the
“OR” cycle will affect the “AND” cycles. Chronic changing
of the “OR” cycle may lead to structural disturbance, for
example, cellular proliferation, which is sustained by contin-
uous feedback information [23].

Herbicides [24] and halogenated hydrocarbons [25] are
widespread substances that have an EDC effect. Phenuron
(PU), monuron (MU), and diuron (DU) compounds may
be viewed as a halogenated homologous series of herbicides
[26]. Chlorobenzenes (ClB) represent a halogenated aro-
matic hydrocarbon group, of which 1,4-dichlorobenzene
(dClB) is known as an international reference compound
due to its ecotoxicological and human toxicity potential
[27]. It is a primary question from the point of view of
medical practice, whether the cellular follow-up of ACTH
regulation is a suitable test system for studying the effect of
the environmental pollutants. Any exposure can be inter-
preted as a stressor in the human neuroendocrinium [28].
The outlined circuit (in mathematical terms: attractor)
maintains processes indispensable in human homeostasis,
since there is no life without adrenocortical hormones. The
regulatory disturbances (e.g., feedback disturbances) may
become causative factors, for example, they may lead to
benign cell proliferation. The most commonly occurring
human adenohypophysis cell proliferation is prolactinoma,
which generates prolactin overproduction. In the develop-
ment of the tumor, a significant pathophysiological role is
attributed to the estrogenic effect [29].

When investigating the neuroendocrine aspects of ED
agents (e.g., uron herbicides and ClB), the experimental
layout is based on preliminary experiments (dose and time
kinetics) [30] and the already proven physical, chemical,
and biological effects of the compounds. Urons are
substituted phenylureas of high chemical stability, which
are used in agriculture as photosynthesis-inhibiting herbi-
cides [31]. Due to their long chemical half-life (a few months
to one year in soil, 2–6 weeks in water), the food chain can be
severely affected [32, 33]. In humans, low to moderate toxic-
ity is associated with spleen and liver involvement, whereas
carcinogenicity [34] has also been demonstrated, and in the
case of diurons, antiandrogenic properties have been
described as well [35, 36]. Chlorobenzenes are also highly
persistent chlorine-substituted aromatic hydrocarbons form-
ing a homologous series [2, 37, 38]. Toxicity studies report
liver and kidney impairment, but their roles as carcinogenic
(breast, liver, and kidney) agents are also known [39, 40].
As EDC effect, the alterations of thyroid hormone synthesis

and androgenic functions have been discovered [41, 42].
The human toxicity potential (HTP) is an internationally
standardized impact category set in LCA (life cycle analysis)
standards, used to express various environmental effects [43],
in which the effects of environmental 1,4-dichlorobenzene on
human health are the benchmark. The determination and
relation of ecotoxicity potential (ETP) to dClB effects are
performed in a similar fashion.

Our aims were to investigate the effect of ED compounds
((PU, MU, and DU) and dClB and 1,2,4-trichlorobenzene
+hexachlorobenzene (chlorobenzene mixture, mClB)) on
the basal release of the ACTH involved in the functioning
of the adenohypophyseal-adrenocortical axis. This work
focused on hormone secretion in the presence of EDC in
two cell types: normal adenohypophysis (AdH) cells and pro-
lactinoma (PRLOMA) cells. In this regard, the question was,
Can EDC modify the feedback mechanism of ACTH release
governed by arginine vasopressin (AVP) and corticosterone
(B) (“AND” cycles)? Observing EDC effects on PRL hormone
secretion was also a goal in this research (“OR” cycle).

2. Materials and Methods

2.1. Experimental Animals. Certified healthy female rats were
used in our experiments (Wistar strains weighing 120–250 g,
4–6 weeks old at the onset of the study) (Charles River,
Isaszeg, Hungary). During the experimental period, animals
were kept in a controlled (55–65% relative humidity, 22±
2°C air temperature), automated diurnal environment (12 h
daytime, 12 h night illumination cycles) in 32× 40× 18 cm
cages (5 animals/cage). The diet required for experimental
animals (CRLT/N, Charles River, Hungary) and drinking
water were available ad libitum. The animals involved in
the study were treated in accordance with Gov. Ordinance
Number 40/2013 (II. 14.) on animal experiments.

