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Trees are crucial for sustaining life on our planet. Forests and land devoted to tree

crops do not only supply essential edible products to humans and animals, but also

additional goods such as paper or wood. They also prevent soil erosion, support

microbial, animal, and plant biodiversity, play key roles in nutrient and water cycling

processes, and mitigate the effects of climate change acting as carbon dioxide sinks.

Hence, the health of forests and tree cropping systems is of particular significance. In

particular, soil/rhizosphere/root-associated microbial communities (known as microbiota)

are decisive to sustain the fitness, development, and productivity of trees. These

benefits rely on processes aiming to enhance nutrient assimilation efficiency (plant growth

promotion) and/or to protect against a number of (a)biotic constraints. Moreover, specific

members of the microbial communities associated with perennial tree crops interact

with soil invertebrate food webs, underpinning many density regulation mechanisms.

This review discusses belowground microbiota interactions influencing the growth

of tree crops. The study of tree-(micro)organism interactions taking place at the

belowground level is crucial to understand how they contribute to processes like

carbon sequestration, regulation of ecosystem functioning, and nutrient cycling. A

comprehensive understanding of the relationship between roots and their associate

microbiota can also facilitate the design of novel sustainable approaches for the benefit of

these relevant agro-ecosystems. Here, we summarize the methodological approaches to

unravel the composition and function of belowground microbiota, the factors influencing

their interaction with tree crops, their benefits and harms, with a focus on representative

examples of Biological Control Agents (BCA) used against relevant biotic constraints of

tree crops. Finally, we add some concluding remarks and suggest future perspectives

concerning the microbiota-assisted management strategies to sustain tree crops.

Keywords: tree crops, belowgroundmicrobiota, biological control agents, endophytes, mycorrhiza, phytoparasitic

nematodes, plant-growth-promoting microorganisms, soil-borne pathogens
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INTRODUCTION

Tree crops are fundamental for human nutrition and warrant
food security and stability of many farms. The surface covered
by tree crops showed a growing trend in the last decade,
approaching to a global acreage of 10 Mha for main fruit types
with an ∼20% increase in productivity during the period 2004–
2014 (FAOSTAT, http://fenix.fao.org/faostat/beta/en/) (Figure 1).
Plants (like trees) as well as the environment (such as soil) consist
of complex and diverse assemblage of myriads of microbial
species closely associated with their host, either as epiphytes or
as endophytes (Trivedi et al., 2016). The association established
by a plant and its microbiota (Lederberg, 2006) can be either
stable, transient or fluctuating, enduring along the host lifetime
determines its development, fitness, and health (Kowalski et al.,
2015). The belowground microbiota is mostly comprised of
bacteria and fungi belonging to the second trophic level (i.e.,
decomposers, mutualists, pathogens, parasites, and root-feeders)
of the soil food web (Ingham, 1999) (Figure 2). Because of their
size, nematodes per definition are not part of the soil microbiota,
although they can play important roles in shaping its structure,
including not only species belonging to the second trophic
level (root-feeder nematodes) but also those ones of the third
level (i.e., shredders, predators, grazers), particularly nematodes
feeding on fungi and bacteria. Despite their parasitic behavior,
phytoparasitic nematodes spend a considerable part of their life-
cycle in the soil and represent the first group of plant parasites
present in the soil. Therefore, the fraction of microorganisms
linked to them can be considered as a specific compnent of
the plant-associated microbiota (Vandekerckhove et al., 2000;
Haegeman et al., 2009).

FIGURE 1 | Total world surface (triangles) and yield/hectar (solid squares) of main tree crops (citrus, fresh and tropical, pome and stone fruits) (source FAOSTAT:

http://fenix.fao.org/faostat/beta/en/).

The study of the belowgroundmicrobiota has gained attention
during the last years. Many studies have investigated soil
belowground microbiota focusing on key issues such as the
composition, structure, and functioning of these microbial
communities and how they are built up and influenced by a range
of factors [e.g., changing environment, varying weather/climatic
conditions, (diffuse) pollution, anthropogenic actions, plant
genotype, plant signals, etc.] [see, for instance (Doornbos et al.,
2012; Bakker et al., 2013; Bulgarelli et al., 2013; Mendes et al.,
2013; Lakshmanan et al., 2014; Fierer, 2017)]. Structural and
functional modifications in the soil/rhizosphere microbiota have
a crucial impact on aboveground ecosystems. In the particular
case of trees, the trophic interactions established between the host
and its associated belowground microbiota could be assumed,
at least a priori, as more durable than that occurring in short-
living, herbaceous species. Indeed, due to their perennial, long-
living nature, it could be envisaged that belowground microbial
communities associated with tree crops may be shaped by
more persistent changes than those taking place in annual
crops. Trees provide, in a more long-lasting way, an energy
flow through photosynthesis, mobilizing nutrients as part of a
continuous process leading to their recycling via the organic
matter accumulation and its eventual decay. Moreover, due to
the absence of annual rotation and lack of soil tillage, perennial
tree crops also represent a stable food source not only for
building up consortia of beneficial microbial communities but
also for many root pathogens or parasites. Direct effects, due
to deposition of organic matter and nutrients, could be more
constant while indirect effects through agricultural inputs (i.e.,
application of fertilizers, pesticides, etc., irrigation and soil labor)
would potentially work in a similar way as in annual crops.
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FIGURE 2 | A simplified food web describing main soil components and their

relationships. The nodes are classified by roles as: primary root (dark green),

beneficial soil components, organisms or promoters, including soil factors

(blue), decomposers (brown), pathogens (orange) and biocontrol agents or

antagonists (pale green). Arrows show negative effects (A), such as predation,

parasitism, pathogenicity or (B) positive links, such as growth promotion,

symbiosis or alimentary provision. Indirect factors such as those related to

abundance, competition or other density-dependent effects are not included.

Node labels and sizes are proportional to their connection level (number of

edges). Analysis produced with Gephi (Bastian et al., 2009).

Being present on a time scale of years, and having a persistent,
deeper root system, the impacts of tree crops (e.g., on nutrients
mobilization, organicmatter accumulation, parasites, etc.) largely
differ from annual crops and thus cannot be considered as
comparable. This is well illustrated by the currently-available
and powerful metagenomic approaches (Colagiero et al., 2017).
Overall, the events taking place between a tree crop and
its associated whole soil microbiota have not been widely
investigated.

In this study, we consider a tree crop as a woody, perennial
plant with a distinct trunk, such as fruit, nut, and timber
trees of economic importance, grown in orchards or in planted
forests. Therefore, we exclude from this definition any palm
“tree” species (Arecaceae family) as well as any other herbaceous
perennial monocots (e.g., Musa spp., Dracaena spp., Poaceae
family representatives, etc.) showing arborescent growth, since
from both botanical and anatomical point of view they are not
true trees. Tree crop ecosystems are of immense importance
since they provide a range of products and ecosystem services.
An increased understanding of the links between soil microbiota
and trees is certainly helpful for the development of more
effective and sustainable tree crop management strategies.
Here, we (i) summarize methodological approaches used to
unravel belowground microbial communities, with emphasis
on tree crops; (ii) review the composition, distribution, and
multitrophic networks of soil and root-associated microbiota,
including endophytes, and the way they influence aboveground
ecosystems in tree crops; (iii) examine the benefits (productivity,
development, health and fitness, stress alleviation) and harms
(mainly biotic stresses) for tree crops and woody plantations
upon interaction with indigenous and introduced soil-borne
(micro)organisms; and (iv) recapitulate strategies implemented
for tree crop growth promotion.

METHODOLOGICAL APPROACHES TO
UNRAVEL THE COMPOSITION AND
FUNCTION OF BELOWGROUND
MICROBIOTA

Methods to assess the diversity, structure, and function of
microbial communities can be categorized into three main
groups, namely conventional, biochemical and molecular.
Here, we summarize the advantages and limitations of main
methodological approaches to study the composition and
function of rhizosphere microbial communities, with emphasis
on tree crops (Table 1).

Conventional and Biochemical Methods
Culture-based methods constitute a good complement to DNA-
based approaches. However, they are extremely biased regarding
the actual evaluation of microbial genetic diversity since only
<1% of the total number of prokaryotic species present in
the environment are culturable. Several improved procedures
and media mimic natural environments in terms of nutrients,
oxygen gradient, pH, etc. maximizing the cultivable fraction
of soil-borne microbial communities (Gravel et al., 2007). In
addition, the number of colony-forming units (CFU) is positively
correlated with enzymes and respiratory activity. This approach
may be applied to characterize the relative abundance of active
microorganisms with certain functions or trophic requirements
(Blagodatskaya and Kuzyakov, 2013). Even though culture-
dependent methods are not ideal for evaluating the actual
composition of natural microbial communities when used alone,
they are useful for understanding growth habits, development,
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and potential functions of soil and rhizosphere microorganisms
(VanInsberghe et al., 2013; Bevivino and Dalmastri, 2017).

Biochemical methods enable the assessment of soil microbiota
activities of both the overall microbial community (e.g.,
dehydrogenase activity) and specific components (e.g., ammonia-
oxidizing bacteria). The release of labile compounds, including
enzymes, by living roots or lysis of root cells, stimulates microbial
activity and growth in a similar way as rhizodeposits (Loeppmann
et al., 2016). Consequently, localization of easily available C
yields hotspots of microbial abundance and activities, frequently
termed as the “rhizosphere effect” (Reinhold-Hurek et al.,
2015; Thijs et al., 2016). Extracellular enzyme activities in the
rhizosphere are higher compared to root-free soils, similarly to
total microbial biomass and activity measured as respiration or
growth rates (Allison and Vitousek, 2005; Ancona et al., 2017).
Roots and associated mycorrhizal communities are known as
major producers of β-glucosidases and acid phosphatases (Conn
and Dighton, 2000). Despite soil enzymes being partly of plant
origin, microorganisms constitute the main source of enzymes
mediating the cycling of major nutrients (C, N, P, and S).

