
Traffic Management for Cloud Federation

Wojciech Burakowski1(B), Andrzej Beben1, Hans van den Berg2,
Joost W. Bosman3, Gerhard Hasslinger4, Attila Kertesz5, Steven Latre6,

Rob van der Mei3, Tamas Pflanzner5, Patrick Gwydion Poullie7,
Maciej Sosnowski1, Bart Spinnewyn6, and Burkhard Stiller7

1 Warsaw University of Technology, Warsaw, Poland
{wojtek,abeben,m.sosnowski}@tele.pw.edu.pl

2 Netherlands Organisation for Applied Scientific Research,
The Hague, Netherlands
j.l.vandenberg@tno.nl

3 Centrum Wiskunde & Informatica, Amsterdam, Netherlands
{j.w.bosman,r.d.van.der.mei}@cwi.nl
4 Deutsche Telekom AG, Bonn, Germany

Gerhard.Hasslinger@telekom.de
5 University of Szeged, Szeged, Hungary

{keratt,tamas.pflanzner}@inf.u-szeged.hu
6 University of Antwerp - iMINDS, Antwerp, Belgium
{steven.latre,bart.spinnewyn}@uantwerpen.be

7 University of Zürich - CSG@IfI, Zürich, Switzerland
{poullie,stiller}@ifi.uzh.ch

Abstract. The chapter summarizes activities of COST IC1304
ACROSS European Project corresponding to traffic management for
Cloud Federation (CF). In particular, we provide a survey of CF archi-
tectures and standardization activities. We present comprehensive multi-
level model for traffic management in CF that consists of five levels: Level
5 - Strategies for building CF, Level 4 - Network for CF, Level 3 - Service
specification and provision, Level 2 - Service composition and orchestra-
tion, and Level 1 - Task service in cloud resources. For each level we
propose specific methods and algorithms. The effectiveness of these solu-
tions were verified by simulation and analytical methods. Finally, we also
describe specialized simulator for testing CF solution in IoT environment.

Keywords: Cloud federation · Traffic management
Multi-layer model · Service provision · Service composition

1 Introduction

Cloud Federation (CF) extends the concept of cloud computing systems by merg-
ing a number of clouds into one system. Thanks to this, CF has a potentiality
to offer better service to the clients than it can be done by a separated cloud.
This can happen since CF has more resources and may offer wider scope of ser-
vices. On the other hand, the management of CF is more complex comparing to

c© The Author(s) 2018
I. Ganchev et al. (Eds.): Autonomous Control for a Reliable Internet of Services, LNCS 10768, pp. 269–312, 2018.
https://doi.org/10.1007/978-3-319-90415-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90415-3_11&domain=pdf


270 W. Burakowski et al.

this which is required for a standalone cloud. So, the effective management of
resources and services in CF is the key point for getting additional profit from
such system. CF is the system composing of a number of clouds connected by a
network, as it is illustrated on Fig. 1. The main concept of CF is to operate as
one computing system with resources distributed among particular clouds.

Fig. 1. Exemplary CF consisting of 5 clouds connected by network.

In this chapter we present a multi-level model for traffic management in CF.
Each level deals with specific class of algorithms, which should together provide
satisfactory service of the clients, while maintaining optimal resource utilization.

The structure of the chapter is the following. In Sect. 2 we present dis-
cussed CF architectures and the current state of standardization. The proposed
multi-level model for traffic management in CF is presented in Sect. 3. Section 4
describes a simulation tool for analyzing performance of CF in Internet of Things
(IoT) environment. Finally, Sect. 5 summarizes the chapter.

2 Cloud Federation Architectures

2.1 Cloud Architectural Views

In general CF is envisaged as a distributed, heterogeneous environment con-
sisting of various cloud infrastructures by aggregating different Infrastructure
as a Service (IaaS) provider capabilities coming from possibly both the com-
mercial and academic area. Nowadays, cloud providers operate geographically
diverse data centers as user demands like disaster recovery and multi-site back-
ups became widespread. These techniques are also used to avoid provider lock-in
issues for users that frequently utilize multiple clouds. Various research communi-
ties and standardization bodies defined architectural categories of infrastructure
clouds. A current EU project on “Scalable and secure infrastructures for cloud
operations” (SSICLOPS, www.ssiclops.eu) focuses on techniques for the manage-
ment of federated private cloud infrastructures, in particular cloud networking

www.ssiclops.eu


Traffic Management for Cloud Federation 271

techniques within software-defined data centers and across wide-area networks.
The scope of the SSICLOPS project includes high cloud computing workloads
e.g. within the CERN computing cloud (home.cern/about/computing) as well
as cloud applications for securing web access under challenging demands for low
delay. An expert group set up by the European Commission published their view
on Cloud Computing in [1]. These reports categorize cloud architectures into five
groups.

– Private Clouds consist of resources managed by an infrastructure provider
that are typically owned or leased by an enterprise from a service provider.
Usually, services with cloud-enhanced features are offered, therefore this group
includes Software as a Service (SaaS) solutions like eBay.

– Public Clouds offer their services to users outside of the company and may
use cloud functionality from other providers. In this solution, enterprises can
outsource their services to such cloud providers mainly for cost reduction.
Examples of these providers are Amazon or Google Apps.

– Hybrid Clouds consist of both private and public cloud infrastructures to
achieve a higher level of cost reduction through outsourcing by maintaining
the desired degree of control (e.g., sensitive data may be handled in private
clouds). The report states that hybrid clouds are rarely used at the moment.

– In Community Clouds, different entities contribute with their (usually small)
infrastructure to build up an aggregated private or public cloud. Smaller enter-
prises may benefit from such infrastructures, and a solution is provided by
Zimory.

– Finally, Special Purpose Clouds provide more specialized functionalities with
additional, domain specific methods, such as the distributed document man-
agement by Google’s App Engine. This group is an extension or a specializa-
tion of the previous cloud categories.

The third category called hybrid clouds are also referred as cloud federations
in the literature. Many research groups tried to grasp the essence of federa-
tion formation. In general, cloud federation refers to a mesh of cloud providers
that are interconnected based on open standards to provide a universal decen-
tralized computing environment where everything is driven by constraints and
agreements in a ubiquitous, multi-provider infrastructure. Until now, the cloud
ecosystem has been characterized by the steady rising of hundreds of indepen-
dent and heterogeneous cloud providers, managed by private subjects, which
offer various services to their clients.

Buyya et al. [2] envisioned Cloud Computing as the fifth utility by satisfy-
ing the computing needs of everyday life. They emphasized and introduced a
market-oriented cloud architecture, then discussed how global cloud exchanges
could take place in the future. They further extended this vision suggesting a
federation oriented, just in time, opportunistic and scalable application services
provisioning environment called InterCloud. They envision utility oriented fed-
erated IaaS systems that are able to predict application service behavior for
intelligent down and up-scaling infrastructures. They list the research issues of



272 W. Burakowski et al.

flexible service to resource mapping, user and resource centric Quality of Service
(QoS) optimization, integration with in-house systems of enterprises, scalable
monitoring of system components. They present a market-oriented approach to
offer InterClouds including cloud exchanges and brokers that bring together pro-
ducers and consumers. Producers are offering domain specific enterprise Clouds
that are connected and managed within the federation with their Cloud Coor-
dinator component.

Celesti et al. [3] proposed an approach for the federation establishment con-
sidering generic cloud architectures according to a three-phase model, represent-
ing an architectural solution for federation by means of a Cross-Cloud Federation
Manager, a software component in charge of executing the three main function-
alities required for a federation. In particular, the component explicitly manages:

1. the discovery phase in which information about other clouds are received
and sent,

2. the match-making phase performing the best choice of the provider according
to some utility measure and

3. the authentication phase creating a secure channel between the federated
clouds. These concepts can be extended taking into account green policies
applied in federated scenarios.

Bernstein et al. [4] define two use case scenarios that exemplify the problems
of multi-cloud systems like

1. Virtual Machines (VM) mobility where they identify the networking, the spe-
cific cloud VM management interfaces and the lack of mobility interfaces as
the three major obstacles and

2. storage interoperability and federation scenario in which storage provider
replication policies are subject to change when a cloud provider initiates sub-
contracting. They offer interoperability solutions only for low-level functional-
ity of the clouds that are not focused on recent user demands but on solutions
for IaaS system operators.

In the Federated Cloud Management solution [5], interoperability is achieved
by high-level brokering instead of bilateral resource renting. Albeit this does
not mean that different IaaS providers may not share or rent resources, but if
they do so, it is transparent to their higher level management. Such a federation
can be enabled without applying additional software stack for providing low-
level management interfaces. The logic of federated management is moved to
higher levels, and there is no need for adapting interoperability standards by the
participating infrastructure providers, which is usually a restriction that some
industrial providers are reluctant to undertake.

2.2 Standardization for Cloud Federation

Standardization related to clouds, cloud interoperability and federation has
been conducted by the ITU (International Telecommunication Union) [6],



Traffic Management for Cloud Federation 273

IETF (Internet Engineering Task Force) [7], NIST (National Institute of Stan-
dards and Technology) [8] and IEEE (Institute of Electrical and Electronics
Engineers) [9]. In 2014, the ITU released standard documents on the vocabu-
lary, a reference architecture and a framework of inter-cloud computing. The
latter provides an overview, functional requirements and refers to a number of
use cases. The overview distinguishes between:

– Inter-cloud Peering: between a primary and secondary CSP (i.e. Cloud Service
Provider), where cloud services are provided by the primary CSP who estab-
lishes APIs (application programming interfaces) in order to utilize services
and resources of the secondary CSP,

– Inter-cloud Intermediary: as an extension of inter-cloud peering including a set
of secondary CSPs, each with a bilateral interface for support of the primary
CSP which offers all services provided by the interconnected clouds, and

– Inter-cloud Federation: which is based on a set of peer CSPs interconnected
by APIs as a distributed system without a primary CSP with services being
provided by several CSPs. For each service, the inter-cloud federation may act
as an inter-cloud intermediary with a primary CSP responsible for the service.
The user population may also be subdivided and attributed to several CSPs.