2.2. Induced Prolactinoma and In Vitro Experimental
Models. The PRLOMA models were made from Wistar
rats (♀, n = 20) which were subcutaneously injected with
estrone acetate for 6 months (CAS registration number
901-93-9, Sigma, Germany, 150μg/kg/week) [44]. After
the pentobarbital (4.5mg/kg, Nembutal, Abbott, USA)
anesthesia, the animals were decapitated and AdH was
separated; the tissue was enzymatically (trypsin: Sigma,
Germany, 0.2% for 30min; collagenase: Sigma, Germany,
30μg/ml for 40min; dispase: Sigma, Germany, 50μg/ml
for 40min; phosphate-buffered saline (PBS-A) was used
for the solutions, temperature: 37°C) and mechanically
(83μm and 48μm pore size nylon blutex filter) dissoci-
ated. The cell viability was ≥95% (trypan blue staining).
The cells were suspended in the following medium:
Dulbecco’s Modified Essential Medium (DMEM, Sigma,
Germany) + 20% fetal calf serum (FCS, Sigma, Germany) +
1.0 IU/ml penicillin + streptomycin (Sigma, Germany). Then,
they were placed into surface-treated (5% collagen) 24-well
plastic culture vessels (Nunc, Germany) and put in a
thermostat (temperature = 37°C, pCO2: 5%). Cell cultures
were washed every 3 days after adherence until they
became confluent.
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Specific functional standardization for ACTH release was
regulated by 1μg/ml corticosterone (B) and 10−6 M AVP
treatments. The ACTH release cycle (“AND” cycles) was
activated by AVP; this mechanism was inhibited by a
20-minute preincubation with B (Figures 1 and 2).

2.3. Experimental Protocol. Time and dose kinetic assays,
determining the appropriate arrangements, were performed
on standardized AdH and PRLOMA in vitro cultures. In
the present study, AdH and PRLOMA cell cultures were first
treated for 60 minutes with chlorobenzene (dClB= 0.1 ng/ml;
chlorobenzene mix (mClB) = 0.1 ng/ml; hexachlorobenzene
and 1,2,4-trichlorobenzene 1 : 1) and with urons (PU:
10−6M, MU: 10−6M, DU: 10−6M). At the end of the EDC
treatment, samples were obtained from the supernatant
media of the cell cultures for the determination of ACTH
and PRL hormones. When studying the ACTH-mediated
role of EDC agents in the hypophysis/adrenal cortex regula-
tion, the EDC agents were coadministered with (10−6M)
AVP and after the 60-minute treatment period, samples were
taken from the supernatant media of both AdH and
PRLOMA, in the regulation cycle of AVP/B feedback studies
in Figures 1 and 2.

EDCs were added together with B. AVP was adminis-
tered after a 20-minute pretreatment with EDC+B, and at
the end of the treatment period, the supernatant media were
sampled. In order to follow PRL hormone release, AdH and
PRLOMA cell cultures were individually treated with ED
agents for 60 minutes. Next, the supernatant media were used
to measure PRL.

2.4. Hormone Assays. PRL assay was performed by
radioimmunoassay from samples obtained according to the
experimental protocol [44]. Determination of ACTH from
samples was carried out by the luminescent immunoassay
method, using the apparatus of the Endocrinology Unit, First
Dept. of Internal Medicine, Faculty of Medicine, University

of Szeged (Immulite 2000, Siemens Healthcare Diagnostic,
Deerfield, IL, USA and DPC kit/L2KAC-02, Euro DPC Ltd.,
Glyn Rhonwy, United Kingdom). The protein content of
the samples was determined using a modified Lowry method
[45] and Pierce BCA Protein Assay Kit (Thermo Fisher
Scientific Inc., Rockford, USA).

