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Members of the Fusarium solani species complex (FSSC) are the most frequently isolated

fusaria from soil. Moreover, this complex solely affects more than 100 plant genera,

and is also one of the major opportunistic human pathogenic filamentous fungi, being

responsible for approximately two-third of fusariosis cases. Mycotic keratitis due to

Fusarium species is among the leading causes of visual impairment and blindness

in South India, but its management is still challenging due to the poor susceptibility

of the isolates to conventional antifungal drugs. Aims of the present study were to

isolate South Indian clinical and environmental FSSC strains and identify them to species

level, to determine the actual trends in their susceptibilities to antifungal therapeutic

drugs and to compare the virulence of clinical and environmental FSSC members.

Based on the partial sequences of the translation elongation factor 1α gene, the

majority of the isolates—both from keratomycosis and environment—were confirmed

as F. falciforme, followed by F. keratoplasticum and F. solani sensu stricto. In vitro

antifungal susceptibilities to commonly used azole, allylamine and polyene antifungals

were determined by the CLSI M38-A2 broth microdilution method. The first generation

triazoles, fluconazole and itraconazole proved to be ineffective against all isolates tested.

This phenomenon has already been described before, as fusaria are intrinsically resistant

to them. However, our results indicated that despite the intensive agricultural use of

azole compounds, fusaria have not developed resistance against the imidazole class

of antifungals. In order to compare the virulence of different FSSC species from clinical

and environmental sources, a Drosophila melanogaster model was used. MyD88 mutant

flies having impaired immune responses were highly susceptible to all the examined

fusaria. In wild-type flies, one F. falciforme and two F. keratoplasticum strains also reduced

the survival significantly. Pathogenicity seemed to be independent from the origin of the

isolates.

Keywords: keratomycosis, Fusarium solani species complex, F. falciforme, molecular identification, antifungal

susceptibility, Drosophila melanogaster, virulence
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INTRODUCTION

The genus Fusarium is a large group of hyaline filamentous
fungi firstly described by Link (1809). According to the recent
literature, it comprises approximately 200–300 species belonging
to 20–22 species complexes (O’Donnell et al., 2013, 2015; Al-
Hatmi et al., 2016). Fusaria are common soil saprophytes;
however, they are also known as phytopathogens (Coleman,
2016). Two Fusarium species were recently included in the
list of the top ten plant pathogenic fungi with both economic
and scientific importance (Dean et al., 2012). The members of
this genus may also interact with plants as endophytic root
colonizers (Bacon and Yates, 2006); furthermore, they may be
responsible for a wide range of human infections in either
immunocompetent or immunocompromised patients (Garnica
andNucci, 2013). In accordance with the current species complex
descriptions, at least ten of them have been reported to have
human pathogenic representatives (Al-Hatmi et al., 2016). Last
but not least, plumbing systems are also proven environmental
reservoirs of human-pathogenic Fusarium species (Short et al.,
2011).

Taxonomy of the genus Fusarium is changing intensely since
2011, when the era of the dual nomenclature ended (Hawksworth
et al., 2011) and a comprehensive phylogenetic study of the
genus discovered that the traditionally known Fusarium is not
monophyletic (Gräfenhan et al., 2011). Based on these results,
Gräfenhan et al. (2011) proposed to restrict the name Fusarium
to the Gibberella clade and at the same time to reallocate the
medically important Fusarium solani species complex (FSSC)
and Fusarium dimerum species complex (FDSC) to other genera.
After the release of this study, Lombard et al. (2015) were the first
who suggested to use Neocosmospora solani instead of F. solani,
and Neocosmospora falciformis instead of F. falciforme. However,
in this study we would like to follow a previously published
proposal of Geiser et al. (2013) by keeping the historical concept
of Fusarium and use the names well-known inmedical mycology.