The main functional requirements to set up and operate a cloud federation
system are:

– Networking and communication between the CSPs,
– Service level agreement (SLA) and policy negotiations,
– Resource provisioning and discovery mechanisms,
– Resource selection, monitoring and performance estimation mechanisms,
– Cloud service switch over between CSPs.

Finally, the ITU [6] takes a number of use cases into account to be addressed
by could interconnection and federation approaches:

– Performance guarantee against an abrupt increase in load (offloading),
– Performance guarantee regarding delay (optimization for user location),
– Guaranteed availability in the event of a disaster or large-scale failure,
– Service continuity (in the case of service termination of the original CSP),

service operation enhancement and broadening service variety,
– Expansion and distribution of cloud storage, media and virtual data center,
– Market transactions in inter-cloud intermediary pattern and cloud service

rebranding.

The standardization on cloud federation has many aspects in common with
the interconnection of content delivery networks (CDN). A CDN is an infras-
tructure of servers operating on application layers, arranged for the efficient
distribution and delivery of digital content mostly for downloads, software
updates and video streaming. The CDN interconnection (CDNI) working group



274 W. Burakowski et al.

of the IETF provided informational RFC standard documents on the prob-
lem statement, framework, requirements and use cases for CDN interconnec-
tion in a first phase until 2014. Meanwhile specifications on interfaces between
upstream/downstream CDNs including redirection of users between CDNs have
been issued in the proposed standards track [7]. CDNs can be considered as a
special case of clouds with the main propose of distributing or streaming large
data volumes within a broader service portfolio of cloud computing applications.
The underlying distributed CDN architecture is also useful for large clouds and
cloud federations for improving the system scalability and performance. This is
reflected in a collection of CDNI use cases which are outlined in RFC 6770 [7]
in the areas of:

– footprint extension,
– offloading,
– resilience enhancement,
– capability enhancements with regard to technology, QoS/QoE support, the

service portfolio and interoperability.

The CDNI concept is foreseen as a basis for CDN federations, where a fed-
eration of peer CDN systems is directly supported by CDNI. A CDN exchange
or broker approach is not included but can be build on top of core CDNI mech-
anisms.

In 2013, NIST [8] published a cloud computing standards roadmap includ-
ing basic definitions, use cases and an overview on standards with focus on
cloud/grid computing. Gaps are identified with conclusions on priorities for ongo-
ing standardization work. However, a recently started standards activity by the
IEEE [9] towards intercloud interoperability and federation is still motivated by
today’s landscape of independent and incompatible cloud offerings in proprietary
as well as open access architectures.

3 Multi-level Model for Traffic Management in Cloud
Federation

Developing of efficient traffic engineering methods for Cloud Federation is essen-
tial in order to offer services to the clients on appropriate quality level while
maintaining high utilization of resources. These methods deal with such issues
as distribution of resources in CF, designing of network connecting particular
clouds, service provision, handling service requests coming from clients and man-
aging virtual resource environment. The proposed traffic management model for
CF consists of 5 levels, as it is depicted on Fig. 2. Below we shortly discuss
objectives of each level of the model.

Level 5: This is the highest level of the model which deals with the rules
for merging particular clouds into the form of CF. The addressed issue is e.g.
amount of resources which would be delegated by particular clouds to CF. We
assume that the main reason for constituting federation is getting more profit



Traffic Management for Cloud Federation 275

Fig. 2. Traffic management model for Cloud Federation

comparing to the situation when particular clouds work alone. So, this level deals
with the conditions when CF can be attractive solution for cloud owners even
if particular clouds differ in their capabilities, e.g. in amount of resources, client
population and service request rate submitted by them.

Level 4: This level deals with design of the CF network for connecting par-
ticular clouds. Such network should be of adequate quality and, if it is possible,
its transfer capabilities should be controlled by the CF network manager. The
addressed issues are: required link capacities between particular clouds and effec-
tive utilization of network resources (transmission links). We assume that net-
work capabilities should provide adequate quality of the offered by CF services
even when resources allocated for a given service (e.g. virtual machines) come
from different clouds. Effective designing of the network in question is especially
important when CF uses network provided by a network operator based on SLA
(Service Level Agreement) and as a consequence it has limited possibilities to
control network. Currently such solution is a common practice.

Level 3: This level is responsible for handling requests corresponding to ser-
vice installation in CF. The installation of new service requires: (1) specification
of the service and (2) provision of the service. Specification of the service is pro-
vided in the form of definition of appropriate task sequence that is executed in
CF when a client asks for execution of this service. Furthermore, provision of



276 W. Burakowski et al.

the service corresponds to allocation of resources when particular tasks can be
executed.

Level 2: This level deals with service composition and orchestration pro-
cesses. So, the earlier specified sequence of tasks should be executed in response
to handle service requests. Service composition time should meet user quality
expectations corresponding to the requested service.

Level 1: The last and the lowest level deals with task execution in cloud
resources in the case when more than one task is delegated at the same time to
be served by a given resource. So, appropriate scheduling mechanisms should be
applied in order to provide e.g. fairness for tasks execution. In addition, impor-
tant issue is to understand dependencies between different types of resources in
virtualized cloud environment.

3.1 Level 5: Strategy for Cloud Resource Distribution in Federation

3.1.1 Motivation and State of the Art
Cloud Federation is the system that is built on the top of a number of clouds.
Such system should provide some additional profits for each cloud owner in
comparison to stand-alone cloud. In this section we focus on strategies, in which
way clouds can make federation to get maximum profit assuming that it is equally
shared among cloud owners.

Unfortunately, there are not too many positions dealing with discussed prob-
lem. For instance in [10] the authors consider effectiveness of different federation
schemes using the M/M/1 queueing system to model cloud. They assume that
profit get from a task execution depends on the waiting time (showing received
QoS) of this task. Furthermore, they consider scenarios when the profit is max-
imized from the perspective of the whole CF, and scenarios when each cloud
maximizes its profit. Another approach is presented in [11], where the author
applied game theory to analyze the selfish behavior of cloud owner selling unused
resources depending on uncertain load conditions.

3.1.2 Proposed Model
In the presented approach we assume that capacities of each cloud are charac-
terized in terms of number of resources and service request rate. Furthermore,
for the sake of simplicity, it is assumed that both types of resources and exe-
cuted services are the same in each cloud. In addition, execution of each service
is performed by single resource only. Finally, we will model each cloud by well-
known loss queueing system M/M/c/c (e.g. [12]), where c denotes number of
identical cloud resources, arrival service request rate follows Poisson distribu-
tion with parameter λ, service time distribution is done by negative exponential
distribution with the rate 1/h (h is the mean service time). The performances
of cloud system are measured by: (1) Ploss, which denotes the loss rate due
to lack of available resources at the moment of service request arrival, and (2)
Acarried = λh(1 − Ploss), which denotes traffic carried by the cloud, that corre-
sponds directly to the resource utilization ratio.



Traffic Management for Cloud Federation 277

Now, let us search for the appropriate scheme for building CF system. For
this purpose, let us consider a number, say N , of clouds that intend to build
CF where the i-th cloud (i = 1, ..., N) is characterized by two parameters (λi

and ci). In addition, the mean service times of service execution are the same
in each cloud h1 = h2 = ... = hN = h. Subsequently we assume that h = 1,
and as a consequence offered load A = λh will be denoted as A = λ. Next,
the assumed objective function for comparing the discussed schemes for CF is
to maximize profit coming from resource utilization delegated from each cloud
to CF. Furthermore, the profit is equally shared among clouds participating in
CF. Such approach looks to be reasonable (at least as the first approach) since
otherwise in CF we should take into account requests coming from a given cloud
and which resource (from each cloud) was chosen to serve the request.

We consider three schemes:

– Scheme no. 1 (see Fig. 3): this is the reference scheme when the clouds work
alone, denoted by SC.

– Scheme no. 2 (see Fig. 4): this scheme is named as full federation and assumes
that all clouds dedicate all theirs resources and clients to the CF system. This
scheme we denote as FC.

– Scheme no. 3 (see Fig. 5): for this scheme we assume that each cloud can
delegate to CF only a part of its resources as well as a part of service requests
coming from its clients. This scheme we name as PCF (Partial CF).

First, let us compare the performances of schemes SC and FC in terms of
resource utilization ratio and service request loss rate. The first observation
is that FC scheme will have lower loss probabilities as well as better resource
utilization ratio due to larger number of resources. But the open question is in
which way to share profit gained from FC scheme when the clouds are of different
capabilities? Table 1 shows exemplary results for the case, when the profit, which
is consequence of better resources utilization, is shared equally among clouds.