One approach to characterize the soil microbial communities
is the Community Level Physiological Profiling (CLPP), in which
species are identified based on utilization of different carbon
sources with EcoPlateTM (Biolog, Inc.). CLPP yields information
on both function and structure of part of a microbial community
metabolically active under plate conditions (Garland and Mills,
1991). The BIOLOG R© advantages include the identification of
physiological profiles of a microbial community as a whole
(Stefanowicz, 2006). However, most bacterial cells in natural
ecosystems are inactive and the substrates available in BIOLOG R©

plates are not necessarily relevant from the ecological point of
view, and do not reflect the diversity of substrates found in
the environment (Konopka et al., 1998). This methodology has
been applied to compare functional diversity of communities
from rhizosphere and non-rhizosphere soils (Söderberg et al.,
2004), from rhizospheres of different plant species (Grayston
et al., 1998), and to link microbial functional diversity of
olive rhizosphere soil to management systems in commercial
orchards (Montes-Borrego et al., 2013). While limitations of
this methodology for the characterization of whole communities
are well known, it continues to be used in combination with
molecular approaches to identify the copiotrophic, fast-growing
fraction of the bacterial community of soil environments as
those from coniferous forests, where oligotrophic taxa are usually
dominant (Lladó and Baldrian, 2017).

Biochemical methods can also be used to assess microbial
community structure and to perform a phenotypic fingerprinting
of the main groups (Gram-positive and Gram-negative bacteria,
fungi, etc.) in the rhizosphere. This is the case of the
phospholipid-derived fatty-acid (PLFA) and the total ester-
linked fatty-acid (ELFA) methods (Sharma and Buyer, 2015;
Hinojosa et al., 2016). As the fatty-acid side chains are rather
unique among the various life forms, these molecules are widely
used as taxonomic and phylogenetic biomarkers to describe
the structure and size of microbial communities in soil and
rhizosphere samples (Debode et al., 2016; Francisco et al., 2016).
Phospholipid fatty-acids are found exclusively in cell membranes
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and not in other parts of the cell as storage products. This
is important as cell membranes are rapidly degraded and the
component PLFA is quickly metabolized following cell death.
Consequently, phospholipids can serve as important indicators
of active microbial biomass as opposed to non-living biomass.
These methods are useful for assessing the structure of soil
microbial communities and for determining effects of soil
disturbances such as cropping practices, pollution, and changes
in soil quality. For example, PLFA analysis was successfully used
to investigate the impact of Populus spp. grown as short rotation
coppice (SRC) on the microbial communities of arable soils
(Baum et al., 2013).

Molecular Methods
Molecular methods have provided a more-in-depth
understanding of the occurrence and phylogenetic diversity
of soil microbial communities (Tiedje et al., 1999; Fakruddin
and Mannan, 2013). Polymerase chain reaction (PCR)-based
approaches are commonly used for phylogenetic assignments.
Small subunit rRNA genes (for instance, the 16S small
subunit ribosomal RNA [16S rRNA] for prokaryotic cells)
are amplified from soil-extracted nucleic acids. Microbial rRNA
gene sequences can then be sequenced and identified using
appropriate databases (e.g., NCBI GenBank, EMBL, EzBioCloud,
etc.) and compared with those of known microorganisms
(Janssen, 2006). Similarly, the identification of soil fungi and
fungal symbionts associated with previously selected and
characterized mycorrhizas is based on sequence analysis of gene
fragments from the large-subunit rRNA (LSU) or their internal
transcribed spacer (ITS) regions (Porras-Alfaro et al., 2014).
Taxonomic and phylogenetic affiliation of fungi can be based
on widely available databases like the NCBI GenBank or on the
stable and reliable platform UNITE, designed for sequence-based
identification of ectomycorrhizal asco- and basidiomycetes.

Molecular-based approaches have revealed an extraordinary
taxonomical and functional diversity of microorganisms. To
study the population structures and dynamics of microbial
communities, genetic fingerprinting techniques such as
Denaturing Gradient Gel Electrophoresis (DGGE) were
developed (Muyzer et al., 1993). Nowadays, DGGE can be
used as a first approach to visualize main differences in a
given microbial community and subsequently high-throughput
sequencing (HTS) can be applied to have a deeper understanding
of the microbiota composition (Di Lenola et al., 2017; Proença
et al., 2017a). This methodology has been implemented in
different fields and it is very common in soil microbiology
studies (Bevivino et al., 2014; Ng et al., 2014), or to assess
the aboveground microbial structure of trees (e.g., maritime
pine, Pinus pinaster Ait.) (Proença et al., 2017a). Other
community profiling techniques include temperature gradient
gel electrophoresis (TGGE), single-strand conformation
polymorphism (SSCP), terminal restriction fragment length
polymorphism (T-RFLP), amplified rDNA restriction analysis
(ARDRA), and amplified ribosomal intergenic spacer analysis
(ARISA) (Anderson and Domsch, 1989; Anderson and
Cairney, 2004). These methods can also provide detailed
information about community structure in terms of richness,

evenness and composition and permit to identify selected
species and functional genes involved in specific processes.
Nevertheless, these qualitative PCR-based methods do not
provide information on the gene copy numbers. To achieve
that, implementation of qPCR (quantitative PCR) is needed
whereas RT-qPCR (reverse transcription qPCR) is informative
about the expression of a specific gene (Stella, 2014). However,
the phylogenetic characterization of prokaryotic cells based
on DNA extraction from soil does not reflect the activity of
rhizosphere microbial community, as DNA may also proceed
from dead or inactive cells. Likewise, the analysis of biodiversity
based on the molecular identification of single ectomycorrhizal
roots or arbuscular spores, and the application of cloning for
identification of arbuscular mycorrhizal fungi (AMF), have
some limitations difficulting a reliable portrait of the microcosm
environment condition. Thus, a novel sequence-based method
was developed to describe AMF communities, coupling the
previously established AMF-specific PCR primers that amplify
a c. 1.5-kb long and AMF-specific pSSU-ITS-pLSU fragment
with single molecule real-time (SMRT) sequencing (Schlaeppi
et al., 2016). Finally, substantial progress has been also made to
facilitate the quantitative detection of individual nematode taxa
on the basis of small subunit ribosomal DNA-based (SSU-rDNA)
monitoring of nematode assemblages (Vervoort et al., 2012). In
complex environments, such as soil, the newly developed digital
polymerase chain reaction (dPCR) has been recently applied to
quantify the absolute concentration of DNA targets or functional
genes in soil (Kim et al., 2014; Cavé et al., 2016). This technology
represents a promising tool enabling to examine the dynamics
of soil microorganisms and to target pathogen-derived nucleic
acids in environmental samples (Farkas et al., 2017).

Epifluorescence Microscope-Based
Methods
Epifluorescence microscope-based methods do not need DNA
extraction from soil, enabling direct visualization of microbial
cells/structures under an epifluorescence microscope. The total
direct count, cell viability (live/dead) and Fluorescence In situ
Hybridization (FISH) are reliable and commonly used methods.
The total direct count allows assessing microbial abundance
through a DNA fluorescent intercalant such as DAPI, which
can detect all microbial cells in a rhizosphere sample regardless
of their physiological state and metabolic activity (Lew et al.,
2010; Barra Caracciolo et al., 2015). Similarly, two fluorescent
dyes, SYBRTM Green II and propidium iodide, can be used
to discriminate between viable and dead cells (Ancona et al.,
2017). Finally, FISH enables phylogenetic in situ identification
and quantification of soil and rhizosphere communities at
different phylogenetic levels (from domain to species), by
using fluorescent labeled rRNA-targeted oligonucleotide probes
in single cells. rRNA-targeted probes that occur in a large
copy number detect specific sequences of rRNA in single
cells. Since only viable and active cells possess a sufficient
number of undamaged ribosomes, they act as indicators of
the physiological state of cells (Di Lenola et al., 2017). The
detection of FISH-stained cells can be hampered by strong soil
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background autofluorescence which is avoided by applying a
density gradient centrifugation to extract the detachable bacteria
from soil particles (Barra Caracciolo et al., 2005, 2010). FISH has
been successfully applied in analyses of active microorganisms
in the rhizosphere (Barra Caracciolo et al., 2015) including
endophytes (Kutter et al., 2006; Lopez et al., 2011). The main
limitations of this method are: (i) its inability to detect unknown
species and those with low ability, or for which specific probes
have not been designed yet, and (ii) probe’s difficulty to enter into
Gram-positive cells under specific conditions.

Meta-Omic Approaches
The recent development of HTS-based metagenomic analyses
has further contributed to unveil either microbial or plant
functioning in the rhizosphere, to yield a global view of the
structure and diversity of the rhizosphere microbiota (Leveau,
2007; Barberán et al., 2012; Lindahl et al., 2013; Mendes et al.,
2013; Hassan et al., 2014). The implementation of genomic
methods to microbial assemblages is commonly used to describe
communities overcoming biases inherent to PCR amplification
of a single gene. The classical metagenomic strategy, as defined
by Handelsman and colleagues (Handelsman et al., 1998),
involves the following steps: DNA isolation, fragmentation and
cloning, library screening, sequencing of interesting clones, and
DNA comparison. Actually, three major and often overlapping
directions can be recognized: the first trend aims at linking
phylogeny to function; the second involves the discovery of genes
or functions of interest; and the third is the mass sequencing of
environmental samples which offers a more global (or systems-
biology) view of the community under study (Steward Rappé and
Rappé, 2007).

The HTS or next-generation sequencing (NGS) technology
is experiencing a rapid development, providing wide and in-
depth views in metagenomics. Several protocols and tools,
including bioinformatic resources, are available for these studies.
A number of HTS platforms have been developed and are widely
used, including the Illumina (e.g., HiSeq, MiSeq), Roche 454
GS FLX+, SOLiD 5500 series, and Ion Torrent/Ion Proton
platforms. Currently, the majority of microbial ecology studies
implement HTS by focusing on either targeted gene sequencing
with phylogenetic or functional gene targets or on shotgun
metagenome sequencing (Pervaiz et al., 2017).