In South India, a frequent scenario of fungal keratitis
(keratomycosis) is that agricultural workers are infected after
a corneal injury caused by plant or soil materials during their
regular activities (Dóczi et al., 2004; Homa et al., 2013). Based
on the recent reports, Fusarium species—and among them the
members of the FSSC—are the most frequently isolated causative
agents of fungal keratitis in this region (Chakrabarti and Singh,
2011; Homa et al., 2013; Hassan et al., 2016). The FSSC comprises
at least 60 haplotypes, out of which 22 have been reported
to have clinical associations (van Diepeningen et al., 2014; Al-
Hatmi et al., 2016) with poor susceptibility to commonly used
antifungal drugs (Azor et al., 2007). As consequence of the
narrow range of therapeutic options, the treatment of Fusarium
keratitis is extremely challenging and the lack of a prompt
and effective therapy often results in corneal opacification or
complete blindness (Shukla et al., 2008). Therefore, the rapid
identification of the causative agent and the determination of
its antifungal susceptibility are essential to choose the best
therapeutic option. Presumably, the intensive agricultural and
clinical (mis)use of antifungal compounds have also influenced
the current susceptibility profile of the genus (Al-Hatmi et al.,

2016). Thus, besides clinical studies, it is also crucial to evaluate
the development of antifungal resistance among environmental
strains to follow up the impact of fungicides used in the field.

Among FSSC species, F. falciforme was the most prevalent
species isolated from human mycotic keratitis in South India
(Homa et al., 2013; Hassan et al., 2016; Tupaki-Sreepurna et al.,
2017a,b). However, it is unclear what lies in the background
of its dominance: its environmental frequency or its high
virulence. FSSC is reported to be more virulent than other species
complexes of the genus (Mayayo et al., 1999); however, the
virulence of different FSSC species has not been compared before.
To answer the questions above, virulence studies are inevitable.

The objectives of the present study were (I) to isolate
FSSC strains from keratomycosis patients, agricultural source
and natural environments in South India; (II) to identify
the strains at the species-level using molecular methods;
(III) to determine their in vitro susceptibilities to commonly
used antifungal agents; (IV) to compare the species diversity
and the antifungal susceptibility profiles of the clinical and
environmental isolates; (V) to compare the virulence of different
clinical and environmental FSSC members; and (VI) to present
and discuss the clinical details of the investigated keratomycosis
cases.

MATERIALS AND METHODS

Patients Specimens and Fusarium Isolates
A total of 22 Fusarium isolates derived from patients with
keratomycoses attending the Aravind Eye Hospital and
Postgraduate Institute of Ophthalmology (Coimbatore,
Tamilnadu, India) along with 20 environmental FSSC isolates
from the same region were investigated (Table 1). Corneal
scrapings were performed by an ophthalmologist under strict
aseptic conditions, on each base of the corneal ulcer using
a Kimura’s spatula after instillation of 4% preservative-free
lidocaine. Materials obtained from scraping the leading edge
and the base of the ulcers were inoculated directly onto 5%
sheep blood agar, chocolate agar, potato dextrose agar (PDA)
and into brain heart infusion broth without gentamicin sulfate
(Himedia Laboratories, India). Sheep blood agar and chocolate
agar plates were incubated at 37◦C, while PDA plates and brain
heart infusion bottles were incubated at 27◦C for 3 weeks.

To isolate fusaria from environmental sources, soil and plant
parts (i.e., root and stem) were collected from gardens, parks,
yards and agricultural fields in the surrounding regions of
Coimbatore in November 2012. One gram of each collected
soil sample was suspended in 10ml sterile distilled water. The
stock solutions were diluted 10 and 100 times and spread
over Rose Bengal-Chloramphenicol agar (Himedia Laboratories,
India) plates. The collected plant parts were pre-washed in sterile
distilled water, surface-sterilized in 75% ethanol for 5min and in
95% ethanol for 5min, then rinsed in sterile distilled water for
three times to remove ethanol residues. The sterilized parts were
cut into small pieces, placed on Rose Bengal-Chloramphenicol
agar plates and incubated at 25◦C for 72 h. All fungal colonies
from Rose Bengal-Chloramphenicol agar were subcultured into
PDA plates using the cross-streak method. Then Fusarium-like
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colonies were purified and identified by macro- and microscopic
characteristics. From both clinical and environmental samples,
the purified fungal colonies were sub-cultured and stored on PDA
plates at 4◦C until further investigations.