The results from Table 1 show that, as it was expected, FC scheme assures less
service request loss rate and better resource utilization ratio for most of clouds
(except cloud no. 1 that is under loaded). Note, that if we share the profit equally,
the clouds with smaller service requests rate can receive more profit from FC

Fig. 3. Scenario with clouds working in separate way



278 W. Burakowski et al.

Fig. 4. Scenario with clouds creating Cloud Federation based on full federation scheme

scheme comparing to the SC scheme while the clouds with higher service request
rate get less profit comparing to the SC scheme. So, one can conclude that FC
scheme is optimal solution when the capabilities of the clouds are similar but if
they differ essentially then this scheme simply fails.

Scheme no. 3 mitigates the drawbacks of the schemes no. 1 and no. 2. As it
was above stated, in this scheme we assume that each cloud can delegate to CF
only a part of its resources as well as a part of service request rate submitted by
its clients. The main assumptions for PFC scheme are the following:

Table 1. Exemplary results comparing SC and FC schemes in terms of loss rate and
resource utilization parameters. Number of clouds N = 5, values of λ: λ1 = 0.2, λ2 =
0.4, λ3 = 0.6, λ4 = 0.8, the same mean service times h1 = h2 = h3 = h4 = h5 = 1,
Number of resources in each cloud: c1 = c2 = c3 = c4 = c5 = 10.

Cloud characteristics SC scheme FC scheme

No. Service
requests rate

Number of
resources

Resource
utilization

Loss
rate [%]

Resource
utilization

Loss
rate[%]

1 2 10 0.2 <0.01 0.6 0.02

2 4 10 0.398 0.54 0.6 0.02

3 6 10 0.575 4.3 0.6 0.02

4 8 10 0.703 12 0.6 0.02

5 10 10 0.786 21 0.6 0.02

1. we split the resources belonging to the i-th cloud (i = 1, ..., N), say ci, into 2
main subsets:
– set of private resources that are delegated to handle only service requests

coming from the i-th cloud clients
– set of resources dedicated to Cloud Federation for handling service requests

coming from all clouds creating Cloud Federation, denoted as ci3



Traffic Management for Cloud Federation 279

2. we again split the private resources into two categories:
– belonging to the 1st category, denoted as ci1, which are dedicated as the

first choice to handle service requests coming from the i-th cloud clients
– belonging to the 2nd category, denoted as ci2, which are dedicated to

handle service requests coming from the i-th cloud clients that were not
served by resources from 1st category as well as from common pool since
all these resources were occupied.

The following relationship holds:

ci = ci1 + ci2 + ci3, for i = 1, ..., N. (1)

The handling of service requests in PFC scheme is shown on Fig. 5. The
service requests from clients belonging e.g. to cloud no. i (i = 1, ..., N) are
submitted as the first choice to be handled by private resources belonging to the
1st category. In the case, when these resources are currently occupied, then as
the second choice are the resources belonging to common pool. The number of
common pool resources equals (c13 + c23 + ... + cN3). If again these resources
are currently occupied then as the final choice are the resources belonging to the
2nd category of private resources of the considered cloud. The service requests
are finally lost if also no available resources in this pool.

Next, we show in which way we count the resources belonging to particular
clouds in order to get maximum profit (equally shared between the cloud owners).
We stress that the following conditions should be satisfied for designing size of
the common pool:

Condition 1: service request rate (offered load) submitted by particular clouds
to the common pool should be the same. It means that

Ploss1(λ1, c11)λ1 = Ploss2(λ2, c21)λ2 = ... = PlossN (λN , cN1)λN (2)

where the value of Ploss(λi, ci1) we calculate from the analysis of the system
M/M/n/n by using Erlang formula:

Plossi(λi, ci1) =
λ
ci1
i

ci1!
∑ci1

j=0
λj
i

j!

Note that we only require that mean traffic load submitted from each cloud to
common pool should be the same. Let us note, that the service request arrival
processes from each cloud submitted to this pool are generally different. It is
due to the fact that these requests were not served by 1st category of private
resources and as a consequence they are not still Poissonian.

Condition 2: the number of resources dedicated from each cloud to the com-
mon pool should be the same

c13 = c23 = ... = cN3.



280 W. Burakowski et al.

Fig. 5. Handling of service requests in PFC scheme.

Finally, the algorithm for calculating resource distribution for each cloud is
the following:

Step 1: to order λi (i = 1, ..., N) values from minimum value to maximum.
Let the k-th cloud has minimum value of λ.

Step 2: to calculate (using Formula 2) for each cloud the values of the num-
ber of resources delegated to category 1 of private resources, ci1 (i = 1, ..., N)
assuming that ck1 = 0.

Step 3: to choose the minimum value from set of (ci − ci1) (i = 1, ..., N) and
to state that each cloud should delegate this number of resources to the common
pool. Let us note that if for the i-th cloud the value of (ci − ci1) ≤ 0 then no



Traffic Management for Cloud Federation 281

common pool can be set and, as a consequence, not conditions are satisfied for
Cloud Federation.

Step 4: to calculate from the Formula 1 the number of 2nd category of private
resources ci2 (i = 1, ..., N) for each cloud.

3.1.3 Exemplary Results
Now we present some exemplary numerical results showing performances of the
described schemes. The first observation is that when the size of common pool
grows the profit we can get from Cloud Federation also grows.

Example: In this example we have 10 clouds that differ in service request
rates while the number of resources in each cloud is the same and is equal to
10. Table 2 presents the numerical results corresponding to traffic conditions,
number of resources and performances of the systems build under SC and PFC
schemes. The required amount of resources belonging to particular categories
were calculated from the above described algorithm.

Table 2 says that thanks to the PFC scheme we extend the volume of
served traffic from 76,95 up to 84,50 (about 10%). The next step to increase
Cloud Federation performances is to apply FC scheme instead of PFC scheme.

Table 2. Numerical results showing comparison between SC and PFC schemes.

Clouds SC scheme PFC scheme

No. Service
requests
rate

Number
of
resources

Load
served by
cloud

Loss
rate
[%]

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

1 7.5 10 6.75 10 7.50 0 5 5 0.00 2.34 4.82 7.16 3.5 0.41

2 8.4 10 7.22 14 7.50 1 4 5 0.89 2.10 4.82 7.82 6.3 0.60

3 8.4 10 7.22 14 7.50 1 4 5 0.89 2.10 4.82 7.82 6.3 0.60

4 9.3 10 7.61 18 7.50 2 3 5 1.79 1.75 4.82 8.35 10 0.74

5 9.3 10 7.61 18 7.50 2 3 5 1.79 1.75 4.82 8.35 10 0.74

6 10.2 10 7.91 22 7.50 3 2 5 2.69 1.26 4.82 8.77 14 0.86

7 10.2 10 7.91 22 7.50 3 2 5 2.69 1.26 4.82 8.77 14 0.86

8 11.1 10 8.17 26 7.50 4 1 5 3.58 0.68 4.82 9.08 19 0.91

9 11.1 10 8.17 26 7.50 4 1 5 3.58 0.68 4.82 9.08 19 0.91

10 12 10 8.38 30 7.50 5 0 5 4.49 0.00 4.82 9.31 23 0.92

Total 97.5 100 76.95 75 25 25 50 22.39 13.91 48.2 84.50 7.55

L1: offered load to common pool
L2: number of the 1st category of private resources
L3: number of the 2nd category of private resources
L4: number of resources delegated to common pool
L5: load served by the 1st category of private resources
L6: load served by the 2nd category of private resources
L7: load served by common pool of resources
L8: total load served by clouds
L9: loss rate [%]
L10: load served gain comparing to SC scheme



282 W. Burakowski et al.

Unfortunately, it is not possible to be done in a straightforward way. It needs a
moving of resources or service request rates between particular clouds. Table 3
presents moving of service request rates in the considered example to make trans-
formation from PFC scheme into the form of FC scheme. For instance, cloud no.
1 should buy value of service request rate of 2.25 while cloud no. 10 should sell
value of service request rate also of 2.25. Finally, after buying/selling process,
one can observe that the profit gained from FC scheme is greater than the profit
we have got from PFC scheme and now is equal to 91.50 (19% comparing to SC
scheme and 8% comparing to PFC scheme).

Concluding, the presented approach for modeling different cloud federation
schemes as FC and PFC could be only applied for setting preliminary rules
for establishing CF. Anyway, it appears that in some cases by using simple FC
scheme we may expect the problem with sharing the profit among CF owners.
More precisely, some cloud owners may lost or extend their profits comparing
to the case when their clouds work alone. Of course, more detailed model of CF
is strongly required that also takes into account such characteristics as types of
offered services, prices of resources, charging, control of service requests etc.

Table 3. Example showing system transformation into FC scheme.