2.5. Statistical Analysis. Measurements (n = 8 – 12 per group
on 24 lots: pooled samples on AdH cell cultures) of ACTH
and PRL hormone release by disease (PRLOMA versus
normal AdH) in various EDC groups (control, dClB, mClB,
PU, MU, and DU) by regulation (basal, +AVP, +B, +B
+AVP, and +AVP+B) were compared using mixed models
on rats [46, 47]. The regulation cycle was verified in a mixed
model for the comparison of the control groups of EDC for
ACTH in the 5 regulation phases, using disease and regulation
as fixed effects and random intercept for the lots. For ACTH
data, a mixed model was applied with disease, EDC, and
regulation (only basal, +AVP, and +B+AVP) as fixed factors
and random intercept for the lots. For PRL measurements, a
mixed model was applied with disease and EDC as fixed fac-
tors and random intercept for the lots for basal regulation data.
In the analysis models, the reference group was the normal
(healthy AdH), control (no EDC treatment), and basal (no
regulation) group. Restricted maximum likelihood estimation
and Kenward-Roger method for adjusting the degrees of free-
dom were applied in all models with unstructured covariance
matrix. Pairwise comparisons were estimated by least squares
means using Sidak p value adjustment. Model residuals were
displayed on quantile-quantile plots to check normality
assumptions. Statistical analyses were performed in SAS (ver-
sion 9.3 SAS Institute Inc., Cary, NC, USA), where p values of
<0.05 were considered to indicate statistical significance [48].

3. Results

Figure 3 shows the effect of various ED compounds (dClB,
mClB, PU, MU, and DU) on ACTH release in AdH cultures
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Figure 1: Functional assay for ACTH release in normal rat
adenohypophysis cultures, in vitro (n = 8 – 12 in each group);
mean level± SEM (pg ACTH/mg protein): AVP significantly
increases (p < 0 001), whereas corticosterone alone does not alter
ACTH release when compared to control; preincubation with +B
inhibited AVP activation (basal: control; AVP: 8-arginine
vasopressin; B: corticosterone).

0

2500

5000

7500

10,000

12,500

15,000

pg
 A

CT
H

/m
g 

pr
ot

ei
n 

(P
RL

O
M

A
)

+ B + B + AVP+ AVP +AVP + BBasal

Figure 2: Functional assay for ACTH release in rat prolactinoma
cultures (PRLOMA), in vitro (n = 11 − 12 in each group); mean
level± SEM (pg ACTH/mg protein): compared with normal AdH
cells (Figure 1). ACTH release always shows a similarly significant
(p < 0 001) increase in PRLOMA cells (basal: control; AVP: 8-
arginine vasopressin; B: corticosterone).
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in the following cases: basal, AVP activated (+AVP), and the
corticosterone-inhibited AVP activation (+B+AVP) in AdH
cultures. It can be seen that ACTH release was not altered
by ED agents (mean level± SEM (pg ACTH/mg protein):
dClB 1567.91± 3.09; mClB 1585.33± 2.72; PU 1533.67±
2.52; MU 1553.17± 3.40; and DU 1566.33± 2.30) compared
to the control group (1528.25± 6.14 pg ACTH/mg protein).
In the AVP-activated samples, ACTH release showed a
significant increase compared to the control group for each
EDC (mean level± SEM (pg ACTH/mg protein): control
10,220.88± 20.36; dClB 14,430.08± 3.01; mClB 14,488.90±
3.57; PU 11,845.67± 7.02; MU 13,008.25± 10.18; and DU
13,658.75± 15.83). In the case of regulatory effect (+B
+AVP-feedback), large deviations could not be detected in
the presence of EDC (mean level± SEM (pg ACTH/mg
protein): control 1524.67± 3.46; dClB 1542.00± 1.22; mClB
1566.92± 2.40; PU 1540.08± 2.86; MU 1560.08± 1.88; and
DU 1578.08± 1.26).

Figure 4 shows the effects of dClB, mClB, PU, MU, and
DU on ACTH release in PRLOMA cultures in the following
cases: basal, AVP activation (+AVP), and corticosterone-
inhibited AVP activation (+B+AVP). It can be seen that ED
agents modulate ACTH release compared to the control
of the basal group (2193.64± 1.92 pg ACTH/mg protein):
dClB: 2624.30±7.60pg ACTH/mg protein; mClB: 2956.08±
4.71pg ACTH/mg protein; PU: 2427.33±6.08pg ACTH/mg
protein; MU: 2535.17±5.14pg ACTH/mg protein; and DU:
2705.33±4.63pg ACTH/mg protein. AVP-activated ACTH
release of PRLOMA cultures shows a significant increase for
each ED compound used (mean level± SEM (pg ACTH/mg
protein): control 12,674.50±7.23; dClB 14,620.58±5.61;mClB
14,830.50±7.42; PU 13,129.67±6.06; MU 14,954.17±11.22;

and DU 15,197.58±4.99). EDC effects were detected in the
regulation model (+B+AVP-feedback) (mean level±SEM (pg
ACTH/mg protein): control 2195.50±4.69; dClB 2579.42±
3.98; mClB 2513.00±2.94; PU 2421.00±2.28; MU 2553.83±
7.87; and DU 2690.42±4.14).