Molecular Identification
Isolates suspected to be Fusarium sp. based on their
macromorphological characteristics and microscopic features
were further subjected to molecular identification. All isolates
were grown in Potato Dextrose Broth (Sigma-Aldrich, USA)
at 25◦C in a shaker (New Brunswick Scientific Co., Inc.,
USA) at 220 rpm for 5 days, and subsequently genomic DNA
was extracted with the MasterPure Yeast DNA Purification
Kit (Epicentre Biotechnologies, USA) in accordance with
manufacturer’s instructions. FSSC isolates were selected using
the FSSC-specific PCR as described by He et al. (2011) and
confirmed with an EcoRI digestion-based PCR-RFLP method
(Homa et al., 2013). For the species-level identification of FSSC-
positive isolates, the 5′ portions of translation elongation factor
1α (TEF1) coding region and introns were amplified (O’Donnell
et al., 1998). After Sanger sequencing (LGC Genomics GmbH,
Germany) the TEF1 sequences were deposited in the GenBank
(https://www.ncbi.nlm.nih.gov/nucleotide/) under the accession
numbers listed in Table 1 and used as BLAST (Altschul
et al., 1990) queries against the Fusarium MLST database
(http://www.westerdijkinstitute.nl/fusarium/) (O’Donnell et al.,
2010).

All the confirmed isolates were deposited in the Szeged
Microbiological Collection (SZMC; http://szmc.hu/; http://www.
wfcc.info/ccinfo/collection/by_id/987) under the strain numbers
listed in Table 1.

Phylogenetic Analysis
Besides the FSSC strains isolated from clinical and environmental
sources, two clinical members of the F. dimerum species complex
(SZMC 11496 and SZMC 11540) were involved in the analysis
as an outgroup. The sequences were aligned by Muscle v3.8.31
(Edgar, 2004) and manually refined in BioEdit v7.1.3.0 (Hall,
1999). Substitution models for the final alignment were selected
by the AICc function in jModelTest 2.1.10 (Posada, 2008).
Trees were inferred by Maximum Likelihood (ML) and Bayesian
MCMC approaches. ML bootstrapping was performed in PhyML
3.0 under the TrN+G model of sequence evolution, using the
nearest-neighbor interchange branch swapping algorithm and
1000 replicates of non-parametric bootstrap analysis (Guindon
and Gascuel, 2003). ML bootstrap values >69% were considered
as significant support (Soltis and Soltis, 2003). Bayesian MCMC
analyses were run in MrBayes 3.1.2 (Huelsenbeck and Ronquist,
2001). One cold and three incrementally heated chains were
run in two replicates sampling every 100th generation. Chain
length was set to 10,000,000 generations and a burn-in value
of 100 000 generations was chosen using the Tracer 1.4
software (Rambaut and Drummond, 2007). Post-burn-in trees
were summarized in a 50% majority rule consensus tree in
MrBayes. Posterior probabilities >0.94 were considered as
significant.

Antifungal Susceptibility Tests
Antifungal susceptibility tests were performed as described in
the Clinical and Laboratory Standards Institute (CLSI) M38-
A2 broth microdilution method (Clinical Laboratory Standards
Institute, 2008). Pharma grade powders of amphotericin B
(AMB), clotrimazole (CLT), econazole (ECN), fluconazole (FLC),
itraconazole (ITC), ketoconazole (KTC), terbinafine (TRB)
(Sigma-Aldrich, USA), and commercially available natamycin
(NTM) eye drops (Lalitha et al., 2008a) (Natamet, 5% suspension,
Sun Pharmaceutical Ind. Ltd., India) were included in the tests.
Conidial suspensions were prepared in 0.85% saline solution
from 5-day-old cultures grown on PDA plates and diluted
in RPMI-1640 medium (Sigma-Aldrich, USA) adjusting the
final inoculum density to 104 CFU/ml. Fungal growth was
evaluated after incubation for 48 h at 35◦C without shaking.
Minimal inhibitory concentration (MIC) was determined as
the lowest concentration of an antifungal agent that inhibited
completely the growth of the tested isolates compared to the
drug-free control medium. For FLC and KTC, the MICs were
defined as the lowest concentrations of the drugs that cause
approximately 50% reduction in growth. MIC50 was determined
as the MIC inhibiting the growth of 50% of all the tested isolates.
Aspergillus flavus ATCC 204304 and Candida krusei ATCC 6258
were included as quality control strains. Each experiment was
performed in triplicates.