Clouds FC scheme

No. Service
requests
rate

Number of
resources

Service
requests
rate to sell

Service
requests
rate to buy

L1 L2 L3 L4 L5

1 7.5 10 0 2.25 9.75 9.15 6.2 9.09 9.01

2 8.4 10 0 1.35 9.75 9.15 6.2 9.09 9.01

3 8.4 10 0 1.35 9.75 9.15 6.2 9.05 8.97

4 9.3 10 0 0.45 9.75 9.15 6.2 9.05 8.97

5 9.3 10 0 0.45 9.75 9.15 6.2 9.01 8.93

6 10.2 10 0.45 0 9.75 9.15 6.2 9.01 8.93

7 10.2 10 0.45 0 9.75 9.15 6.2 8.96 8.89

8 11.1 10 1.35 0 9.75 9.15 6.2 8.96 8.89

9 11.1 10 1.35 0 9.75 9.15 6.2 8.92 8.85

10 12 10 2.25 0 9.75 9.15 6.2 9.15 9.15

Total 97.5 100 5.85 5.85 97.5 91.5 91.5 91.5

L1: offered load to common pool
L2: load served by common pool of resources
L3: loss rate [%]
L4: load served gain comparing to PFC scheme
L5: load served gain comparing to SC scheme



Traffic Management for Cloud Federation 283

3.2 Level 4: Network for Cloud Federation

3.2.1 Motivation and State of the Art
The services offered by CF use resources provided by multiple clouds with dif-
ferent location of data centers. Therefore, CF requires an efficient, reliable and
secure inter-cloud communication infrastructure. This infrastructure is espe-
cially important for mission critical and interactive services that have strict
QoS requirements. Currently, CF commonly exploits the Internet for inter-cloud
communication, e.g. CONTRAIL [13]. Although this approach may be suffi-
cient for non-real time services, i.e., distributed file storage or data backups,
it inhibits deploying more demanding services like augmented or virtual real-
ity, video conferencing, on-line gaming, real-time data processing in distributed
databases or live video streaming. The commonly used approach for ensuring
required QoS level is to exploit SLAs between clouds participating in CF. These
SLAs are established on demand during the service provisioning process (see
Level 3 of the model in Fig. 2) and use network resources coming from network
providers. However, independently established SLAs lead to inefficient utilization
of network resources, suffer scalability concerns and increase operating expen-
ditures (OPEX) costs paid by CF. These negative effects become critical for
large CFs with many participants as well as for large cloud providers offer-
ing plethora of services. For example, the recent experiences of Google cloud
point out that using independent SLAs between data centers is ineffective [14].
Therefore, Google creates their own communication infrastructure that can be
optimized and dynamically reconfigured following demands of currently offered
services, planned maintenance operations as well as restoration actions taken to
overcome failures.

3.2.2 Proposed Solution
The proposed approach for CF is to create, manage and maintain a Virtual Net-
work Infrastructure (VNI), which provides communication services tailored for
inter-cloud communication. The VNI is shared among all clouds participating in
CF and is managed by CF orchestration and management system. Actually, VNI
constitutes a new “service component” that is orchestrated during service provi-
sioning process and is used in service composition process. The key advantages
of VNI are the following:

1. The common orchestration of cloud and VNI resources enables optimization
of service provisioning by considering network capabilities. In particular, CF
can benefit from advanced traffic engineering algorithms taking into account
knowledge about service demands and VNI capabilities, including QoS guar-
antees and available network resources. The objective function of designed
algorithms may cover efficient load balancing or maximization and fair share
of the CF revenue.

2. New communication facilities tailored for cloud services:
– The cloud services significantly differ in QoS requirements, e.g. interac-

tive services are delay sensitive, while video on demand or big data storage



284 W. Burakowski et al.

demands more bandwidth. Therefore, VNI should differentiate packet ser-
vice and provide QoS guaranties following user’s requirements. The key
challenge is to design a set of Classes of Services (CoS) adequate for han-
dling traffic carried by federation. These CoSs are considered in the service
orchestration process.

– The VNI should offer multi-path communication facilities that support
multicast connections, multi-side backups and makes effective communi-
cation for multi-tenancy scenarios. The key challenge is developing a scal-
able routing and forwarding mechanisms able to support large number of
multi-side communications.

The VNI is created following the Network as a Service (NaaS) paradigm
based on resources provided by clouds participating in CF. Each cloud should
provide: (1) virtual network node, which is used to send, receive or transit packets
directed to or coming from other clouds, and (2) a number of virtual links estab-
lished between peering clouds. These links are created based on SLAs agreed
with network provider(s). The VNI exploits advantages of the Software Defined
Networking (SDN) concept supported by network virtualization techniques. It
makes feasible separation of network control functions from underlying physical
network infrastructure. In our approach, CF defines its own traffic control and
management functions that operate on an abstract model of VNI. The manage-
ment focuses on adaptation of VNI topology, provisioning of resources allocated
to virtual nodes and links, traffic engineering, and costs optimization. On the
other hand, this VNI model is used during the service composition phase for
dynamic resource allocation, load balancing, cost optimization, and other short
time scale operations. Finally, decisions taken by VNI control functions on the
abstract VNI model are translated into configuration commands specific for par-
ticular virtual node.

Fig. 6. Two reference network scenarios considered for CF.



Traffic Management for Cloud Federation 285

Figure 6 shows the reference network scenarios considered for CF. Figure 6a
presents the scenario where CF exploits only direct communication between
peering clouds. In this scenario, the role of CF orchestration and management is
limited to dynamic updates of SLAs between peering clouds. Figure 6b presents
scenario where CF creates a VNI using virtual nodes provided by clouds and
virtual links provided by network operators. The CF orchestration and man-
agement process uses a VNI controller to setup/release flows, perform traffic
engineering as well as maintain VNI (update of VNI topology, provisioning of
virtual links).

The Control Algorithm for VNI. The VNI is controlled and managed by a
specialized CF network application running on the VNI controller. This applica-
tion is responsible for handling flow setup and release requests received from the
CF orchestration and management process as well as for performing commonly
recognized network management functions related to configuration, provisioning
and maintenance of VNI. The flow setup requires a specialized control algorithm,
which decides about acceptance or rejection of incoming flow request. Admis-
sion decision is taken based on traffic descriptor, requested class of service, and
information about available resources on routing paths between source and des-
tination. In order to efficiently exploit network resources, CF uses multi-path
routing that allows allocating bandwidth between any pair of network nodes
up to the available capacity of the minimum cut of the VNI network graph.
Thanks to a logically centralized VNI architecture, CF may exploit different
multi-path routing algorithms, e.g. [15,16]. We propose a new k-shortest path
algorithm which considers multi-criteria constraints during calculation of alter-
native k-shortest paths to meet QoS objectives of classes of services offered in CF.
We model VNI as a directed graph G(N,E), where N represents the set of virtual
nodes provided by particular cloud, while E is the set of virtual links between
peering clouds. Each link u → v, u, v ∈ N,u → v ∈ E, is characterized by a
m−dimensional vector of non-negative link weights w(u → v) = [w1, w2, . . . , wm]
which relates to QoS requirements of services offered by CF. Any path p
established between two nodes is characterized by a vector of path weights
w(p) = [w1(p), w2(p), . . . , wm(p)], where wi(p) is calculated as a concatenation
of link weights wi of each link belonging to the path p. The proposed multi-
criteria, k-shortest path routing algorithm finds a set of Pareto optimum paths,
f ∈ F , between each pair of source to destination nodes. A given path is Pareto
optimum if its path weights satisfy constraints: wi(f) < li, i = 1, . . . , m, where L
is the vector of assumed constraints L = [l1, l2, . . . , lm] and it is non-dominated
within the scope of the considered objective functions. Note that proposed multi-
criteria, k-shortest path routing algorithm runs off-line as a sub-process in CF
network application. It is invoked in response to any changes in the VNI topology
corresponding to: instantiation or release of a virtual link or a node, detection
of any link or node failures as well as to update of SLA agreements.

The VNI control algorithm is invoked when a flow request arrives from the
CF orchestration process. The algorithm is responsible for: (1) selection of a
subset of feasible alternative routing paths which satisfy QoS requirements of



286 W. Burakowski et al.

the requested flow. Notice, that bandwidth requested in the traffic descriptor
may be satisfied by a number of alternative path assuming flow splitting among
them, (2) allocation of the flow to selected feasible alternative routing paths,
and (3) configuration of flow tables in virtual nodes on the selected path(s).
The main objective of the proposed VNI control algorithm is to maximize the
number of requests that are served with the success. This goal is achieved through
smart allocation algorithm which efficiently use network resources. Remark, that
flow allocation problem belongs to the NP-complete problems. The allocation
algorithm has to take decision in a relatively short time (of second order) to not
exceed tolerable request processing time. This limitation opt for using heuristic
algorithm that find feasible solution in a reasonable time, although selected
solution may not be the optimal one.

The proposed VNI control algorithm performs the following steps:

1. Create a decision space. In this step the algorithm creates a subset of feasi-
ble alternative paths that meet QoS requirements from the set of k-shortest
routing paths. The algorithm matches QoS requirements with path weights
w(p). Then, it checks if selected subset of feasible alternative paths can meet
bandwidth requirements, i.e. if the sum of available bandwidth on disjointed
paths is greater than requested bandwidth. Finally, the algorithm returns the
subset of feasible paths if the request is accepted or returns empty set ∅,
which results in flow rejection.

2. Allocate flow in VNI. In this step, the algorithm allocates flow into previously
selected subset of feasible paths. The allocation may address different objec-
tives, as e.g. load balancing, keeping the flow on a single path, etc. depending
on the CF strategy and policies. In the proposed algorithm, we allocate the
requested flow on the shortest paths, using as much as possible limited num-
ber of alternative paths. So, we first try to allocate the flow on the latest
loaded shortest path. If there is not enough bandwidth to satisfy demand,
we divide the flow over other alternative paths following the load balancing
principles. If we still need more bandwidth to satisfy the request, we consider
longer alternative paths in consecutive steps. The process finishes when the
requested bandwidth is allocated.

3. Configure flow tables. In the final step, the VNI control algorithm configures
allocated paths using the abstract model of VNI maintained in the SDN
controller. The actual configuration is performed by the management system
of particular cloud using e.g. Open Flow protocol, net conf or other.