Figure 5 shows the PRL release in AdH cultures in the
presence of the ED compounds tested. It can be seen that
the ED compounds did not trigger relevant differences in
PRL release (mean level± SEM (ng PRL/mg protein): con-
trol: 7.13± 0.04; dClB 7.28± 0.03; mClB 7.26± 0.01; PU
7.12± 0.02; MU 7.02± 0.02; and DU 7.14± 0.01).
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Figure 3: EDC effects in the regulation of ACTH release on
normal rat AdH cultures, in vitro. Mean (ACTH level)± SEM.
The mean and SEM are calculated from n = 12. Abbreviations:
B = corticosterone: 1 μg/ml; AVP= 8-arginine vasopressin: 10−6M,
+B+AVP: in combination therapy B precedes AVP administration
by 20 minutes; dClB = 1,4-dichlorobenzene: 0.1 ng/ml; mClB =
chlorobenzene mix: 0.1 ng/ml; PU= phenuron: 10−6M; MU=
monuron: 10−6M; DU=diuron: 10−6M. All EDC groups differ
significantly from the control (p < 0 001) for +AVP.
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Figure 4: EDC effects in the regulation of ACTH release in rat
PRLOMA cultures, in vitro. Mean (ACTH level)± SEM. The
mean and SEM are calculated from n = 12. Abbreviations:
B = corticosterone: 1μg/ml; AVP= 8-arginine vasopressin: 10−6M,
+B+AVP: in combination therapy B precedes AVP by 20 minutes;
dClB = 1,4-dichlorobenzene: 0.1 ng/ml; mClB= chlorobenzene
mix: 0.1 ng/ml; PU= phenuron: 10−6M; MU=monuron: 10−6M;
DU=diuron: 10−6M. All EDC groups differ significantly from the
control (p < 0 001) for basal, +AVP, and +B+AVP.
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Figure 5: Effects of EDC on PRL release in normal rat AdH
cultures, in vitro. Mean (PRL/prolactin/level)± SEM. The mean
and SEM are calculated from n = 12. Abbreviations: dClB = 1,4-
dichlorobenzene: 0.1 ng/ml; mClB = chlorobenzene mix: 0.1 ng/ml;
PU= phenuron: 10−6M; MU=monuron: 10−6M; DU=diuron:
10−6M.
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Figure 6 shows the PRL release of rat PRLOMA cultures
in the presence of ED chemical agents as described in the
experimental protocol. All the examined compounds showed
a significant stimulating effect (dClB: 22.47± 0.03; mClB:
23.17± 0.02; PU: 19.82± 0.01; MU: 21.50± 0.02; and DU:
22.41± 0.02 ng PRL/mg protein) on the release of PRL com-
pared to that of the control (17.14± 0.02 ng PRL/mg protein)
in PRLOMA cultures.

4. Discussion and Conclusions

We have studied the effects of PU, MU, DU, dClB, and mClB
as potential environmental factors, on the basal release of
ACTH (Figure 3) (creative element: mobile network junction
[49]), which plays a role in the essential functioning of the
AdH/AC axis [30] (interpreted in the human homeostasis
network as an “AND” function). The ED effects of the applied
compounds could be detected, since each chemical agent
generated significant changes in the ACTH secretion of
PRLOMA cells (Figure 4) in the basal group. PRL release
can be increased by enhancing peripheral estrogene levels,
which can be the “OR” cycle in connection to ACTH release.
In our work, we modeled a homeostatic regulatory neuroen-
docrine network both under normal regulation (AdHmodel)
and under a neuroendocrine disturbance (+ER). (First, cell
cycle change was induced via autoregulatory cell dysfunction
[29].) In the PRLOMA cells that were already altered by the
control cycle, the level of not only PRL (Figure 6), but also
that of ACTH increased (Figure 4). The events of the neuro-
endocrine regulatory cycles in our investigation suggest that
the outlined mechanisms can be regarded as homeostatic
biological network elements [50].