Survival Experiments in Drosophila

melanogaster
To examine the background of F. falciforme dominance in South
Indian human keratomycosis cases, the virulence of six FSSC
isolates, i.e., F. falciforme SZMC 11407, SZMC 11408, and SZMC
21332, F. keratoplasticum SZMC 11414 and SZMC 21330, and
F. solani s. str. SZMC 21348 was examined in D. melanogaster.

Conidial suspensions were prepared with sterile phosphate
buffer saline (PBS; 137mMNaCl, 2.7mMKCl, 10mMNa2HPO4,
2mM KH2PO4, pH 7.4) from 5-day-old cultures grown on PDA
plates at 35◦C. The final inoculum densities were adjusted to 1×
107 conidia/ml with PBS.

Drosophila stocks were raised and kept following the infection
on standard cornmeal agar medium at 25◦C. The Oregon
R strain, originally obtained from the Bloomington stock
center, was used as the wild type throughout the experiments.
MyD88c03881 flies having impaired immune responses were
described previously (Tauszig-Delamasure et al., 2002). Infection
was performed by dipping a thin needle in a suspension of fungal
conidia (107 conidia/ml) or PBS for the uninfected control, and
subsequently the thorax of the anesthetized fly was pricked. Flies
were counted at different points of time to monitor survival. Flies
were moved into fresh vials every other day. Each experiment
was performed with approximately 60 flies for each genotype.
The results shown in Figure 1 are representative of at least three
independent experiments.

Statistical Analyses
All statistical analyses were performed in SigmaPlot (version
14.0). Two sample t-test was used to reveal significant differences
between the antifungal susceptibility profiles of clinical and
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FIGURE 1 | Survival rates of wild-type (Oregon) and MyD88c03881 mutant flies infected with clinical F. falciforme SZMC 11407 and SZMC 11408 (A,B), clinical

F. keratoplasticum SZMC 11414 (C), environmental F. keratoplasticum SZMC 21330 (D), environmental F. falciforme SZMC 21332 (E), and environmental F. solani s.
str. SZMC 21348 (F) strains. The control groups were injected with sterile PBS.
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environmental isolates. Fisher’s exact test was applied to compare
the species composition of clinical and environmental isolates.
Kaplan-Meier survival curves were generated in order to present
the results of the survival experiments in D. melanogaster.
The Log-Rank statistic was used to decide whether there is a
statistically significant difference between the curves. To identify
the group—or groups—of flies that differ from the others, the
Holm-Sidakmultiple comparison procedure was applied (Glantz,
2012). Significance level was set at p < 0.05.

Ethics Statement
Due to its observational nature, no formal ethics approval
was required for this study. In order to protect the patients’
anonymity, identifying information were not included in the
manuscript.

RESULTS

Clinical Characteristics of Patients With
Fusarium Keratitis
Clinical data are available for all cases but one (Strain No.
SZMC 11425) (Table 2). Out of the 22 keratitis isolates, 20
were isolated from patients residing in Tamilnadu, while the
rest were from Kerala. Majority of the infections (n = 13) were
registered between June andAugust. None of the patients had any
underlying conditions. Half of the patients reported trauma as a
predisposing factor, while 10 patients could not recall any injury
prior to the infection. The severity of the ulcer was recorded as
mild in six, moderate in seven and severe in eight cases. The
most common therapeutic approach was the combined topical
application of NTM, ITC, and ECN eye drops (n = 16), which
were supplemented with systemic KTC in 12 cases. Surgical
intervention (therapeutic penetrating keratoplasty, TPK) was
needed in four severe cases, where the topical and systemic drugs
could not improve the patients’ condition. The registered final
outcomes were as follows: 16 patients were healed completely; the
therapy failed in five cases and one patient was lost to follow-up.