3.2.3 Performance Evaluation
The experiments focus on performance evaluation of the proposed VNI control
algorithm. They are performed assuming a model of CF comprising n clouds
offering the same set of services. A CF network assumes a full mesh topology
where peering clouds are connected by virtual links. In this model the number
of degree of freedom in selecting alternative paths is relatively large. Our experi-
ments are performed by simulation. We simulate flow request arrival process and



Traffic Management for Cloud Federation 287

(a) balanced load (b) unbalanced load

Fig. 7. Blocking probabilities of flow requests served by VNI using different number of
alternative paths.

analyze the system performances in terms of request blocking probabilities. We
analyze the effectiveness of the VNI control algorithm under the following condi-
tions: (1) number of alternative paths established in VNI, and (2) balanced and
unbalanced load conditions. Notice, that results related to a single path, denoted
as 1 path, correspond to the strategy based on choosing only direct virtual links
between peering clouds, while other cases exploit multi-path routing capabilities
offered by VNI.

Figure 7 presents exemplary results showing values of request blocking prob-
abilities as a function of offered load obtained for VNI using different number
of alternative paths. Figure 7a corresponds to balanced load conditions where
each relation of source to destination is equally loaded in the network. Further-
more, Fig. 7b shows values of blocking probabilities for extremely unbalanced
load conditions, where flows are established between a chosen single relation.
One can observe that using VNI instead of direct communication between peer-
ing clouds leads to significant decreasing of blocking probabilities under wide
range of the offered load up to the limit of the working point at blocking proba-
bility at the assumed level of 0.1. One can also observe that by using alternative
paths we significantly increase carried traffic under the same blocking probabil-
ity. Moreover, the gain from using alternative paths is mostly visible if we use
the first alternative path. Increasing the number of alternative paths above four
or five practically yields no further improvement. The gain becomes especially
significant under unbalanced load conditions.

3.3 Level 3: Service Provision

Motivation. While traditionally a cloud infrastructure is located within a data-
center, recently, there is a need for geographical distribution [17]. For instance,
cloud federation can combine the capabilities of multiple cloud offerings in order
to satisfy the user’s response time or availability requirements. Lately, this need
for geo-distribution has led to a new evolution of decentralization. Most notably,



288 W. Burakowski et al.

the extension of cloud computing towards the edge of the enterprise network, is
generally referred to as fog or edge computing [18]. In fog computing, computa-
tion is performed at the edge of the network at the gateway devices, reducing
bandwidth requirements, latency, and the need for communicating data to the
servers. Second, mist computing pushes processing even further to the network
edge, involving the sensor and actuator devices [19].

Compared to a traditional cloud computing environment, a geo-distributed
cloud environment is less well-controlled and behaves in an ad-hoc manner.
Devices may leave and join the network, or may become unavailable due to
unpredictable failures or obstructions in the environment.

Additionally, while in a data-center heterogeneity is limited to multiple gen-
erations of servers being used, there is a large spread on capabilities within a
geo-distributed cloud environment. Memory and processing means range from
high (e.g. servers), over medium (e.g. cloudlets, gateways) to very low (e.g.
mobile devices, sensor nodes). While some communication links guarantee a
certain bandwidth (e.g. dedicated wired links), others provide a bandwidth with
a certain probability (e.g. a shared wired link), and others do not provide any
guarantees at all (wireless links).

Reliability is an important non-functional requirement, as it outlines how
a software systems realizes its functionality [20]. The unreliability of substrate
resources in a heterogeneous cloud environment, severely affects the reliability
of the applications relying on those resources. Therefore, it is very challenging
to host reliable applications on top of unreliable infrastructure [21].

Moreover, traditional cloud management algorithms cannot be applied here,
as they generally consider powerful, always on servers, interconnected over wired
links. Many algorithms do not even take into account bandwidth limitations.
While such an omission can be justified by an appropriately over provisioned net-
work bandwidth within a data-center, it is not warranted in the above described
geo-distributed cloud networks.

State of the Art. In this section, the state of the art with regard to the
Application Placement Problem (APP) in cloud environments is discussed. Early
work on application placement merely considers nodal resources, such as Central
Processing Unit (CPU) and memory capabilities. Deciding whether requests are
accepted and where those virtual resources are placed then reduces to a Multiple
Knapsack Problem (MKP) [22]. An MKP is known to be NP-hard and therefore
optimal algorithms are hampered by scalability issues. A large body of work has
been devoted to finding heuristic solutions [23–25].

When the application placement not only decides where computational enti-
ties are hosted, but also decides on how the communication between those
entities is routed in the Substrate Network (SN), then we speak of network-
aware APP. Network-aware application placement is closely tied to Virtual
Network Embedding (VNE) [26]. An example of a network-aware approach is
the work from Moens et al. [27]. It employs a Service Oriented Architecture
(SOA), in which applications are constructed as a collection of communicating
services. This optimal approach performs node and link mapping simultaneously.



Traffic Management for Cloud Federation 289

In contrast, other works try to reduce computational complexity by performing
those tasks in distinct phases [28,29].

While the traditional VNE problem assumes that the SN network remains
operational at all times, the Survivable Virtual Network Embedding (SVNE)
problem does consider failures in the SN. For instance, Ajtai et al. try and
guarantee that a virtual network can still be embedded in a physical network,
after k network components fail. They provide a theoretical framework for fault-
tolerant graphs [30]. However, in this model, hardware failure can still result
in service outage as migrations may be required before normal operation can
continue.

Mihailescu et al. try to reduce network interference by placing Virtual
Machines (VMs) that communicate frequently, and do not have anti-collocation
constraints, on Physical Machines (PMs) located on the same racks [31]. Addi-
tionally, they uphold application availability when dealing with hardware fail-
ures by placing redundant VMs on separate server racks. A major shortcoming
is that the number of replicas to be placed, and the anti-collocation constraints
are user-defined.

Csorba et al. propose a distributed algorithm to deploy replicas of VM images
onto PMs that reside in different parts of the network [32]. The objective is to
construct balanced and dependable deployment configurations that are resilient.
Again, the number of replicas to be placed is assumed predefined.

SiMPLE allocates additional bandwidth resources along multiple disjoint
paths in the SN [33]. This proactive approach assumes splittable flow, i.e. the
bandwidth required for a Virtual Link (VL) can be realized by combining mul-
tiple parallel connections between the two end points. The goal of SiMPLE is
to minimize the total bandwidth that must be reserved, while still guarantee-
ing survivability against single link failures. However, an important drawback
is that while the required bandwidth decreases as the number of parallel paths
increases, the probability of more than one path failing goes up exponentially,
effectively reducing the VL’s availability.

Chowdhury et al. propose Dedicated Protection for Virtual Network Embed-
ding (DRONE) [34]. DRONE guarantees Virtual Network (VN) survivability
against single link or node failure, by creating two VNEs for each request. These
two VNEs cannot share any nodes and links.

Aforementioned SVNE approaches [30–34] lack an availability model. When
the infrastructure is homogeneous, it might suffice to say that each VN or VNE
need a predefined number of replicas. However, in geo-distributed cloud environ-
ments the resulting availability will largely be determined by the exact placement
configuration, as moving one service from an unreliable node to a more reliable
one can make all the difference. Therefore, geo-distributed cloud environments
require SVNE approaches which have a computational model for availability as
a function of SN failure distributions and placement configuration.

The following cloud management algorithms have a model to calculate avail-
ability. Jayasinghe et al. model cloud infrastructure as a tree structure with arbi-
trary depth [35]. Physical hosts on which Virtual Machines (VMs) are hosted



290 W. Burakowski et al.

are the leaves of this tree, while the ancestors comprise regions and availability
zones. The nodes at bottom level are physical hosts where VMs are hosted. Wang
et al. were the first to provide a mathematical model to estimate the resulting
availability from such a tree structure [36]. They calculate the availability of a
single VM as the probability that neither the leaf itself, nor any of its ancestors
fail. Their work focuses on handling workload variations by a combination of
vertical and horizontal scaling of VMs. Horizontal scaling launches or suspends
additional VMs, while vertical scaling alters VM dimensions. The total availabil-
ity is then the probability that at least one of the VMs is available. While their
model suffices for traditional clouds, it is ill-suited for a geo-distributed cloud
environment as link failure and bandwidth limitations are disregarded.

In contrast, Yeow et al. define reliability as the probability that critical nodes
of a virtual infrastructure remain in operation over all possible failures [37]. They
propose an approach in which backup resources are pooled and shared across
multiple virtual infrastructures. Their algorithm first determines the required
redundancy level and subsequently performs the actual placement. However,
decoupling those two operations is only possible when link failure can be omitted
and nodes are homogeneous.

Availability Model. In this section we introduce an availability model for geo-
distributed cloud networks, which considers any combination of node and link
failures, and supports both node and link replication. Then, building on this
model, we will study the problem of guaranteeing a minimum level of availabil-
ity for applications. In the next section, we introduce an Integer Linear Program
(ILP) formulation of the problem. The ILP solver can find optimal placement
configurations for small scale networks, its computation time quickly becomes
unmanageable when the substrate network dimensions increase. Subsequently
two heuristics are presented: (1) a distributed evolutionary algorithm employing
a pool-model, where execution of computational tasks and storage of the pop-
ulation database (DB) are separated (2) a fast centralized algorithm, based on
subgraph isomorphism detection. Finally, we evaluate the performance of the
proposed algorithms.

3.3.0.1 Application Requests. We consider a SOA, which is a way of structur-
ing IT solutions that leverage resources distributed across the network [38]. In
a SOA, each application is described as its composition of services. Through-
out this work, the collected composition of all requested applications will be
represented by the instance matrix (I).