Most of the bacterial community studies have depended
on a single gene, such as the hypervariable regions of
the 16S rRNA gene, to assess taxonomic diversity and to
determine which bacteria are present in a community. Other
useful targets for bacterial community studies based on single
amplicon sequencing include the type I chaperonins (cpn60
gene) (Links et al., 2012). However, these “metabarcoding”
methods (sensu stricto they cannot be considered asmetagenomic
approaches since they are just based on libraries of single
amplicons) are limited by short read lengths, sequencing errors,
differences arising from the different regions chosen, and
difficulties in assessing operational taxonomic units (OTU).
Shotgun metagenomics sequencing avoids many of the biases
encountered in amplicon sequencing because it does not

require amplification prior to sequencing (Fierer et al., 2012;
Sharpton, 2014). Application of metagenomic analysis also
paves the way for scientists to build fundamental knowledge
on fungal communities in the environment. Actually, the
metagenomics assessment of fungal diversity is common not only
for soil but also for plant samples (mycorrhiza, endophytes),
enabling detailed determination of all fungal trophic groups:
saprophytic, pathogenic, endophytic, and symbiotic (Lindahl
et al., 2013).

Further technologies such as the nanopore sequencing (with
mini flow cells such as the MinIonTM by Oxford NanoporeTM),
or the PacBioTM sequencing based on ionic readings are gaining
popularity due to their capability to sequence very long reads (up
to several kilobases) in milliseconds and without amplification
(Branton et al., 2008; Singer et al., 2016). Some of these novel
approaches are promising, since they combine easy use and/or
portability with a massive data production. They have the
potential to sequence all the retrotranscribed rDNA molecules
present in a sample, thus accounting for a direct identification
of active species. In the light of experimental assays applied to
plants, the information that may be gained through these studies
are higher than the limits considered a few years ago, and often
exceed the analytical potential of the bioinformatic resources
eventually applied.

By using the above methodological approaches, the diversity,
structure, and functioning of fungal and bacterial communities,
endophytic and/or rhizospheric, were studied in tree species
including Populus deltodies (Gottel et al., 2011; Shakya et al.,
2013), native forest species (Buée et al., 2009), and conifers
(Baldrian et al., 2012; Proença et al., 2017a). For instance, these
studies were instrumental to link the so-called core (bacterial)
microbiota to specific ecological niches in a given species and,
more importantly, under field-grown conditions (Beckers et al.,
2017). Based on sequencing data it is also possible to predict the
function of a microbial community by using the bioinformatic
tools PICRUSt (Langille et al., 2013) and tax4fun (Aßhauer et al.,
2015).

Metatranscriptomics, in which total environment RNA is
sequenced, is applied to reveal and compare active community
members and metabolic pathways (Urich et al., 2008; Turner
et al., 2013). Although the analysis of total rRNA has been
widely used to profile microbial communities in soil (Carvalhais
et al., 2012), the gene expression of microbes in the rhizosphere
is much less studied due to the difficulty to obtain sufficient
material under controlled conditions from a highly variable and
irregular niche. Nevertheless, metatranscriptomics has been used
to identify genes expressed by eukaryotes in forest soils, to study
the fungal and bacterial responses to N deposition in two forests
dominated by sugar maple (Acer saccharumMarsh), or to analyse
ectomycorrhizal roots and the genes active in the Piloderma–
Pinus symbiosis (Damon et al., 2012; Liao et al., 2014; Hesse et al.,
2015). Finally, the sensitivity of current metabolomic platforms
represents an important constraint showing that this approach
cannot solve all rhizosphere-signaling relations such as chemical
communications and interactions (van Dam and Bouwmeester,
2016).
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FACTORS INFLUENCING BELOWGROUND
MICROBIOTA ASSOCIATED WITH TREE
CROPS

A long-living host may establish a durable interaction with its
associated microbiota compared to that taking place in annual
and/or herbaceous plants. Nevertheless, the composition and
structure of the associated microbiota in any given tree crop
undergo alterations along time and space due to factors such as
environmental (sudden/long-term) changes, physical-chemical
soil properties, anthropogenic actions, agronomical practices,
climatic factors, plant developmental stage, (a) biotic stresses, etc.
Depending on the tree crop under study, this range of factors may
have either major or minor influence on the entire belowground
microbial communities or on some of their specific components
(Caliz et al., 2015).

Temperature and precipitation along with seasonal variations
are among the main climatic/weather components controlling
microbial growth and reproduction; therefore, these abiotic
factors may substantially influence the soil microbiota of tree
crop plantations and forests. Okada and colleagues found that
autumn precipitation in the preceding year was a crucial factor
influencing the biomass of ectomycorrhizal fungi (EMF) in
a 40/50-year-old Pinus densiflora L. forest, while soil water
availability for EMF and host plant roots in the growing
season could positively impact ectomycorrhizal biomass in
subsequent seasons (Okada et al., 2011). With the aim of
simulating realistic future drought conditions, Felsmann and
colleagues studied the effects of reduced precipitation for one
growing season on the bacterial community of beech (Fagus
sylvatica L.) and conifer forests (Felsmann et al., 2015). They
found that moderate drought induced by the precipitation
manipulation treatment significantly affected the active but
not the total bacterial community, proposing that there is
an adequate resistance of the soil microbial system over one
growing season. In soils of a temperate beech forest, seasonality,
resource availability and climatic factors (temperature and
moisture) affected the community structure and abundance
of Archaea and Acidobacteria indicating the high metabolic
versatility and adaptability of these prokaryotic groups to
environmental changes (Rasche et al., 2011). Finally, the effects of
annual and interannual environmental variability of temperature,
precipitation and chemical resources on soil fungi associated
with an old-growth, temperate hardwood forest were investigated
(Burke, 2015). Fungal communities were found to significantly
vary by the season, sampling location, and depth with differences
being consistent between years. Fungal species within the
community were not consistent in their seasonality or preference
for certain soil depths, but some of them were found to be
consistently correlated with soil chemistry across the sampled
years.

The soil properties are modified by a range of processes
occurring during tree growth, which in turn affect rhizosphere
microbial communities. Plant roots can influence the
surrounding soil and inhabiting organisms (Lakshmanan
et al., 2014). Roots release low-molecular-mass compounds (e.g.,
sugars, amino acids and organic acids), polymerized sugar, root

border cells, and dead root cap cells. These rhizodeposits are used
as carbon sources by soil microorganisms and can also contain
secondary metabolites, such as antimicrobial compounds,
nematicides, and flavonoids that are involved in establishing
symbiosis or in warding off pathogens and pests, thereby acting
as a crucial driving force for multitrophic interactions in the
rhizosphere (Bais et al., 2006; Oldroyd, 2013). Experimental
data from citrus crops parasitized by the insect pest Diaprepes
abbreviatus in Florida showed that roots release specific volatile
organic compounds (VOC) that attract entomopathogenic
nematodes (EPN), with beneficial effects observable on the pest
regulation. Also, plant-parasitic nematodes (PPN) revealed a
positive tropism toward parasitized roots, mediated by one or
more of the VOC components (Ali et al., 2010, 2011, 2013).
This effect may be also significant for the microbiota associated
with these nematode groups because several microbial species
with a beneficial impact are passively dispersed by EPN and
PPN. Soil pH, another important driver of soil microbial
communities, can locally increase or decrease by up to two units
in the rhizosphere due to the release and uptake of ions by
roots (Hinsinger et al., 2009). Water uptake and root respiration
affect soil oxygen pressure, thereby influencing microbial
respiration. Soil nutrient availability can be modified in the
rhizosphere by plant uptake and by the secretion of chelators,
such as phytosiderophores, to sequester metallic micronutrients
(Philippot et al., 2013).

The host plant can be considered as the primary biotic factor
influencing the composition of soil microbiota associated with
tree crops. The plant cover and crop types have an impact on
the belowground microbial diversity, as shown by studies on
soil metagenomes (Uroz et al., 2016; Colagiero et al., 2017).
Structure and composition of fungal and archaeal communities
proved to be dependent on the tree species, while bacterial
communities differed between bulk soil and the rhizosphere
but not between host trees. Similar results were obtained
by Urbanová and collegues who demonstrated that fungal
communities were strongly related to tree species while bacterial
communities rather to root exudates (Urbanová et al., 2015). The
composition of the nematode community in the rhizosphere soil
is also influenced by the host genotype, as revealed by studies
performed in olive (Palomares-Rius et al., 2012). Nematodes
are also among the biotic factors influencing the composition
of soil microbiota associated to tree crops, as shown by the
differences induced on the AMF communities colonizing galls
and roots of peach, Prunus persica (L.) Batsch, infected by the
root-knot nematode Meloidogyne incognita (del Mar Alguacil
et al., 2011).

Regarding anthropogenic factors, pollution caused by
industrial and mining activities can shape microbiota associated
with tree crops and timber trees. The effects of long-term metal
pollution on soil microbial communities were evaluated along
two soil gradients of forests with Scots pine, P. sylvestris L.,
and common beech as the dominant tree species (Azarbad
et al., 2015). Metal pollution significantly affected bacterial
community structure causing changes in the relative abundance
of specific bacterial taxa resilient to metal pollution and increased
frequency of certain metal-resistance genes, suggesting a link
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between microbial community composition and their functional
potential in long-term polluted forest soils. The activity of
timber harvesting was also shown to exert a significant and
persistent effect on soil bacterial and fungal communities in
Northern coniferous forests via organic material removal and soil
compaction (Hartmann et al., 2012). Among the components
of microbiota, plant symbionts like EMF and saprobic taxa
of bacteria and fungi were the most sensitive to harvesting
disturbances. The diversity and structure of soil bacterial and
fungal communities remained significantly altered by harvesting
disturbances, even more than a decade after harvesting. A
subsequent study (Hartmann et al., 2014) revealed that physical
soil disturbance during logging-associated compaction induced
profound and long-lasting changes in the forest soil microbiota
and associated soil functions, significantly reducing bacterial and
fungal abundance, increasing alpha diversity and persistently
altering the microbiota composition with a maximum impact
observed 6–12 months after compaction. Fungi were less
resistant and resilient than bacteria, with ectomycorrhizal
species detrimentally affected by compaction, while saprobic
and parasitic fungi were proportionally increased. Bacteria
capable of anaerobic respiration, including metal, sulfur, and
sulfate reducers from Proteobacteria and Firmicutes, were
found to be significantly associated with compacted soils.
Agronomical management systems also greatly influence
the structure and functioning of soil microbial communities
associated with tree crops. For instance, Montes-Borrego
et al. (2013) revealed in a comparative analysis of organic and
conventional olive farming systems in southern Spain, how
management practices affected the chemical and biological
soil properties indicating that olive orchards under organic
management exhibited higher microbial diversity compared to
conventionally managed orchards. The structure and diversity of
phytoparasitic nematode communities infesting olive orchards
are also, but not exclusively, influenced by soil management
practices (Palomares-Rius et al., 2015). Indeed, this study
concluded that soil physicochemical factors such as texture,
pH, and extractable K, the climatic parameters minimum
and maximum temperatures, and olive cultivar as the key
agronomic variable were factors driving the population levels
and community structure of olive phytoparasitic nematodes. An
advanced citrus production system with daily fertigation rates
have been applied in Florida to contrast the bacterial disease
huanglongbing, by shortening the trees production cycle. This
system increased the densities of some microbial antagonists of
PPN such as Catenaria or other parasitic fungi, associated to
a higher root biomass. However, some effects were also found
on the densities of EPN, which showed opposite responses for
steinernematid or heterorhabditid species (Campos-Herrera
et al., 2014).