Identification of the Fusarium Isolates
Based on Molecular Markers
BLAST searches with the partial TEF1 sequences revealed that
most of the isolates derived from both human keratomycoses
and the environment belong to F. falciforme (n = 41; FSSC
3 + 4, O’Donnell et al., 2008). A clinical (SZMC 11414) and
an environmental (SZMC 21330) isolate were identified as
F. keratoplasticum (FSSC 2, Short et al., 2013), while another
isolate from soil (SZMC 21348) was confirmed as F. solani s. str.
(FSSC 5, Schroers et al., 2016; Table 1). Statistically significant
association between the investigated FSSC species and their
source was not detected. In order to examine the phylogenetic
distribution of the isolates, a phylogenetic reconstruction was
also performed using the above-mentioned TEF1 locus, which
confirmed the BLAST-based identifications (Figure 2).

Antifungal Susceptibilities
Table 1 summarizes the MIC values of the eight investigated
antifungal agents. Clinical and environmental strains showed

similar susceptibilities. However, environmental isolates proved
to be significantly (p = 0.01) less susceptible to ECN than the
clinical FSSC isolates. In all other cases, statistically significant
differences were not detected between these two populations. The
lowest MICs were recorded for AMB and ECN (0.25–16µg/ml).
MIC values of CLT and NTM were between 2 and 16µg/ml,
while the activities of TRB and KTC varied in the MIC ranges
of 0.5–64 and 2–64µg/ml, respectively. ITC and FLC proved to
be ineffective in the tested concentration ranges.

Virulence
In the case of wild type Oregon flies, the clinical F. falciforme
strains SZMC 11407 and SZMC 11408 and the environmental
FSSC 5 strain SZMC 21348 proved to be avirulent; the survival
rates 6 days post infection (dpi) were 79 ± 21%, 76 ± 6%, and
61 ± 15% (Figures 1A,B,F). At the same time, infection with
the F. keratoplasticum strains SZMC 11414 and SZMC 21330 and
the environmental F. falciforme strain SZMC 21332 resulted in a
significant reduction in the survival rate compared to the control
group, the 6 dpi survival rates were 33 ± 18%, 46 ± 12%, and 46
± 23% (Figures 1C–E), respectively. All six tested strains reduced
the 6 dpi survival rates of the MyD88-mutant MyD88c03881 flies
to 4–15% (Figures 1A–F).

DISCUSSION

The population of tropical/subtropical countries such as India
is more prone to eye infections, especially to fungal keratitis
caused by Fusarium spp. generally due to the climatic conditions.
Regular monitoring of the disease is essential for its effective
management (Lalitha et al., 2008b; Kredics et al., 2015).

As it is shown in Table 2, we found the highest incidence
of FSSC keratitis cases in July. Previously, Lin et al. (2012)
also observed an uneven distribution of Fusarium keratitis cases
throughout the year in South India with a major peak of
registered cases in July. This peak was associated with the windy
season in June-July, when dust particles are presumed to be the
main causes of ocular trauma (Lin et al., 2012). This theory
is reinforced by the clinical records summarized in Table 2,
where dust was mentioned as a predisposing factor for the
infection only in June and July. A minor peak of keratitis cases
in January—which was detected by Lin et al. (2012) and was
attributed to the intensive agricultural activities of the harvest
season resulting in elevated concentrations of conidia in the air
and frequent ocular injuries due to soil or plant debris particles—
was not observed in our study. Interestingly, Lin et al. (2012) also
observed that environmental humidity (dry and wet season) was
not a significant factor in the seasonal patterns of fungal keratitis.

We observed some major variations especially in the risk
factors and treatment of Fusarium keratitis cases when compared
our data with the study of Walther et al. (2017) from Germany.
Based on the clinical details, trauma was the most frequently
recorded predisposing factor for Fusarium keratitis in India
(Bharathi et al., 2007; Tupaki-Sreepurna et al., 2017a), whereas
keratomycoses were rare in temperate climates and more
commonly associated with the use of soft contact lenses (Keay
et al., 2011; Walther et al., 2017). As shown in Table 2, most
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FIGURE 2 | Combined phylogenetic tree based on the partial sequences of translation elongation factor 1α genes of clinical (indicated with black letters) and

environmental (indicated with green letters) FSSC isolates. Only Bayesian posterior probability and ML bootstrap support values >0.95 and 60% are shown at the

nodes.