Services have certain CPU (ω) and memory requirements (γ). Additionally,
bandwidth (β) is required by the VLs between any two services. A sub-modular
approach allows sharing of memory resources amongst services belonging to mul-
tiple applications.

3.3.0.2 Cloud Infrastructure. Consider a substrate network consisting of nodes
and links. Nodes have certain CPU (Ω) and memory capabilities (Γ ). Physical
links between nodes are characterized by a given bandwidth (B). Both links and



Traffic Management for Cloud Federation 291

Table 4. Overview of input variables to the Cloud Application Placement Problem
(CAPP).

Symbol Description

A Set of requested applications

S Set of services

ωs CPU requirement of service s

γs Memory requirement of service s

βs1,s2 Bandwidth requirement between services s1 and s2

Ia,s Instantiation of service s by application a: 1 if instanced, else 0

N Set of physical nodes comprising the substrate network

E Set of physical links (edges) comprising the substrate network

Ωn CPU capacity of node n

Γn Memory capacity of node n

pN
n Probability of failure of node n

Be Bandwidth capacity of link e

pE
e Probability of failure of link e

Ra Required total availability of application a: lower bound on the
probability that at least one of the duplicates for a is available

δ Maximum allowed number of duplicates

nodes have a known probability of failure, pN and pE respectively. Failures are
considered to be independent.

3.3.0.3 The VAR Protection Method. Availability not only depends on failure
in the SN, but also on how the application is placed. Non-redundant application
placement assigns each service and VL at most once, while its redundant counter-
part can place those virtual resources more than once. The survivability method
presented in this work, referred to as VAR, guarantees a minimum availability by
application level replication, while minimizing the overhead imposed by alloca-
tion of those additional resources. VAR uses a static failure model, i.e. availabil-
ity only depends on the current state of the network. Additionally, it is assumed
that upon failure, switching between multiple application instances takes place
without any delay. These separate application instances will be referred to as
duplicates. Immediate switchover yields a good approximation, when the dura-
tion of switchover is small compared to the uptime of individual components.
A small switchover time is feasible, given that each backup service is preloaded
in memory, and CPU and bandwidth resources have been preallocated. Further-
more, immediate switchover allows condensation of the exact failure dynamics
of each component, into its expected availability value, as long as the individual
components fail independently (a more limiting assumption).



292 W. Burakowski et al.

Fig. 8. Overview of this work: services {ω, γ, β}, composing applications {I}, are
placed on a substrate network where node {pN } and link failure {pE } is modeled.
By increasing the redundancy δ, a minimum availability R can be guaranteed.

Table 5. An overview of resource sharing amongst identical services and VLs.

Sharing of resources

CPU Memory Bandwidth

Within application Yes Yes Yes

Amongst applications No Yes No

In the VAR model, an application is available if at least one of its duplicates
is on-line. A duplicate is on-line if none of the PMs and Physical Links (PLs),
that contribute its placement, fail. Duplicates of the same application can share
physical components. An advantage of this reuse is that a fine-grained tradeoff
can be made between increased availability, and decreased resource consumption.
An overview of resources’ reuse is shown in Table 5. In Fig. 9 three possible
placement configurations using two duplicates are shown for one application.
In Fig. 9a both duplicates are identical, and no redundancy is introduced. The
nodal resource consumption is minimal, as CPU and memory for s1, s2, and
s3 are provisioned only once. Additionally, the total bandwidth required for
(s1, s2), and (s2, s3) is only provisioned once. The bandwidth consumption of
this configuration might not be minimal, if consolidation of two or three services
onto one PM is possible. This placement configuration does not provide any
fault-tolerance, as failure of either n1, n2 or n3, or (n1, n2), (n2, n3) results in
downtime.

When more than one duplicate is placed and the resulting arrangements of
VLs and services differ, then the placement is said to introduce redundancy.
However, this increased redundancy results in a higher resource consumption.
In Fig. 9b the application survives a singular failure of either (n4, n2), (n2, n3),
(n4, n5), or (n5, n3). The placement configuration depicted in Fig. 9c survives all
singular failures in the SN, except for a failure of n1.



Traffic Management for Cloud Federation 293

Application

Duplicate 1

Duplicate 2

s1 s2 s3

n1 n2 n3

n4 n5

n1 n2 n3

n4 n5

(a) 0 replicated services

s1 s2 s3

n1 n2 n3

n4 n5

n1 n2 n3

n4 n5

(b) 1 replicated VL

s1 s2 s3

n1 n2 n3

n4 n5

n1 n2 n3

n4 n5

(c) 2 replicated services
replicated VL

Fig. 9. Illustration of the VAR protection method.

Formal Problem Description. The algorithms presented in this work are
based on the optimisation model proposed in [39]. In this section we briefly
describe the model but refer to [39] for a more elaborate discussion. Our model
consists of two main blocks: the cloud-environment and the set of applications.
To model the problem we define the following constraints. We refer to [39] for
the mathematical representation.

– The total amount of duplicates for each application is limited by δ.
– An application a is placed correctly if and only if at least one duplicate of a

is placed.
– A service is correctly placed if there is enough CPU and memory available in

all PMs.
– A service will only be placed on a PM if and only if it is used by at least one

duplicate.
– The total bandwidth of a PL cannot be higher than the aggregate bandwidth

of the VLs that use the PL.
– A VL can use a PL if and only if the PL has sufficient remaining bandwidth.
– An application is only placed if the availability of the application can be

guaranteed.

If a service is placed on the same PM, for multiple duplicates or for multiple
applications, or the same VL is placed on a PL, they can reuse resources (see
Table 5). Therefore, if service s is placed twice on PM n for the same application
then there is no need to allocate CPU and memory twice. Only if service s is
placed for a different application additional CPU resources must be allocated.

The problem we solve is to maximise the number of accepted applications.

Results. For a description of the proposed heuristics, and an extensive perfor-
mance analysis, featuring multiple application types, SN types and scalability
study we refer the interested reader to [40].

In reliable cloud environments (or equivalently, under low availability require-
ments) it is often acceptable to place each VN only once, and not bother about
availability [27]. However, when the frequency of failures is higher (or if avail-
ability requirements increase), then one of the following measures should be



294 W. Burakowski et al.

taken. First, one can improve the availability by placing additional backups,
which fail independently of one another. However, this approach works best in
homogeneous cloud environments, where one can use the same number of backup
VN embeddings, regardless of the exact placement configuration. In heteroge-
neous environments a fixed redundancy level for each application either results
in wasted SN resources, or a reduced placement ratio. In the context of cloud
federation, the reliability of the links interconnecting the different cloud enti-
ties can be highly heterogeneous (leased lines, or best-effort public internet).
Therefore, to further improve revenue, cloud federation should take these failure
characteristics into consideration, and estimate the required replication level.

3.4 Level 2: Service Composition and Orchestration

Service composition and orchestration have become the predominant paradigms
that enable businesses to combine and integrate services offered by third par-
ties. For the commercial viability of composite services, it is crucial that they are
offered at sharp price-quality ratios. A complicating factor is that many attrac-
tive third-party services often show highly variable service quality. This raises
the need for mechanisms that promptly adapt the composition to changes in the
quality delivered by third party services. In this section, we discuss a real-time
QoS control mechanism that dynamically optimizes service composition in real
time by learning and adapting to changes in third party service response time
behaviors. Our approach combines the power of learning and adaptation with
the power of dynamic programming. The results show that real-time service re-
compositions lead to dramatic savings of cost, while meeting the service quality
requirements of the end-users.

3.4.1 Background and Motivation
In the competitive market of information and communication services, it is cru-
cial for service providers to be able to offer services at competitive price/quality
ratios. Succeeding to do so will attract customers and generate business, while
failing to do so will inevitably lead to customer dissatisfaction, churn and loss of
business. A complicating factor in controlling quality-of-service (QoS) in service
oriented architectures is that the ownership of the services in the composition
(sub-services) is decentralized: a composite service makes use of sub-services
offered by third parties, each with their own business incentives. As a conse-
quence, the QoS experienced by the (paying) end user of a composite service
depends heavily on the QoS levels realized by the individual sub-services run-
ning on different underlying platforms with different performance characteristics:
a badly performing sub-service may strongly degrade the end-to-end QoS of a
composite service. In practice, service providers tend to outsource responsibil-
ities by negotiating Service Level Agreements (SLAs) with third parties. How-
ever, negotiating multiple SLAs in itself is not sufficient to guarantee end-to-end
QoS levels as SLAs in practice often give probabilistic QoS guarantees and SLA
violations can still occur. Moreover probabilistic QoS guarantees do not nec-
essarily capture time-dependent behavior e.g. short term service degradations.



Traffic Management for Cloud Federation 295

Therefore, the negotiation of SLAs needs to be supplemented with run-time
QoS-control capabilities that give providers of composite services the capability
to properly respond to short-term QoS degradations (real-time composite ser-
vice adaptation). Motivated by this, in this section we propose an approach that
adapts to (temporary) third party QoS degradations by tracking the response
time behavior of these third party services.

3.4.2 Literature and Related Work
The problem of QoS–aware optimal composition and orchestration of composite
services has been well–studied (see e.g. [41,42]). The main problem addressed in
these papers is how to select one concrete service per abstract service for a given
workflow, in such a way that the QoS of the composite service (as expressed by
the respective SLA) is guaranteed, while optimizing some cost function. Once
established, this composition would remain unchanged the entire life–cycle of
the composite web service. In reality, SLA violations occur relatively often, lead-
ing to providers’ losses and customer dissatisfaction. To overcome this issue,
it is suggested in [43–45] that, based on observations of the actually realised
performance, re–composition of the service may be triggered. During the re–
composition phase, new concrete service(s) may be chosen for the given work-
flow. Once re–composition phase is over, the (new) composition is used as long as
there are no further SLA violations. In particular, the authors of [43–45] describe
when to trigger such (re–composition) event, and which adaptation actions may
be used to improve overall performance.