BELOWGROUND MICROBIOTA AND TREE
CROPS: BENEFITS AND HARMS

Beneficial soil/root microbiota can promote plant growth
directly (i.e., biofertilization, phytostimulation) and/or indirectly

(i.e., suppressing plant diseases and pests). Alleviation of
stress due to environmental pollutants or heavy metals [i.e.,
(phyto)rhizoremediation)], drought or salinated soils, are
mediated by the activity of the plant-associated microbiota.
Trophic interactions established between the host plants
and their associated microbiota at the root level provoke
effects influencing aboveground ecosystems. Moreover, long-
term associations (i.e., nodule-forming bacteria able to fix N2,
ecto- and endomycorrhizal symbioses, non-symbiotic plant-
growth-promoting rhizobacteria [PGPR] and fungi [PGPF],
endophytes, etc.) may influence aboveground ecosystems in
ways other than direct plant growth promotion. Successful
associations should be based on the capacity of the microbes
to modulate the plant host immunity. The dialogue established
between plants and (components of) their microbiota are
likely variations of a common theme where the boundaries
among symbiotic, pathogenic or endophytic associations are,
indeed, fuzzy (Zamioudis and Pieterse, 2012; Mercado-Blanco
and Lugtenberg, 2014). Responses triggered in the plant as a
consequence of the interactions taking place at the root level have
an effect on aerial parts. Induction of systemic defense responses
is a clear example that may affect plant health by triggering an
enhanced resistance status against a range of phytopathogens
and/or pests (Pieterse et al., 2014). The challenge is to understand
these responses and how they disturb aboveground ecosystems,
individuals or specific plant organs.

Benefits
Mycorrhiza
Most of the known tree crops, i.e., fruit trees cultivated in
orchards (e.g., olive, apple, Malus domestica L., pear, Pyrus
sp., cherry, Prunus sp., plum, P. domestica L., peach, apricot,
P. armeniaca L., etc.) or fast growing tree species cultivated
in SRF systems for biomass production (e.g., willow, poplar,
alder, Alnus sp., ash, Fraxinus sp., birch, Betula sp., eucalyptus,
Eucalyptus sp., etc.) form stable symbioses with mycorrhizal
fungi. Tree crops can form two types of mycorrhizas differing in
morphology: ectomycorrhizas (EM) or arbuscular mycorrhizas
(AM). Moreover, some tree crops can form dual EM/AM (e.g.,
willow, poplar), although a trend toward greater fractional
colonization with EM and lower colonization with vesicular-
arbuscular mycorrhiza (VAM) has been observed (Moyersoen
and Fitter, 1999). Mycorrhizal fungi promote plant growth,
aid nutrient uptake (reduced fertilizer requirement), increase
yield, reproductive success and tolerance to abiotic (e.g.,
pollution, drought, salinity) and biotic (pathogens, herbivores,
low microbial diversity in the soil) stresses, thereby improving
field survival and establishment (Allen, 2006; Hrynkiewicz
and Baum, 2012; Al-Karaki, 2013; Khabou et al., 2014;
Manaut et al., 2015). Therefore, tree crops with well-established
mycorrhizal symbiosis are characterized by increased adaptation
level to edaphic parameters observed under unfavorable soil
conditions. Direct and indirect beneficial effects of mycorrhizal
fungi on plant growth and development are summarized in
Figure 3.

Noteworthy, positive effects of mycorrhizal fungi on fruit
tree growth can be detected only a few years after planting.
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FIGURE 3 | Summary of the benefits that belowground microbiota (or some of their components) may confer to tree crops.

Indeed, during the first year of a tree growing in an orchard,
it may happen that mycorrhizal fungi use some nutrients that
could nourish the tree’s own growth (Borkowska, 2002). In the
case of ectomycorrhiza associated to Salix viminalis, a stronger
growth of the plant can be already observed three months after
EMF occurrence (Hrynkiewicz et al., 2012). Beneficial effects of
mycorrhizal symbiosismay vary considerably between fungal and
plant species, and with environmental conditions (e.g., physical-
chemical soil parameters, climate, etc.).

Mycorrhizal associations of fast-growing trees play also a
key role in host tolerance to unfavorable soil conditions,
increasing phytoremediation efficiency of heavy metals and
organic contaminants (Vervaeke et al., 2003; Baum et al., 2006).
The most numerous group of EMF symbionts, along with the
highest level of EMF colonization, observed in natural stands
of tree crops, belong to orders Thelephorales (Tomentella sp.),
Pezizales (Tuber sp., Geopora sp.) and Agaricales (e.g., Hebeloma
sp., Cortinarius sp.). The mechanisms of action responsible
for tolerance of EMF to adverse environmental conditions are
not yet fully understood. Some results suggest that melanin or
thelephoric acid present in the fungal mycelium can act as a
protective interface between fungal metabolism and (a)biotic
environmental stressors. Species of Geopora have been found
to be the principal EMF symbionts of willows planted for
restoration in fly ash, with high potential to survive under
harsh environmental conditions (Hrynkiewicz et al., 2009;
Gehring et al., 2014). Ectomycorrhizal associations, dominated
by Tomentella sp., Hebeloma sp., Geopora sp. and Helotiales sp.,
were detected on the roots of willow and birch growing in saline
soils (Hrynkiewicz et al., 2015), suggesting their importance
in tolerance of host-plants to salinity. Yet, the mechanism by
which mycorrhizal fungi improve salt resistance remains unclear.
Positive effects of Glomus spp. on olive tree production and
growth were confirmed by different studies (Khabou et al., 2014;

Mechri et al., 2014). The cultivation range of this tree crop can
be limited by water scarcity as well as ubiquitous gypsum in
the soil, which is responsible for osmotic stress and the ion-
specific toxicity for plants (Khabou et al., 2014). A number of
studies have revealed that mycorrhizal symbiosis is important
for improving plant growth and nutrient uptake under saline
conditions, especially the uptake of immobile soil nutrients
as P, Cu, and Zn (Berruti et al., 2015). Inoculation of olive
plants with Glomus spp. improves growth and adaptation to arid
areas, although AMF colonization did not improve tolerance to
Verticillium wilt, one of the most important biotic constraints
affecting olive cultivation (see below), under such conditions
(Kapulnik et al., 2010).

Endophytes and Diazotrophic Bacteria
Beneficial endophytes, i.e., any microbe (mainly bacteria and
fungi) isolated from asymptomatic plant tissue (Hardoim et al.,
2015; Brader et al., 2017) represent another taxonomically
and functionally highly diverse group of microorganisms
associated with tree crops. Endophytes can promote plant
fitness and growth through phytohormones synthesis, nitrogen
fixation, phosphate solubilization, synthesis of siderophores or
reduction of ethylene levels. Some endophytes can produce active
substances with biotechnological potential such as antitumor
and antifungal agents (Bhore et al., 2013; Mercado-Blanco and
Lugtenberg, 2014; Hardoim et al., 2015). Endophytes of tree
crops can also improve the host resistance to external stresses
such as contaminants, temperature extremes, water and nutrient
limitations, salt, and pathogens (Mei and Flinn, 2010). Thus,
it has been demonstrated that some bacterial endophytes of
poplar trees can show high tolerance to trichloroethylene (TCE)
and potential for degradation of these toxic compounds, e.g.,
Methylobacterium populum BJ001 (Van Aken et al., 2004),
Pseudomonas putida W619-TCE (Weyens et al., 2010), or
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Enterobacter sp. PDN3 (Kang et al., 2012). Endophytic bacteria
of willows from the phylum Proteobacteria, particularly the
Gammaproteobacteria, increase considerably with cumulative
contamination of soils with petroleum hydrocarbon (PHC)
(Tardif et al., 2016). Finally, Proteo- and Actinobacteria from
the root endosphere and from the rhizosphere of Acer
pseudoplatanus L. show detoxifying ability in Trinitrotoluene
(TNT)-contaminated soils (Thijs et al., 2014).

Diazotrophic bacteria (N2-fixing bacteria) are ubiquitous in
the rhizosphere or inside plant tissues of both herbaceous plants
and tree crops, serving as significant sources of biologically
available nitrogen for them (Bagwell et al., 2001; Kandel et al.,
2015). The presence of diazotrophic bacteria in plant tissues
of poplar, P. trichocarpa (Torr. & A.Gray ex Hook.) Brayshaw,
and willow, S. sitchensis Sanson ex Bong., including species
of Burkholderia, Rahnella, Sphingomonas, and Acinetobacter,
was reported by Doty et al. (2009). Experiments confirmed
that inoculation of poplar with diazotrophic bacteria increases
the biomass over uninoculated control plants and the growth
promotion is more pronounced with multi-strain consortia
than with single-strain inocula (Knoth et al., 2014). The
presence of these diazotrophic microorganisms may help to
explain the ability of these tree crops to grow under nitrogen
limitation.