of the patients at the Aravind Eye Hospital were treated with
the topical applications of NTM, ECN and ITC along with
systemic KTC, while in Germany, AMB and VRC were the most
frequently used antifungals not just in topical, but also in invasive
and systemic therapeutic approaches. Surgical intervention was
performed in four out of the 21 cases in the present study, while
Walther et al. (2017) reported that nine out of 15 cases required
TPK. Despite the differing therapeutic approaches, comparing
the outcomes we could not find any differences between the
two investigations; therapeutic failures were reported 3/15 times
(20.0%) by Walther et al. (2017) and 5/21 times (23.8%) in the
present study.

Several papers reported that Fusarium species—particularly
members of the FSSC—are the predominant etiological agents
of keratomycosis (Table 3). However, based on the English
language literature available in the PubMed (http://www.
ncbi.nlm.nih.gov/pubmed) and Google Scholar (https://scholar.
google.hu/) databases, species level identification is still not a
common practice with Fusarium keratitis cases. In South India,
F. falciforme proved to be the most common FSSC species
followed by F. keratoplasticum (Homa et al., 2013; Hassan
et al., 2016; Tupaki-Sreepurna et al., 2017a,b). These results
were similar to those observed in the present study (Table 1).
In the work of Tupaki-Sreepurna et al. (2017a), seven out of
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TABLE 3 | Literature overview of Fusarium keratitis studies with species-level data.

Reference Sampling

period

Region Species complex

distribution (n)

Species distribution

in the FSSC (n)

Gene(s) used for

molecular analysis

Specific comments

ASIA

Sun et al., 2015 2002–2011 Central China FSSC (386)

FFSC (254)

FOSC (11)

F. solani s. str. (132)
F. falciforme (126)

TEF1 Species-level data are not

available in English for the

remaining 128 FSSC isolates

Homa et al., 2013 2010–2011 South India FSSC (53)

FDSC (6)

FFSC (6)

FOSC (3)

FIESC (2)

F. falciforme (45)

F. keratoplasticum (3)

F. solani s. str. (1)
FSSC 6 (1)

FSSC 33 (2)

TEF1 –

Hassan et al., 2016 2012–2013 South India FSSC (54)

FDSC (7)

FFSC (3)

FOSC (1)

F. falciforme (45)

F. keratoplasticum (8)

F. lichenicola (1)

TEF1, RPB2 –

Tupaki-Sreepurna

et al., 2017a

2012–2014 South India FSSC (9)

FSAMSC (1)

F. keratoplasticum (7)

F. falciforme (2)

TEF1, RPB2 –

Tupaki-Sreepurna

et al., 2017b

n.a. South India FSSC (43)

FFSC (9)

FDSC (1)

F. falciforme (36)

F. keratoplasticum (6)

Unnamed FSSC sp. (1)

TEF1, RPB2, TUB2,
ITS

–

Chang et al., 2006 2005–2006 Hong Kong,

Singapore

FSSC (20) F. keratoplasticum (20) TEF1, RPB2, ITS Contact lens-associated cases

EUROPE

Walther et al., 2017 2014–2015 Germany FSSC (13)

FOSC (6)

FFSC (3)

F. petroliphilum (6)

F. keratoplasticum (3)

F. falciforme (1)

F. solani s. str. (1)
FSSC 9 (1)

FSSC 25 (1)

TEF1 Mostly contact lens-associated

cases

Dalyan et al., 2015 1995–2015 Turkey FSSC (2)

FFSC (1)

F. solani s. str. (2) TEF1, ITS

NORTH-AMERICA

Chang et al., 2006 2005–2006 USA FSSC (30)

FOSC (7)

F. petroliphilum (13)

F. keratoplasticum (12)

F. falciforme (n.a.)

FSSC 6 (n.a.)

FSSC 7 (n.a.)