A number of solutions have been proposed for the problem of dynamic, run–
time QoS–aware service selection and composition within SOA [46–49]. These
(proactive) solutions aim to adapt the service composition dynamically at run–
time. However, these papers do not consider the stochastic nature of response
time, but its expected value. Or they do not consider the cost structure, revenue
and penalty model as given in this paper.

In the next section, we extend the approach presented in [48] such that we
can learn an exploit response-time distributions on the fly. The use of classical
reinforcement-learning techniques would be a straight forward approach. How-
ever, our model has a special structure that complicates the use of the classical
Temporal Difference learning (TD) learning approaches. The solution of our DP
formulation searches the stochastic shortest path in a stochastic activity net-
work [50]. This DP can be characterized as a hierarchical DP [51,52]. Therefore
classical Reinforcement Learning (RL) is not suitable and hierarchical RL has to
be applied [52]. Also changes in response-time behavior are likely to occur which
complicates the problem even more. Both the problem structure and volatility
are challenging areas of research in RL. Typically RL techniques solve complex
learning and optimization problems by using a simulator. This involves a Q value
that assigns utility to state–action combinations. Most algorithms run off-line
as a simulator is used for optimization. RL has also been widely used in on–line
applications. In such applications, information becomes available gradually with



296 W. Burakowski et al.

time. Most RL approaches are based on environments that do not vary over
time. We refer to [51] for a good survey on reinforcement learning techniques.

In our approach we tackle both the hierarchical structure, and time vary-
ing behavior challenges. To this end we are using empirical distributions and
updating the lookup table if significant changes occur. As we are considering a
sequence of tasks, the number of possible response time realizations combina-
tions explodes. By discretizing the empirical distribution over fixed intervals we
overcome this issue.

3.4.3 Composition and Orchestration Model
We consider a composite service that comprises a sequential workflow consisting
of N tasks identified by T1, . . . , TN . The tasks are executed one–by–one in the
sense that each consecutive task has to wait for the previous task to finish. Our
solution is applicable to any workflow that could be aggregated and mapped
into a sequential one. Basic rules for aggregation of non–sequential workflows
into sequential workflows have been illustrated in, e.g. [48,50,53]. However, the
aggregation leads to coarser control, since decisions could not be taken for a
single service within the aggregated workflow, but rather for the aggregated
workflow patterns themselves.

The workflow is based on an unambiguous functionality description of a ser-
vice (“abstract service”), and several functionally identical alternatives (“con-
crete services”) may exist that match such a description [54]. Each task has an
abstract service description or interface which can be implemented by external
service providers.

The workflow in Fig. 10 consists of four abstract tasks, and each task maps
to three concrete services (alternatives), which are deployed by (independent)
third–party service providers. For each task Ti there are Mi concrete service
providers CS(i,1), . . . ,CS(i,Mi) available that implement the functionality corre-
sponding to task Ti. For each request processed by CS(i,j) cost c(i,j) has to be
paid. Furthermore there is an end–to–end response-time deadline δp. If a request
is processed within δp a reward of R is received. However, for all requests that
are not processed within δp a penalty V had to be paid. After the execution of
a single task within the workflow, the orchestrator decides on the next concrete
service to be executed, and composite service provider pays to the third party
provider per single invocation. The decision points for given tasks are illustrated
at Fig. 10 by A, B, C and D. The decision taken is based on (1) execution costs,
and (2) the remaining time to meet the end–to–end deadline. The response time
of each concrete service provider CS(i,j) is represented by the random variable
D(i,j). After each decision the observed response time is used for updating the
response time distribution information of the selected service. Upon each lookup
table update the corresponding distribution information is stored as reference
distribution. After each response the reference distribution is compared against
the current up-to date response time distribution information.

In our approach response-time realizations are used for learning an updating
the response-time distributions. The currently known response-time distribution



Traffic Management for Cloud Federation 297

Fig. 10. Orchestrated composite web service depicted by a sequential workflow.
Dynamic run–time service composition is based on a lookup table. Decisions are
taken at points A–D. For every used concrete service the response-time distribution is
updated with the new realization. In this example a significant change is detected. As
a result for the next request concrete service 2 is selected at task 1.

is compared against the response-time distribution that was used for the last
policy update. Using well known statistical tests we are able to identify if an
significant change occurred and the policy has to be recalculated. Our approach is
based on fully dynamic, run–time service selection and composition, taking into
account the response–time commitments from service providers and information
from response-time realizations. The main goal of this run–time service selection
and composition is profit maximization for the composite service provider and
ability to adapt to changes in response-time behavior of third party services.

By tracking response times the actual response-time behavior can be cap-
tured in empirical distributions. In [48] we apply a dynamic programming (DP)
approach in order to derive a service-selection policy based on response-time real-
izations. With this approach it is assumed that the response-time distributions
are known or derived from historical data. This results in a so called lookup table
which determines what third party alternative should be used based on actual
response-time realizations.



298 W. Burakowski et al.

3.4.4 Real Time QoS Control
In this section we explain our real-time QoS control approach. The main goal
of this approach is profit maximization for the composite service provider, and
ability to adapt to changes in response-time behavior of third party services. We
realize this by monitoring/tracking the observed response-time realizations. The
currently known empirical response-time distribution is compared against the
response-time distribution that was used for the last policy update. Using well
known statistical tests we are able to identify if an significant change occurred
and the policy has to be recalculated. Our approach is based on fully dynamic,
run–time service selection and composition, taking into account the response–
time commitments from service providers and information from response-time
realizations. We illustrate our approach using Fig. 11. The execution starts with
an initial lookup table at step (1). This could be derived from initial measure-
ments on the system. After each execution of a request in step (2) the empirical
distribution is updated at step (3). A DP based lookup table could leave out
unattractive concrete service providers. In that case we do not receive any infor-
mation about these providers. These could become attractive if the response-time
behavior changes. Therefore in step (4), if a provider is not visited for a certain
time, a probe request will be sent at step (5b) and the corresponding empirical
distribution will be updated at step (6a). After each calculation of the lookup
table, the current set of empirical distributions will be stored. These are the
empirical distributions that were used in the lookup table calculation and form
a reference response-time distribution. Calculating the lookup table for every
new sample is expensive and undesired. Therefore we propose a strategy where
the lookup table will be updated if a significant change in one of the services
is detected. For this purpose the reference distribution is used for detection of
response-time distribution changes. In step (5a) and step (6a) the reference dis-
tribution and current distribution are retrieved and a statistical test is applied
for detecting change in the response-time distribution. If no change is detected
then the lookup table remains unchanged. Otherwise the lookup table is updated
using the DP. After a probe update in step (5b) and step (6b) we immediately
proceed to updating the lookup table as probes are sent less frequently. In step
(7) and step (8) the lookup table is updated with the current empirical distribu-
tions and these distributions are stored as new reference distribution. By using
empirical distributions we are directly able to learn and adapt to (temporarily)
changes in behavior of third party services.

Using a lookup table based on empirical distributions could result in the situ-
ation that certain alternatives are never invoked. When other alternatives break
down this alternative could become attractive. In order to deal with this issue
we use probes. A probe is a dummy request that will provide new information
about the response time for that alternative. As we only receive updates from
alternatives which are selected by the dynamic program, we have to keep track
of how long ago a certain alternative has been used. For this purpose to each
concrete service provider a probe timer U (i,j) is assigned with corresponding
probe time–out t

(i,j)
p . If a provider is not visited in t

(i,j)
p requests (U (i,j) > t

(i,j)
p )



Traffic Management for Cloud Federation 299

Fig. 11. Real-time QoS control approach.

then the probe timer has expired and a probe will be collected incurring probe
cost c

(k,j)
p . If for example, in Fig. 10, the second alternative of the third task has

not been used in the last ten requests, the probe timer for alternative two has
value U (3,2) = 10. After a probe we immediately update the corresponding dis-
tribution. No test is applied here as probes are collected less frequent compared
to processed requests.

In order to evaluate the proposed QoS control methods we have performed
extensive evaluation testing in an experimental setting. The results show that
real-time service re-compositions indeed lead to dramatics savings in cost, while
still meeting QoS requirements of the end users. The reader is referred to [55]
for the details.

3.5 Level 1: Resource Management in Virtualized Infrastructure

Level 1 deals with the dependencies of different physical resources, such as Cen-
tral Processing Unit (CPU) time, Random Access Memory (RAM), disk I/O,
and network access, and their effect on the performance that users perceive.
These dependencies can be described by functions that map resource combi-
nations, i.e. resource vectors, to scalars that describe the performance that is
achieved with these resources. Therefore, such utility functions describe how the
combination of different resources influences the performance users perceive [56].
Accordingly, utility functions (a) indicate in which ratios resources have to be
allocated, in order to maximize user satisfaction and efficiency, (b) are deter-
mined by technical factors, and (c) are investigated in this section.