Certain trees and woody shrubs from the orders Fagales (e.g.,
elder, Sambucus sp., from Betulaceae, and beefwood, Grevillea
striata R.Br., from Casuarinaceae), Rosales and Cucurbitales
are known as “actinorhizal plants,” developing endosymbiotic
relationships with filamentous, Gram-positive soil bacteria from
the genus Frankia (Frankiaceae, Actinobacteria). These bacteria
can fix nitrogen (N2) both in their free-living form and as
symbionts, that is, as beneficial endophytes in root nodules
developed on their host plants (Santi et al., 2013), and many
actinorhizal plants form mycorrhizal associations. The host
plant–Frankia–mycorrhiza symbiotic interaction makes these
trees and shrubs capable of adapting to flooded land, arid regions,
contaminated soils, extreme pH and high salinity. They can,
therefore, be used for revegetation of different landscapes or for
preventing desertification (Dawson, 2008; Santi et al., 2013). For
example, actinorhizal plants from Casuarinaceae (e.g., Casuarina
equisetifolia) have been successfully used in African coastal and
desert dunes for reclamation of salt-affected soils (Diem and
Dommergues, 1990).

Nematodes
Soil nematodes have a number of beneficial and harmful
associations with tree-crops, including trophic groups which
provide fundamental services in the rhizosphere. Bacteriovorous
species play a key role in recycling nutrients and in the dispersal
of a number of bacterial groups, including rhizobia. Some
bacteriovores in Diplogasteridae may also feed on insects,
whereas some Rhabditidae evolved a specialized trophism,
feeding on endosymbiotic bacteria that they inoculate on
insect larvae, subsequently killed by the induced sepsis. EPN
and associated insect-killing bacteria are involved in the
natural regulation of many insect pests. Their practical and

commercial exploitation as biological control agents (BCA) has
been successfully achieved in many agroecosystems, including
Citrus and other tree crops (Lewis et al., 2015; Stock, 2015).
Most important associations involve two phylogenetically
distant γ-Proteobacteria, Xenorhabdus, and Photorhabdus,
that evolved a close necromenic and mutualistic association
with two EPN genera, Steinernema and Heterorhabditis,
respectively.

Some examples of metabolic or endosymbiotic interactions
favoring trees are also available for plant-parasitic nematodes.
Pochonia chlamydosporia (Figure 4) is a widespread
hyphomycete found in soil as a facultative parasite of eggs
of sedentary cyst and root-knot nematodes with a potential as a
BCA. Isolates of this fungus showed different levels of adaptation
to a wide range of nematode hosts, and in the ability to colonize
the rhizosphere or act as root endophytes (Manzanilla-López
et al., 2013). In fact, the egg parasitism seems to be correlated
with P. chlamydosporia host preference, plant compatibility,
and tolerance to abiotic factors (Vieira dos Santos et al., 2014).
Pochonia chlamydosporia has an intimate metabolic link with
roots (Rosso et al., 2014) and the potential of a P. chlamydosporia
isolate combined with benzothiadiazole or cis-jasmonate against
M. incognita has already been demonstrated (Vieira dos Santos
et al., 2013). Studies on eggs degradation and root interactions
showed changes of the fungus gene expression levels, in the
transition from saprotrophic to the parasitic stage, affecting
several metabolic functions. Genes activated after contact with
eggs included a bZIP and a phytase-like gene. Sources of P such
as phytic acid stimulated the fungal growth. Assays at varying
levels of pH or glucose and NH+

4 also showed early changes in
the fungus metabolism (Rosso et al., 2011, 2014).

Data indicate that P. chlamydosporia plays a role in plant
nutrition. Both nematode parasitism and nutrient mobilization
are indicative of multiple potential benefits related to this fungus.
Gene expression data on colonized barley, Hordeum vulgare L.,
revealed the production of many enzymes such as proteases,
hydrolases and carbohydrate esterases (Larriba et al., 2014),
suggesting a multilateral relationship with roots and nematodes.
Considering the phylogenetic proximity of P. chlamydosporia
to Metarhizium spp. (Larriba et al., 2014), with the ecology
and metabolism of the latter species, some similarities may be
inferred. In its endophytic phase, Metarhizium spp. provide to
the plant nutrients subtracted by insects feeding on roots, when
they are acting as entomopathogens, as shown using radio-
labeled compounds (Behie et al., 2012). Although a similar
behavior has not yet been demonstrated in P. chlamydosporia,
it seems plausible that endophytism and parasitism may
be part of a complex behavior, involving the transport of
nutrients back to nematode-damaged roots. Further studies are
needed to elucidate these patterns. In spite of the widespread
occurrence of P. chlamydosporia in the rhizosphere of many
perennial crops, no information exists on its role in the soil
microbiota, either under controlled or field conditions. These
studies would require long-lasting experiments on the changes
in soil metagenome or root transcriptome, an effort not yet
afforded.
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FIGURE 4 | Chlamydospores of the nematode parasitic and root endophytic hyphomycete Pochonia chlamydosporia showing their persistent cellular structure

(A). Hyphae emerging from killed root-knot nematode eggs, in vitro (B). The aquatic fungus Catenaria anguillulae (C) is one of the most common parasites of

nematodes (in the picture inside Xiphinema sp.) killing its hosts in a few hours. However, in spite of its ubiquity and polyphagy, and due to the zoospores dependence

on water for host attachment, a persistent regulation of phytoparasitic nematodes is seldom observed.

Negative Effects
Although the belowground microbiota is crucial for the health
of fruit, nut and SRF crops and timber trees, some members
of soil microbial communities present in these agro-ecosystems
have negative effects on their hosts (Table 2). On the one hand,
the soil may contain inoculum sources of aboveground plant
pathogens. On the other hand, the soil/rhizosphere microbiota
also harbors a range of soil-borne plant pathogenic agents.
Besides the prokaryotes Rhizobium radiobacter and R. rhizogenes
(Rhizobiaceae, Rhizobiales, Proteobacteria, formerly known as
Agrobacterium tumefaciens and A. rhizogenes, respectively)
capable of inducing tumor formation in many economically
relevant tree crops (Hwang et al., 2015), the most important
negative effectors of tree health in the soil microbiota are
fungus-like organisms (i.e., oomycetes) and higher fungi. A brief
overview of the most relevant is presented below.

Harmful Oomycetes
Phytophthora spp. are fungus-like microorganisms belonging
to the Pythiaceae family of Peronosporales (Oomycetes,
Heterokontophyta, Chromalveolata) and can reproduce both
asexually by chlamydospores, or flagellated zoospores moving
in soil water, and sexually in the form of oospores (Erwin
et al., 1983). Most of the Phytophthora species are considered
soilborne pathogens, and several representatives of the genus
are known to cause devastating economic losses to various
tree crops worldwide (Supplementary Table 1). Phytophthora
species also cause significant damage in nurseries and can be

spread from infested nursery stocks into tree plantations and
forests (Jung and Burgess, 2009). Phytophthora spp. are known
to cause various diseases (e.g., root and collar rot, stem canker,
branch and foliar dieback) in natural and planted forests (pine,
larch, Larix spp. Philip Miller, cypress, family Cupressaceae, oak,
Quercus spp., beech, alder, etc.), fruit and nut crops including
avocado, Persea americana Mill., apple, pineapple, Ananas
comosus (L.) Merr., peach, citrus, cocoa, Theobroma cacao L.,
almond, Prunus dulcis (Mill.) D.A. Webb, pomegranate, Punica
granatum L., fig, Ficus carica L., pistachio, Pistacia vera L., and
cinnamon, Cinnamomum verum J. Presl (Supplementary Table
1). Species like Ph. alni, Ph. lateralis or Ph. quercina are more
specialized, while others (e.g., Ph. cinnamomi, Ph. niederhauserii,
Ph. palmivora, or Ph. plurivora) display a wide host range.

The genus Pythium from the Pythiaceae family, commonly
occurring in forest nursery soils, also harbors important
soilborne pathogens causing damping off of tree seedlings
and root rot of mature trees. The life cycle of Pythium
species is similar to that of Phytophthora. A study conducted
on seedlings of Douglas-fir, Pseudotsuga menziesii (Mirb.)
Franco, demonstrated that besides Py. aphanidermatum, Py.
irregulare, Py. debaryanum, Py. sylvaticum, and Py. ultimum,
the species Py. mamillatum can also cause seedling damping-
off, while others, e.g., Py. dissotocum, Py. aff. macrosporum,
Py. aff. oopapillum, Py. rostratifingens, may be responsible for
seedling loss (Weiland et al., 2013). Pythium ultimum and Py.
aphanidermatum were also known to infect seedlings of tropical
tree species (Augspurger and Wilkinson, 2007). The species
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TABLE 2 | Examples for the most relevant microorganisms affecting tree crops as soil-borne pathogens.

Microbial pathogens Host trees Diseases References

BACTERIA

Rhizobium radiobacter (syn.

Agrobacterium tumefaciens)

Various fruit trees Crown gall disease (tumor formation) Hwang et al., 2015

STRAMENOPILES

Phytophthora spp. Various fruit and nut crops, forest trees Various diseases including stem, root

and/or collar rot, ink disease, dieback

see Supplementary Table 1.

P. ultimum, P. aphanidermatum Tropical tree species Damping off of seedlings Augspurger and Wilkinson, 2007

Pythium ultimum, P. vexans,

P. irregulare, P. sylvaticum

Apple (Malus domestica) Apple replant disease Tewoldemedhin et al., 2011;

Shin et al., 2014

P. vexans Rubber tree (Hevea brasiliensis) Patch canker Zeng et al., 2005

P. undulatum Abies procera, Douglas fir (Pseudotsuga menziesii) Root rot Weber et al., 2004

Various Pythium spp. Douglas fir Damping off of seedlings Weiland et al., 2013

ASCOMYCETES

Verticillium dahliae, V. albo-atrum Cork tree (Quercus suber), cherry (Prunus sp.), elder

(Sambucus sp.), elm (Ulmus spp.), maple (Acer

spp.), oak (Quercus spp.), olive (Olea europaea),

peppertree (Schinus molle), pistachio (Pistacia vera),

plum (P. domestica), smoke tree (Cotinus spp.),

walnut (Juglans spp.)

Vascular wilt disease Berlanger and Powelson, 2000

Fusarium oxysporum f. sp.

passiflorae

Passion fruit (Passiflora spp.) Vascular wilt disease Ploetz, 2006

Rosellinia necatrix Apple, apricot (Prunus armeniaca), avocado (Persea

Americana), citrus (Citrus spp.), pear (Pyrus sp.)