TEF1, RPB2, ITS Contact lens-associated cases

FDSC, Fusarium dimerum species complex; FFSC, Fusarium fujikuroi species complex; FIESC, Fusarium incarnatum-equiseti species complex; FOSC, Fusarium oxysporum species
complex; FSAMSC, Fusarium sambucinum species complex; FSSC, Fusarium solani species complex; FSSC 6, FSSC 7, FSSC 9, FSSC 25 and FSSC 33, unnamed FSSC species;
ITS, internal transcribed spacer region; n.a., not available; RPB2, the second largest subunit of RNA polymerase II gene; TEF1, translation elongation factor 1α; TUB2, beta-tubulin.

nine isolates were F. keratoplasticum, and the remaining two
were identified as F. falciforme. This difference in the frequency
of the two species could be explained by the small sample
size. In contrast to these data from India, in Hong Kong and
Singapore F. keratoplasticum, while in the USA, F. petroliphilum,
F. keratoplasticum and F. falciforme were isolated from Fusarium
keratitis cases. All of these species were identified in 2005 and
2006 during themultistate Fusarium keratitis outbreak associated
with the use of Bausch and Lomb ReNu contact lens solution
(Chang et al., 2006). Finally, in Germany F. petroliphilum and
F. keratoplasticum, while in Turkey F. solani s. str. dominated
among Fusarium keratitis isolates (Dalyan et al., 2015; Walther
et al., 2017). Fusarium lichenicolawas not isolated either from the
environment or from clinical specimens in our study. According
to our literature overview of Fusarium keratitis studies inTable 3,
it is obvious that this species is an extremely rare causative agent

of this disease. Previously, only Hassan et al. (2016) reported a
single F. lichenicola isolate from keratomycosis from the Aravind
Eye Hospital in Coimbatore, Tamilnadu.

Although our phylogeny (Figure 2) has been inferred using
only the partial TEF1 gene, it could be used to identify the
isolates tested. TEF1 is widely used to investigate the phylogenetic
relationships of fusaria at the interspecific level (Debourgogne
et al., 2012), but this locus alone is not appropriate to examine
intraspecies relationships. According to O’Donnell et al. (2015),
TEF1 and the largest (RPB1) and the second largest subunit
(RPB2) of the DNA-directed RNA polymerase II are the three
most informative loci for phylogenetic species recognition in the
genus Fusarium. Multilocus sequence typing (MLST) schemes
including additional loci, e.g., the beta-tubulin gene, the internal
transcribed spacer (ITS) region and the large ribosomal subunit
gene (LSU) have also been proposed for fusaria (van Diepeningen
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et al., 2015). As it was previously described by Zhang et al. (2006)
based on the phylogenetic analysis of the FSSC, we also found
that clinical and environmental members of this species complex
share a common evolutionary origin.

Susceptibility data on fusaria were not congruent in the
literature (Table 4). According to Walther et al. (2017), FSSC
and non-FSSC isolates may be easily separated based on their
in vitro susceptibility to TRB. In their study, FSSC showed
MICs higher than 32µg/ml, while FOSC (F. oxysporum species
complex) and FFSC (F. fujikuroi species complex) strains had
MICs lower than 8µg/ml (Walther et al., 2017). Our MIC data
for the FSSC isolates did not confirm this suggestion; we observed
a wide range of MICs for TRB (0.5–64µg/ml). However, there
are two fundamental differences between these reports: the
geographical location and the species diversity. In contrast to
the study of Walther et al. (2017), where F. petroliphilum and
F. keratoplasticum were the most prevalent among the FSSC
isolates, most of the strains in the present study were identified
as F. falciforme.

In contrast to the currently reported susceptibility results, one
of our previous studies revealed higher MIC values for all the
tested antifungal drugs (Homa et al., 2013). However, in another
South Indian keratitis study, Shobana et al. (2015) reported lower
azole MICs (especially for ITC) for fusaria. According to Al-
Hatmi et al. (2016), Fusarium spp. were intrinsically resistant to
azoles. In agreement with this finding, we also found that ITC and
FLC did not inhibit the growth of the investigated strains.