The AVP-activated ACTH hormone secretion of AdH
cells was significantly increased by all ED compounds used
when compared to the control (Figure 3, +AVP group). ED

agents caused increased ACTH release in the AVP-
activated PRLOMA cells as well (Figure 4, +AVP group). It
is well known that in biological complexities (biological
networks), regulations appear as the resultants of activating
and inhibiting functions [51]. Both in the normal AdH and
PRLOMA cell types, the negative feedback effect of cortico-
sterone was modeled by the inhibition of AVP-activated
ACTH release [52]. Figure 3 demonstrates that AdH cells
were able to maintain their inhibitory functions despite a
treatment with EDC (Figure 3, +B+AVP group). Thus, the
adaptive potential of healthy AdH cells in cases of chemical
environmental load modeled by EDC remained reversibly
regulated. The regulation of PRLOMA cells was incomplete
in the presence of EDC (Figure 4, +B+AVP group); although
the inhibitory effect of corticosterone on ACTH secretion is
also present in PRLOMA, the maintenance of this effect is
strongly disrupted by ED compounds (Figure 4). In this
context, the results can be interpreted as an environmental
disruption leading to irreversible processes. The presence of
ED compounds enhanced the already overexpressed ACTH
secretion in PRLOMA cells (Figure 4), which was further
increased by AVP activation. Therefore, it can be assumed
that both the structure and the endocrine cell function of
PRLOMA were damaged [53]. Due to the role ACTH plays
in essential life functions, this result may have significance
in the environmental exposition of prolactinoma patients
and in the development of adaptational potential disorders
in healthy individuals [54], as ACTH regulation is present
in human adaptation as an open dynamic requirement,
which is modeled as an “AND” logical function algorithm.
Our results show that PRL secretion in normal AdH cells
was not influenced by EDC in the applied experimental
system (Figure 5). However, the already elevated PRL secre-
tion of PRLOMA cells was further enhanced by EDC
(Figure 6).

HTP is defined in relation to dClB with a standard
approach [43] and uniform risk assessment. The authors
wished to provide an opportunity for comparison by follow-
ing dClB effects too. Accordingly, uron/dClB relations were
determined in AdH and PRLOMA cells. Our results show
that the EDC classification of the examined uron compounds
strongly approximates the effects of dClB in an AdH model
(Figures 3 and 5). However, basal ACTH release of PRLOMA
is more effective in the presence of DU (uron/dClB→ 0.97–
0.99) than dClB (+DU/dClB= 1.05). In baseline PRL secre-
tion, the uron effects on AdH cells approximated those of
dClB (urons/dClB: 0.96–0.98). In the case of PRLOMA, the
EDC effects of the investigated uron compounds on PRL
secretion approximated those of dClB (urons/dClB: 0.96–
0.98). However, in the case of AVP-activated ACTH
release in the PRLOMA model, dClB effect was exceeded
by the agents MU and DU (PRLOMA: +AVP+MU/+AVP
+dClB= 1.02; PRLOMA: +AVP+DU/+AVP+dClB=1.03).

The HTP values of PRLOMA can be interpreted with
double risk classification according to our present study,
because when the doses of ED compounds exceed those
necessary for irreversible effects (such as suspension of
corticosterone inhibition), regulatory dysfunctions may
present difficult-to-treat disease processes.
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Figure 6: Effects of EDC on PRL release in rat PRLOMA
cultures, in vitro. Mean (PRL/prolactin/level)± SEM. The mean
and SEM are calculated from n = 12. Abbreviations: dClB = 1,4-
dichlorobenzene: 0.1 ng/ml; mClB= chlorobenzene mix: 0.1 ng/ml;
PU= phenuron: 10−6M; MU=monuron: 10−6M; DU=diuron:
10−6M. All EDC groups differ significantly from the control
(p < 0 001) for basal release.
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It can be seen from the above how important researching
human homeostatic network disorders is when one wishes to
evaluate the health consequences of environmental factors.
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