White rot Pérez-Jiménez, 2006

Ophiostoma ulmi, Ophiostoma

novo-ulmi

Elm Dutch elm disease D’Arcy, 2000

Cryphonectria parasitica Chestnut (Castanea spp.) Chestnut blight Anagnostakis, 2000

BASIDIOMYCETES

Armillaria mellea, A. ostoyae,

A. luteobubalina

Conifers, fruit, and nut trees Root disease Baumgartner et al., 2011

Rhizoctonia spp. Conifers Root damage and damping-off of

seedlings

Mazzola, 1997

R. solani Apple Root rot Mazzola, 1997

Heterobasidion annosum Conifers Root and butt rot disease Asiegbu et al., 2005

Py. ultimum, Py. vexans, Py. irregulare and Py. sylvaticum are
associated with the worldwide occurring apple replant disease
complex (Tewoldemedhin et al., 2011; Shin et al., 2014). Pythium
vexans is a pathogen of rubber tree (Hevea brasiliensis Muell.
Arg.) (Zeng et al., 2005), while Py. undulatum was identified
as the causal agent of a devastating root rot disease of the
Christmas tree Abies procera Rehd and Douglas fir [Pseudotsuga
menziesii (Mirbel) Franco] in Northern Germany (Weber et al.,
2004).

Deleterious Fungi Affecting Tree Crops
Among the higher fungi, important soilborne tree pathogens
can be found both in Ascomycota and Basidiomycota. The
most important ascomycetous soilborne pathogens causing wilt
diseases of tree crops belong to the genera Verticillium and
Fusarium. The economically most relevant member of the genus
Verticillium (Plectosphaerellaceae, incertae sedis, Ascomycota)
causing wilt diseases in tree crops is V. dahliae (Hiemstra and
Harris, 1998; Berlanger and Powelson, 2000). Microsclerotia
ensure the persistence of the fungus in soils for many years

without susceptible hosts. In their presence, microsclerotia
germinate in response to root exudates and the germinating
hyphae penetrate the root, colonize the cortex and enter the
xylem vessels, where the fungus is spread further by conidia (Pegg
and Brady, 2002). Among many others, susceptible tree hosts of
V. dahliae include elm, Ulmus spp., cork tree, Quercus suber L.,
elder, maple, Acer spp., oak, pepper tree, Schinus molle L., olive,
smoke tree, Cotinus spp., cherry, plum, pistachio and walnut,
Juglans spp. (Hiemstra and Harris, 1998).

Fusarium wilt is a vascular disease similar to Verticillium
wilt. The disease is caused by members of the F. oxysporum
species complex (FOSC, Nectriaceae, Hypocreales, Ascomycota),
producing macro- and microconidia and chlamydospores
allowing survival in the soil and plant debris. For instance,
F. oxysporum f. sp. passiflorae causes wilt disease in
passion fruit, Passiflora edulis Sims (Ploetz, 2006). Further
important ascomycetous pathogens of trees include Rosellinia
necatrix (Xylariaceae, Xylariales) causing white rot in
several hosts including apples, apricots, avocados, pears
and citruses (Pérez-Jiménez, 2006), Ophiostoma ulmi and
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O. novo-ulmi (Ophiostomataceae, Ophiostomatales), the
causal agents of the Dutch elm disease (D’Arcy, 2000) and
Cryphonectria parasitica (Cryphonectriaceae, Diaporthales)
causing the blight of chestnut, Castanea spp. (Anagnostakis,
2000).

Concerning the basidiomycete fungi, the most relevant
soil-borne tree pathogens from an economical point of
view are the honey mushrooms from the genus Armillaria
(Physalacriaceae, Agaricales, Basidiomycota), causing root
diseases in fruit trees (e.g., Citrus, Malus and Prunus species),
nut crops (e.g., Juglans spp.) and timber trees (e.g., Abies,
Picea, Pinus, and Pseudotsuga spp.) in both hemispheres
of the world under temperate, boreal and tropical climates
(Baumgartner et al., 2011). The most virulent species are A.
mellea, A. ostoyae, and A. luteobubalina. Mycelia of Armillaria
species are able to survive for several years in woody residual
roots even after the removal of infected trees, which serve
as inoculum for the infection of the next crop. During their
infection cycle, Armillaria species can grow in contact with
the host in the form of rhizomorphs - root-like multicellular
structures of clonal dispersal enabling the achievement of
immense colony sizes (Sipos et al., 2017)- which employ a
combination of mechanical force and extracellular enzymes to
penetrate root bark (Baumgartner et al., 2011). The mycelium
is then colonizing the cambium of the living roots, killing
the root tissues and utilizing them for nutrition. The fungus
forms white, thick mats of mycelia beneath the bark of
infected roots. Further symptoms of the diseased plants
include dwarfed foliage, wilting, premature defoliation and
stunted shoots in the case of conifer hosts, while dwarfed
fruits can be observed in the case of fruit and nut crops.
After the death of the host, Armillaria switches from parasitic
to saprophytic phase and persists in the rhizosphere as a
white-rotting fungus (Baumgartner et al., 2011). Rhizoctonia
species (Ceratobasidiaceae, Cantharellales, Basidiomycota) are
worldwide-distributed soil fungi with the capability to produce
sclerotia overwintering in the soil. Members of this genus bear
significant plant pathogenic potential and a wide host range
including conifers, where the fungus may cause root damage and
damping-off of seedlings (Hietala and Sen, 1996). Rhizoctonia
solani is known to cause root rot in apple orchards (Mazzola,
1997). Relevant soil-borne basidiomycetous tree pathogens
also include Heterobasidion annosum (Bondarzewiaceae,
Russulales) causing root and butt rot disease of conifers
(Asiegbu et al., 2005).

HARNESSING BENEFICIAL COMPONENTS
OF BELOWGROUND MICROBIOTA TO
SUSTAIN TREE CROPS

The soil targets for protection of tree crop plantations by
means of biocontrol approaches include bacterial and fungal
pathogens, nematodes and insect larvae (Cazorla and Mercado-
Blanco, 2016). Root and rhizosphere microbiota of healthy
fruit, nut, and timber trees are rich and powerful sources of
BCA (Aranda et al., 2011). Below we present an overview of

representative examples of BCA used against relevant biotic
constraints of tree crops. Regarding biocontrol approaches
implemented against soil-borne pathogenic bacteria infecting
trees, the success of the non-pathogenic R. radiobacter strain
K84 (formerly known as Agrobacterium radiobacter K84)
to control crown gall caused by pathogenic R. radiobacter
strains (formerly known as A. tumefaciens) in different
agroecosystems worldwide has been impressive. Interested
readers can consult, for instance, the reviews by Moore (1988)
and Kerr (2016).

Biocontrol-Based Tools Against
Deleterious Oomycetes
Due to the substantial economic damage caused by fungus-
like organisms, there is an emerging need for large-scale
screening efforts and the development of biocontrol strategies
against oomycete tree pathogens. Among prokaryotes, the most
promizing taxa with potential as BCA of oomycetes are within the
genus Pseudomonas (Gammaproteobacteria, Pseudomonadales,
Pseudomonadaceae) (Mercado-Blanco, 2015) and the order
Bacillales (Firmicutes) (Borriss, 2015). Examples of bacteria-
based biocontrol of woody crop diseases caused by Phytophthora
spp. include field studies performed in citrus orchards against Ph.
parasitica using P. putida 06909, a biocontrol strain capable of
actively colonizing the hyphae of Phytophthora spp. (Steddom
et al., 2002). Acebo and colleagues isolated 127 rhizobacteria
from the rhizosphere of cocoa, identifying three strains of
P. chlororaphis with both in vitro and direct antagonistic
potential against the black pod rot pathogen Ph. palmivora.
The biosurfactant viscosin was found to be crucial for the
motility and biofilm formation of P. chlororaphis. Even though
the involvement of viscosin in antagonism against Phytophthora
was not demonstrated, its possible role in the bioprotection of
T. cacao was suggested (Acebo-Guerrero et al., 2015). The ability
of Bacillus amyloliquefaciens (Firmicutes, Bacillales, Bacillaceae)
strain HK34 to induce systemic resistance in ginseng to Ph.
cactorum suggests that this species may have potential also in the
management of other tree diseases caused by the same pathogen
(Lee et al., 2015).

Besides bacteria, the ascomycete Trichoderma (Hypocreales,
Hypocreaceae) is also a powerful source of potential BCA against
oomycete tree pathogens. Thus, the mycoparasitic activity of
T. virens was shown to be involved in the control of Pythium.
ultimum (Djonović et al., 2006), while the antagonistic potential
of strains T. virens T7, T. harzianum T40, T. asperellum T54 and
T. spirale T4 was demonstrated against Ph. palmivora (Mpika
et al., 2009). Trichoderma saturnisporum was recently found to
improve plant quality and showed biocontrol activity against
Phytophthora spp., including Ph. parasitica (Diánez Martínez
et al., 2016).