Triazole fungicides (i.e., hexaconazole, propiconazole,
triadimefon, and tricyclazole) are commonly used for crop
protection in India, especially in the Southern parts of the
country (Chowdhary et al., 2012). The high exposure of
environmental fungi to these compounds persisting in soil for
a long time, may increase the risk of resistance development.
For instance, the azole resistance of the common opportunistic
human pathogen Aspergillus fumigatus was attributed to the
non-medical use of these antifungals in the past few years (Van
der Linden et al., 2011; Chowdhary et al., 2013; Azevedo et al.,
2015; Berger et al., 2017). Although fusaria have not yet been
investigated in this respect, we presume that resistance might
emerge among them as a result of the permanent presence of
fungicides in the environment.

When comparing our antifungal susceptibility data with
previous studies, we also found similarities (Table 4). AMB and
ECNwere themost effective antifungal drugs against themajority
of our isolates. Similarly, AMB showed the lowest MICs in
other studies (Dalyan et al., 2015; Hassan et al., 2016; Walther
et al., 2017). In accordance with the literature, all the MICs of
NTM in our study were ≤16µg/ml (Hassan et al., 2016; Tupaki-
Sreepurna et al., 2017a; Walther et al., 2017), which is probably
within the clinically achievable levels of this drug in eye tissue
(Lalitha et al., 2008a).

Although species-specific clinical breakpoints are still not
available for the genus Fusarium, CLSI epidemiological cutoff
values (ECVs) were reported by Espinel-Ingroff et al. (2016) for
AMB, posaconazole, voriconazole and ITC. These values may
not able to help in predicting the clinical response to therapy
but could possibly help to identify the so-called “non-wild-type
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isolates” or isolates that are less susceptible to the antifungal
drugs. The authors defined “non-wild-type” as the population of
strains in a species-drug combination with a detectable acquired
resistance mechanism (Espinel-Ingroff et al., 2016). The ECVs
for AMB and ITC are 8µg/ml and 32µg/ml, respectively. Based
on these values, our isolates proved to be less susceptible to ITC
(MIC> 32µg/ml) than wild-type FSSC strains. At the same time,
the MICs of AMB were below the ECV (Table 1).

Drosophila melanogaster has been previously described as a
suitable invertebrate host model to study the in vivo virulence
and pathogenesis of clinically important filamentous fungi
(i.e., Aspergillus spp., Mucorales spp., Scedosporium spp. and
Fusarium spp.) (Hamilos et al., 2012). This fly has a genetically
tractable and well-characterized innate immune system, which
is regulated by two distinct signaling pathways: the immune
deficiency and the Toll pathways. While the first one is important
in the defense against Gram-negative bacteria, the latter one has
a key role in the immunity against Gram-positive bacteria and
fungi (Lemaitre and Hoffmann, 2007). MyD88 is an adapter in
the Toll pathway and its overexpression induces the expression
of the antifungal peptide drosomycin (Tauszig-Delamasure et al.,
2002).

Previously, Lamaris et al. (2007) infected wild-type Oregon
and Toll-deficient flies with a clinical F. verticillioides (formerly
F. moniliforme, a member of the FFSC) strain. Both wild-type
and mutant flies were susceptible to this fungus, but in Toll-
deficient flies a more acute infection and higher mortality rates
were observed (Lamaris et al., 2007). As it was expected, we
also found lower survival rates in case of the MyD88-mutants
than the wild-type flies. Our results reconfirmed that MyD88
was essential for D. melanogaster to recognize and eliminate
fusaria.

Although D. melanogaster proved to be highly susceptible
to F. keratoplasticum (Figure 1) in our study, intraspecies
differences in the virulence of F. falciforme isolates suggest that
virulence is more like a strain-specific, than a species-specific
feature. These results were in agreement with the hypothesis of
Zhang et al. (2006), namely, that susceptible patients are infected
with the most prevalent fungi in their environment.

In conclusion, our results confirmed that F. falciforme
was the most prevalent species of the FSSC in South India
isolated from both Fusarium keratitis patients and environmental
sources. Antifungal susceptibility and virulence of clinical and
environmental isolates were similar. However, we found major
differences in the most common etiological agents, compared to
North-American, European and other Asian countries. In the
consequences of the high incidence of Fusarium keratitis and the
significant rate of treatment failure, regular clinical studies are
still necessary to develop an effective management of this disease
in South India.
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