Biological Control of Soil-Borne
Phytopathogenic Fungi Causing Vascular
Diseases
Soil-borne fungi causing vascular diseases are also important
threats to plants, including woody hosts. Pathogenic
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representatives of Verticillium spp. pose a serious risk in
many agro-ecosystems worldwide (Pegg and Brady, 2002;
Inderbitzin et al., 2011). Verticillium wilts are among the most
threatening biotic constraints for tree crops in many areas
(Hiemstra and Harris, 1998). Biological control exerted by
soil-borne beneficial microorganisms can be useful to confront
the disease, particularly when applied as a preventive measure
(Mercado-Blanco et al., 2004). One of the best examples in which
effective BCA have been identified, characterized and successfully
used is the case of Verticillium wilt of olive (VWO) caused by
V. dahliae Kleb (López-Escudero and Mercado-Blanco, 2011).
Strains of Pseudomonas spp. have been isolated from the olive
rhizosphere (and elsewhere), and proved to suppress VWO in
young, nursery-produced plants (Mercado-Blanco et al., 2004;
Sanei and Razavi, 2011; Triki et al., 2012; Gómez-Lama Cabanás
et al., 2018). One of the best known BCA against VWO is P.
fluorescens PICF7 (Prieto et al., 2009; Martínez-García et al.,
2015). This strain is a natural inhabitant of the olive rhizosphere
and endophytically colonizes olive root tissues (Prieto and
Mercado-Blanco, 2008; Prieto et al., 2011). While our knowledge
about the traits of strain PICF7 involved in both endophytism
and biocontrol is scarce (Maldonado-González et al., 2015),
results have shown that olive root colonization by this bacterium
triggers broad transcriptomic changes, both at local (roots)
and systemic (aboveground tissues) level (Schilirò et al., 2012;
Gómez-Lama Cabanás et al., 2017). Many of these changes
are related to defense responses to different (a)biotic stresses
and may shed light on why this endophyte is recognized by
the host as a non-hostile colonizer and provide clues on the
underlying mechanisms of its biocontrol activity. However,
while aboveground defense responses are induced upon strain
PICF7 root colonization, they are not effective to control
another relevant olive pathogen, Pseudomonas savastanoi pv.
savastanoi causing olive knot disease (Maldonado-González
et al., 2013). Furthermore, where and when strain PICF7 is
applied in the olive root system seems to be crucial for the
effective suppression of VWO (Gómez-Lama Cabanás et al.,
2017). Other soil-borne microorganisms have been studied and
used as effective antagonists and/or BCA against V. dahliae,
such as the bacteria Serratia plymuthica HRO-C48 (Müller et al.,
2007) and Paenibacillus alvei K165 (Markakis et al., 2016), or the
fungi T. harzianum CECT 2413 (Ruano-Rosa et al., 2016) and T.
asperellum T25 and Bt3 (Carrero-Carrón et al., 2016). The report
by Markakis et al. (2016) demonstrated for the first time an
effective biocontrol of VWO under field conditions, a scenario
not frequently explored in biocontrol research, particularly with
trees (Cazorla and Mercado-Blanco, 2016). A recent review
highlights all desirable traits that a BCA should have to confront
pathogenic Verticillium spp., including those ones affecting
tree crops. Similar requisites can likely be taken into account,
when considering other soil-borne fungal phytopathogens
(Deketelaere et al., 2017).

Additional prominent examples of biological control of tree
pathogenic ascomycetes are the application of V. albo-atrum for
the control of Dutch elm disease caused by O. ulmi and O. novo-
ulmi (Scheffer et al., 2008; Postma and Goossen-van de Geijn,
2016), the exploitation of the hypovirulence phenomenon in the

case of a dsRNA mycovirus-harboring strain of C. parasitica
against chestnut blight (Milgroom and Cortesi, 2004) or the
possibility of using fungi (Trichoderma species) or bacteria (P.
fluorescens, Bacillus subtilis) for the control of avocado white root
rot caused by R. necatrix (Sztejnberg et al., 1987; Cazorla et al.,
2006, 2007; Ruano-Rosa and López Herrera, 2009).

Biological Control of Other
Phytopathogenic Fungi
Amongst the soilborne basidiomycete pathogens of fruit and nut
crops and timber trees, the main targets of biocontrol efforts
are members of the genus Armillaria. BCA of Armillaria act
through the limitation of the pathogen to—or elimination from—
the already occupied substrate, and prevention of rhizomorph
and mycelium development (Fox, 2003). Potential Armillaria
antagonists include Trichoderma species: scanning electron
microscopy studies revealed that some Trichoderma strains
are able to attack and penetrate the outer tissue of the
rhizomorphs, killing Armillaria hyphae after coiling and direct
penetration (Dumas and Boyonoski, 1992; Pellegrini et al.,
2012). Other fungi antagonistic toArmillaria include Rhizoctonia
lamellifera that prevents the pathogen from colonizing tea roots,
Scytalidium lignicola and its toxin scytalidin inhibitingArmillaria
growth in vitro, Phlebiopsis gigantea and Pleurotus ostreatus
capable of excluding Armillaria from its substrates, Coriolus
versicolor, Stereum hirsutum, and Xylaria hypoxylon reducing the
stump colonization byArmillaria, and cord-forming saprotrophs
acting as competitive antagonists (Fox, 2003). The method
based on isotope ratio mass spectrometry developed to study
trophic interactions between A. mellea and fungal/bacterial
antagonists is a promizing tool for the screening of further
potential BCA (Pellegrini et al., 2012). Further examples for
the biological control of tree pathogenic basidiomycetes are
the application of forest soil-derived Streptomyces spp. or P.
gigantea (Basidiomycota, Polyporales, Phanerochaetaceae) to
control H. annosum causing root and bud rot of conifers (Lehr
et al., 2008; Sun et al., 2009).

Biological Control Strategies Against
Nematode and Insect Pests
Some specific and effective nematode antagonists such as
Pasteuria spp. have been reported on tree crops, and their
regulatory role described as well (Ciancio, 1995; Ciancio et al.,
2016). As concerns the role of bacteria in nematode and insect
management (see below), it is worth mentioning that our
knowledge about several lineages is still very limited (Roesch
et al., 2007).

In most cases, nematodes play different roles in soil food
webs, acting as preys, predators, saprotrophs, or feeding on
bacteria, fungi, roots or other invertebrates (Figure 2). Their
association with tree roots and endoparasites, such as Pasteuria
spp., can be monitored through the collection of time series
data on host density and prevalence. Pasteuria spp. have a very
narrow host specificity, due to an obligate parasitic behavior.
Their persistence in soil is due to the presence of durable
endospores, which are also the infective propagules. Through
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this strategy these bacteria reduce their competition with other
soil bacteria, confining their vegetative growth in the small
microhabitat provided by the nematode body. This food web can
persist for 20 years, as experimentally shown on a citrus grove
in Southern Italy (Ciancio et al., 2016). In a different study on
Xiphinema diversicaudatum-peach and Pasteuria sp. carried out
in Piedmont, the food web persisted for at least 15 years. The
nematode is a virus vector, and its population was also targeted
by a predatory nematode (Discolaimus sp.), which in turn hosted
a distinct Pasteuria sp. After trees have been removed from the
parcel of study, the nematodes and Pasteuria associations were
found 20 years later in other adjacent fields, suggesting a local
endemism due to soil movement by farmers or water flows, and
to the presence of natural reservoirs.

Until the late 1980’s, many nematode pests were mostly
managed by pesticides or soil fumigants. However, the use of
nematicides raised several concerns for their potential harm to
farmers, consumers, and damage to the environment (wildlife,
water or soil pollution). Attention has thus been given to
the effects of biological components of the rhizosphere on
nematodes. Bacterial and fungal components of tree rhizosphere
microbiota can also be exploited as BCA of phytoparasitic and
soil-dwelling nematodes and insect larvae damaging forests and
tree plantations. Predation and parasitism arose several times
during the evolution of early eukaryotes and may be found
among aquatic fungi, ascomycetes, and basidiomycetes. Aquatic
fungi such as Catenaria anguillulae orMyzocitium spp. penetrate
the nematode cuticle through motile zoospores that adhere to
the host. After an encystation stage, colonization of the host
body occurs through germinating thalli. While these species have
specific parasitic habits and can regulate nematodes in a humid
and wet soil environment, their regulatory potential appears,
however, limited depending on high soil water content (Singh
et al., 2007).

Many hyphomycetes like Arthrobotrys or Drechslerella spp.
(Ascomycota, Orbiliaceae) produce hyphal traps or nets that
actively capture and/or attract passing nematodes. This character
arose through adaptive evolution in two distinct lineages, one
trapping through constricting rings and the other by adhesive
nets (Yang et al., 2007). Other parasitic strategies developed by
hyphomycetes include the direct, passive adhesion of infective
conidia to the nematode cuticle, with germinating hyphae
penetrating the host to develop a lethal infection. These strategies
are found in species such as Hirsutella rhossiliensis (anamorph
of Cordiceps sp.), Meria coniospora or Nematoctonus spp., the
latter a teleomorph ofHohenbuehelia (Basidiomycota, Agaricales,
Pleurotaceae). Nematoctonus also shows the production of
toxins by the germinating conidia, which reduce the host
movement, thus lowering the probabilities of an early loss of
the infective propagule (Giuma and Cooke, 1971). Paecilomyces
(Purpureocillium) lilacinus may degrade nematode eggs and
regulate their density, due to the activity of several chitinolytic
and proteolytic enzymes. The latter provides the fungus a strong
keratinolytic activity, a trait supporting its pathogenicity to
superior animals, including man.

Pochonia chlamydosporia is also a root endophyte that may
elicit several defensive pathways after colonization, without

induction of any visible root damage (Maciá-Vicente et al., 2009;
Ciancio et al., 2013; Rosso et al., 2014; Larriba et al., 2015). This
behavior is indicative of a long-term evolutionary adaptation
to the rhizosphere environment, exploiting strategies involving
multitrophic relationships with the plants and other rhizosphere
organisms.

Finally, pine wilt disease is caused by the pinewood nematode
Bursaphelenchus xylophilus, leading to the death of susceptible
pine trees. In order to control this disease, a few studies
have been performed using chemical or biological compounds
(Proença et al., 2017b). Several strains were reported to produce
extracellular compounds with nematicidal activity, among which
Serratia marcescens A88copa13 that produces an extracellular
serine protease as the major key factor toward the nematode
(Paiva et al., 2013).

Although most of the insect damage to fruit and nut crops
and forest trees can be attributed to their herbivoural defoliating
activity, a few of them are also important as soil-borne pests
because their larvae feeding on the roots. An example of EPN
impact and the regulatory role played in soil food webs is the
biocontrol and management of Diaprepes sp. and other root-
weevils infesting citrus and other perennial crops in Florida
(Campos-Herrera et al., 2013, 2015). Other relevant examples are
the larvae of May bugs (also known as white grubs), especially
those of the forest cockchafer (Melolontha hippocastani), a species
widely distributed in Eurasia. Besides EPN like Steinernematidae
and Heterorhabditis spp. (Woreta, 2015), larvae of the forest
cockchafer are subjected to infections by entomopathogenic
fungi (e.g., Beauveria brongniartii) and bacteria (like Bacillus
popilliae var.melolonthae or B. thuringiensis).

In the case of B. brongniartii, cereal grains infected with
mycelia is the most frequent formulation used for the control of
M. hippocastani. However, as summarized by Woreta (2015), the
field performance of this biocontrol strategy revealed ambiguous
results during several attempts since the 1880s in France, Poland,
Italy, Switzerland, and Germany. This situation can be explained
by difficulties of introducing and blending infected grains with
the soil, especially around young trees where the abundance
of cockchafer grubs is expected. Although it was shown that,
under field conditions, grub population can be decreased to a
harmless level by the application of an adequate B. brongniartii
formulation thoroughly mixed with soil and applied at sufficient
air temperature and humidity, B. brongniartii has not been
authorized in the EU for use in commercial plant protection
products (Woreta, 2015).

Among bacteria, B. popilliae var. melolonthae, the causal
agent of the milky disease, has also been studied as a
potential BCA of cockchafer grubs (Franken et al., 1996).
The disease incidence increased when the grubs were infected
simultaneously with B. popilliae and B. brongniartii, which is
possibly due to synergistic effects between the two pathogens,
suggesting the possibility of integrated biological control.
Highly pathogenic B. thuringiensis subsp. tenebrionis and B.
weihenstephanensis strains, isolated from larvae of the common
cockchafer M. melolontha (Kati et al., 2007; Sezen et al.,
2007), or Serratia species, causing feeding discontinuation of
M. hippocastani larvae (Jackson and Zimmermann, 1996), may
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be valuable as BCA of cockchafer white grubs damaging tree
roots.

Inconsistencies and Risk Assessment in
Biological Control of Tree Crops
Inconsistent field performance is one of the major challenges
in the application of beneficial microorganisms as BCA and/or
plant growth promoters (Weller et al., 1995). It is even more
complex in the case of trees because of their own idiosincracy
(Cazorla and Mercado-Blanco, 2016). Inconsistency can be
the result of various abiotic and biotic factors (Meyer and
Roberts, 2002). Physicochemical properties of the rhizosphere
(temperature, pH, water availability, chemical composition)
are parameters varying both in space and time, which have
substantial influence on the performance of plant growth
promoting and biocontrol microorganisms: an individual agent
can have different activities in different soil environments.
One of the possible approaches to counteract inconsistencies
under different environmental conditions is the development of
strategies based on more than just a single beneficial organism.
The combined application of wide-spectrum BCA with efficient
plant growth promoting microorganisms has the potential to
reach the increased consistency of performance over a wider
range of soil conditions. A recent example was presented by
Imperiali et al. (2017), who applied Pseudomonas bacteria, AM
fungi and EPN to improve wheat performance. Moreover, the
application of entire, well-characterized, complex microbiota
may further improve the efficiency of soil-borne pathogen
management and other biotic constraints (Gopal et al., 2013;
Berg et al., 2014; Kowalski et al., 2015). Other examples are the
effect of chemically andmicrobiologically characterized vegetable
compost in oak seedlings on decline caused by Ph. cinnamomi
(Moreira et al., 2010), and the efficiency of organic amendments
(yard waste and almond shells) to avocado crops in suppression
of the white root rot fungus, R. necatrix (Bonilla et al., 2015).
Based on their results these authors suggested that organic
amendments can be useful cultural practices to reduce the impact
of the pathogens.

Although sophisticated and ecologically “intelligent”, many
fungi acting as predators or parasites show a reduced biocontrol
efficacy for pests such as root-knot (Meloidogyne spp.), cyst
(Heterodera spp., Globodera spp.) or other nematode species,
once applied to soil as bioformulations (Jaffee, 1992; Kluepfel
et al., 2002; Castillo et al., 2010). The reasons for such low
performance may depend on several factors, including the
inhibition by the resident soil microflora, the evolution of low
virulence traits allowing the maintenance of the host population,
or the capacity of most fungi to grow on a wide range of
substrates, using nematodes as additional food sources. Other
factors are related to density-dependent relationships established
with their hosts, as shown for H. rhossiliensis on M. xenoplax
on peach or for other fungi parasitic on nematode eggs on
kiwi (Jaffee et al., 1989; Roccuzzo et al., 1993). A further factor
concerns the evolution of more complex adaptative behaviors, as
in the case of the egg parasite P. chlamydosporia (Figure 4). This
parasite produces specific enzymes allowing the lysis of the egg

cuticle and vitelline layers, a step followed by the egg colonization
through an appressorium and growing hyphae. This fungus has
been reported as a highly-effective BCA, displaying specificity
for the nematode species from which the isolates were obtained
(Manzanilla-López et al., 2013).

Lastly, when planning the application of a biocontrol strategy,
a thoroughly performed risk assessment is necessary. The
EU policy support action REBECA (Regulation of Biological
Control Agents) aims to review the possible risks of biocontrol
agents (http://www.rebeca-net.de/?p=999). BCA may have
negative effects on beneficial, non-target organisms (e.g.
mycorrhizal fungi) or other crops. For example, although
many Trichoderma species are considered as potential BCA
for the protection of both herbaceous and woody plants,
certain members of the genus, e.g., T. aggressivum,T. pleurotum
and T. pleuroti, represent a risk to commercial mushroom
production where they can cause green mold disease (Hatvani
et al., 2008; Kredics et al., 2010) or to human health, with
T. longibrachiatum as a potential opportunistic human pathogen
(Hatvani et al., 2013). The application of these Trichoderma
species for biocontrol purposes should, therefore, be carefully
monitored.

Coping With Abiotic Stresses and
Phytoremediation
Tree crops used in SRF aiming to biomass production (e.g., Salix
spp. and Populus spp. and their hybrids) have been successfully
used as sustainable solutions to recover contaminated soil
(Licht and Isebrands, 2005; Zalesny et al., 2016). Phyto-assisted
bioremediation, or phytoremediation, is an in situ treatment
of contaminated soils, which relies on complex interactions
established between roots and soil microorganisms in the
rizhosphere (Wenzel, 2009). In this microhabitat, bacterial
communities can respond promptly to pollutant occurrence,
promoting organic contaminant degradation and/or inorganic
phyto-containment (Simpson et al., 2009). Bioaugmentation of
soils with selected microorganisms can significantly increase
efficiency of phytoremediation (Złoch et al., 2017). The
synergistic action between the tree root system and the natural
belowground microbiota makes it possible to remove, convert, or
contain toxic substances in soils.

Beyond the contaminant removal, an overall soil quality
improvement is observable in terms of soil carbon sequestration,
increased nutrient content, recycling and biomass production
for energy purposes. Poplar is one of the most used tree
crops for stimulating (e.g., through root exudates production,
oxygen transport) bacterial degradation of persistent organic
contaminants (e.g., polychlorinated biphenyls - PCB) and phyto-
containment of inorganic ones (heavy metals) in the rhizosphere
(Gamalero et al., 2012; Ancona et al., 2017). However, other
tree species have been successfully applied for this purpose
such as willow (Salix spp.), eucalyptus, black locust (Robinia
pseudoacacia Simpson et al., 2009) and Corylus spp. for metal
and metalloid phyto-containment (Radojevic et al., 2017).
Although bacteria and archaea are the only groups within
the plant microbiota able to transform and mineralize organic
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FIGURE 5 | A strategy to manage biotic constraints affecting tree crops (i.e., pathogens, pests, invasive species) based on the identification, characterisation and

harnessing of soil/root microbiota [based on a conceptual framework by Kowalski et al. (2015)].

contaminants, their huge metabolic potential remains to be
explored.

CONCLUDING REMARKS: TOWARD
MICROBIOTA-ASSISTED MANAGEMENT
STRATEGIES

Belowground microbial communities associated with tree crops
are key factors for their growth, development, and health,
particularly under non-favorable soil conditions. They decisively
contribute to enhanced productivity, improve accessibility to
low-abundant nutrients, cope with a range of (a)biotic stressors
that affect their associated hosts, and also play an important role
in phyto-assisted biodegradation of toxic compounds present in
soils. Until now, how belowground microbiota contribute to the
fitness of tree crop agro-ecosystems, remains largely unknown
and only now it is starting to be unraveled in detail. The four
fundamental questions to better understand these associations
are: who are there? what are they doing? who is active out there?
and how do activities of these microorganisms relate to ecosystem
functions? (Amann, 2000; Leveau, 2007). The answers to these
questions, based on an in-depth knowledge of the structure
and functioning of belowground communities, will constitute
the pillars to develop holistic management strategies aiming
to cope with the range of (a)biotic constraints affecting tree
crops (Figure 5). The relationship between soil-borne microbes
and tree crops is delicate and complex and can have either
positive or negative effects on the host. It can be assumed that

benefits derived from the interaction of tree crops with beneficial
belowground (micro)organisms are expected to yield similar
outcomes in aboveground ecosystems than those observed, and
more frequently investigated, in herbaceous, short-living species.
Moreover, the associations established with trees are expected
to be more stable, enduring along time, although variations
in composition, structure, and functioning do occur, likely in
a cyclic manner. These are subjected to a broad range of
genetic, (a)biotic and environmental cues and factors. In this
sense, integrated “omic” analyses, combining metagenomics,
metatranscriptomics, metaproteomics, and metabolomics, are
now providing a more accurate view of the activities and
the physiological potential of belowground plant-associated
microbiota (Zhang et al., 2010; Knief, 2014).

Studies on tree crop production and diseases have thus
far historically relied on single microbe-based formulations or
focused on single species (the pathogen), while little attention has
been paid to the use of consortia of beneficial microorganisms or
to investigate many other microorganisms most likely present in
the infection sites. One way to assist tree crop production might
be to integrate beneficial plant microbiota or use ad hoc tailored
microbiota to target specific deleterious agents (Gopal et al.,
2013; Kowalski et al., 2015; Pinto and Gomes, 2016; Berg et al.,
2017; Figure 5). Due to the complexity of tree crop ecosystems—
dominated by vegetal species displaying peculiarities such as large
biomass, complicated anatomy, large root systems, longevity,
and the large spatial domains and timescales over which tree
crops are grown –management options such as soil amendments,
intercropping and soil processing can be applied by farmers.
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Once again, the currently-available multi-omic tools, combined
with other methodological approaches, will provide a much
better knowledge on the complex network of trophic interactions
taking place at the soil/root level (Massart et al., 2015). A
more-in-depth analysis of these interactions could be of crucial
importance in designing new and effective microbial consortia
for optimizing plant production and developing new strategies
for disease control. In conclusion, a more holistic approach to
tree crop agriculture is needed. Understanding the microbial
diversity, distribution, activity, and function, and linking the
microbial community structure with both environmental factors
and ecosystem functioning, are major challenges for the
soil/plant microbiology science in this century.
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