3.5.1 Methodology
In order to get an idea about the nature of utility functions that VMs have during
runtime, dependencies between physical resources, when utilized by VMs, and
effects on VM performance are investigated as follows. Different workloads are



300 W. Burakowski et al.

executed on a VM with a changing number of Virtual CPUs (VCPU) and Virtual
RAM (VRAM) (this influences how many physical resources the VM can access)
and varying load levels of the host system (this simulates contention among VMs
and also influences how many physical resources the VM can access).

A machine with a 2.5 Gigahertz (GHz) AMD Opteron 6180 SE processor
with 24 cores and 6 and 10 MB of level 2 and 3 cache, respectively, and 64 GB
of ECC DDR3 RAM with 1333 Mhz is used as host system. VM and host have
a x86-64 architecture and run Ubuntu 14.04.2 LTS, Trusty Tahr, which was the
latest Ubuntu release, when the experiments were conducted.

3.5.1.1 Measurement Method. Resource consumption of VMs is measured by
monitoring the VM’s (qemu [57]) process. In particular, the VM’s CPU time and
permanent storage I/O utilization is measured with psutil (a python system and
process utilities library) and the VM’s RAM utilization by the VM’s proportional
set size, which is determined with the tool smem [58].

3.5.1.2 Workloads. Workloads are simulated by the following benchmarks of the
Phoronix test suite [59].

Apache. This workload measures how many requests the Apache server can
sustain concurrently.

Aio-stress. This benchmark assesses the speed of permanent storage I/O (hard
disk or solid state drive). In a virtualized environment permanent storage
can be cached in the host system’s RAM. Therefore, this test not necessarily
results in access to the host system’s permanent storage.

7zip. This benchmark uses 7zip’s integrated benchmark feature to measure the
system’s compression speed.

PyBench. This benchmark measures the execution time of Python functions
such as BuiltinFunctionCalls and NestedForLoops. Contrary to all other
benchmarks, here a lower score is better.

3.5.2 Results
This section presents selected results from [60] that were achieved with the setup
described above.

3.5.2.1 RAM. Figure 12 shows the scores a VM achieves on the Apache and
PyBench benchmark and the RAM it utilizes depending on the VRAM. For
each VRAM configuration 10 measurements are conducted.

Figure 12a shows that when the VM executes Apache, it never utilizes more
than 390 MB of RAM. In particular, for a VM with 100 to 350 MB of VRAM
the amount of RAM that is maximally utilized continuously increases but does
not further increase, when more than 350 MB of VRAM are added. Therefore,
Fig. 12a shows that a VM with less than 350 MB of VRAM utilizes all RAM
that is available, which seems to imply, that this amount of RAM is critical for
performance. However, Fig. 12a also depicts that the Apache score only increases
for up to 250 MB of VRAM and that this increase is marginal compared to the



Traffic Management for Cloud Federation 301

Fig. 12. Benchmark scores and RAM utilization depending on a VM’s VRAM

increase of RAM that is utilized. Therefore, the dependency between VRAM and
utilized RAM is much stronger than the dependency between VRAM/utilized
RAM and Apache score. In particular, while the RAM utilization more than
doubles, the Apache scores vary by less than 10%. This is particularly interesting,
because this configuration range includes 100 MB of VRAM which constrains the
VM’s RAM utilization to less than half of what the VM alone (without executing
any workload) would utilize.

Figure 12b shows that when the VM executes PyBench, the VM process
utilizes 270 MB of RAM at most. Although the VM is constraint in its RAM
utilization, when it has less than 250 MB of VRAM, there is no correlation
between the achieved PyBench score and the VM’s VRAM, as the PyBench
score does not increase.

Therefore, Fig. 12 shows that RAM, which is actively utilized by a VM (be it
on startup or when executing an application), not necessarily impacts the VM’s
performance. In particular, even if the RAM utilized by a VM varies from 100 MB
to 350 MB, the VM’s Apache score, i.e., its ability to sustain concurrent server
requests, only changed by 10%. For PyBench the score was entirely independent
of the available RAM. This is particularly interesting, because not even a VM
with 100 MB of VRAM showed decreased performance, while this is the minimum
amount of RAM that avoids a kernel panic and even a VM that not executes
any workload utilizes more, if possible.

3.5.2.2 VCPUs and Maximal RAM Utilization. The 7zip benchmark reveals an
interesting dependency of VCPUs and RAM utilization (cf. Fig. 13). As Fig. 13a
shows, for one to three VCPUs a VM executing the 7zip benchmark utilizes
1 GB of RAM and for every two additional cores the RAM utilization increases
by 400 MB (the VM had 9 GB of VRAM).

The distinct pattern in which RAM is utilized gives reason to believe, that
it is essential for performance. Therefore, Fig. 13b compares the 7zip scores



302 W. Burakowski et al.

achieved by VMs with 1 and 9 GB of VRAM. As Fig. 13a shows, the more VCPUs
a VM has, the more it will be constrained by only having 1 GB of VRAM, while
9 GB of VRAM not even constrain a VM with 24 VCPUs. In line with this
observation, Fig. 13b shows that the difference between the 7zip scores achieved
by VMs with 1 and 9 GB of VRAM grows with the number of VCPUs. However,
the score difference is rather moderate compared to the large difference in terms
of RAM utilization. In particular, a VM with 24 VCPUs utilizes more than 5 GB
of RAM, if available. This is five times as much, as a VM with 1 GB of VRAM
utilizes. However, the 7zip scores achieved by these VMs only differ by 15%.

Fig. 13. RAM utilization and performance, depending on the number of VCPUs and
amount of VRAM, of a VM executing the 7zip benchmark

3.5.2.3 Multi Core Penalty. Figure 14a plots the Apache scores achieved by a VM
with 1 to 9 VCPUs, whereat 16 measurements per configuration were conducted.
The figure shows that the best performance is achieved, when the VM has three
or four VCPUs, while additional VCPUs linearly decrease the Apache score. As
the figure depicts, up to three VCPUs significantly increase performance and four
VCPUs perform equally well. However, adding additional VCPUs continuously
decreases performance. This effect, which is termed multi-core-penalty occurred,
independent of whether VCPUs were pinned to physical CPUs. Figure 14a also
demonstrates that, while three VCPUs perform best for an unstressed host, two
VCPUs perform best, when the host is stressed. Furthermore, the multi-core-
penalty does not occur, when the benchmark is executed natively, i.e., directly
on the host and not inside a VM. This shows that the it is caused by the vir-
tualization layer. Despite the decrease of the Apache score with the number of
VCPUs, the VM’s utilization of CPU time increases with the number of VCPUs.
For example, for the Apache benchmark it was found that for 9 VCPUs the



Traffic Management for Cloud Federation 303

utilized CPU time is roughly twice as high as the CPU time utilized by one to
three VCPUs (although the Apache score was significantly lower for 9 VCPUs).

Fig. 14. Two example of the multi-core-penalty

Figure 14b shows that the multi-core penalty also occurs for the aio-stress
benchmark, where a VM with one VCPU constantly achieves a higher aio-stress
score than any VM with more VCPUs. In particular, the aio-stress score of a
VM with only one VCPU is on average a 30% higher than the aio-stress score of
VMs with more VCPUs. However, unlike the Apache benchmark, the aio-stress
score does not decrease with the number of VCPUs.

3.5.3 New Findings
Most work on data center resource allocation assumes that resources such as
CPU and RAM are required in static or at least well defined ratios and that
the resulting performance is clearly defined. The results of this section do not
confirm these idealistic assumptions.

Section 3.5.2 did not find any significant effect of a VRAM on VM perfor-
mance. Notably, even for workloads that seem to be RAM critical, as they utilize
RAM in distinct patterns, or workloads running on VMs with just enough VRAM
to avoid a kernel panic during boot, no significant effect was found. Even if a lack
of RAM impedes performance, the impediment is minor compared to the amount
of RAM that is missing (cf. Sect. 3.5.2). In contrast, a lack of RAM bandwidth
significantly effects performance [61] but is rarely considered, when investigat-
ing data center fairness. Section 3.5.2 showed that the amount of RAM that is
utilized by a VM may depend on the number of VCPUs. Section 3.5.2 presents
the most counter-intuitive finding, which is that, when multi-core benchmarks



304 W. Burakowski et al.

are executed inside a VM, the performance often decreases, when more VCPUs
are added to the VM.

This section showed that it is a complex task to determine a class of utility
functions that properly models the allocation of a node’s PRs to VMs. However,
a realistic class of utility functions would greatly aid cloud resource allocation,
as it would allow to theoretically determine allocations that are practically more
efficient. Therefore, positive results on this topic would also greatly aid the per-
formance of cloud federations, as it would also allow to execute tasks in the
cloud of a federation, that performs best for this task. Nonetheless, no work
exists on this topic. This lack of work is caused by the topic’s complexity. For
example, resource dependencies vary over time, and depend on the workload
that is executed inside a VM and the host’s architecture. Also, the performance
of a VM is determined by a combination of resources as diverse as CPU time,
RAM, disk I/O, network access, CPU cache capacity, and memory bandwidth,
where substitutabilities may or may not apply.

4 Cloud Federation for IoT

4.1 State-of-the-Art in IoT Cloud Research

The integration of IoT and clouds has been envisioned by Botta et al. [62] by
summarizing their main properties, features, underlying technologies, and open
issues. A solution for merging IoT and clouds is proposed by Nastic et al. [63].
They argued that system designers and operations managers faced numerous
challenges to realize IoT cloud systems in practice, due to the complexity and
diversity of their requirements in terms of IoT resources consumption, customiza-
tion and runtime governance. They also proposed a novel approach for IoT cloud
integration that encapsulated fine-grained IoT resources and capabilities in well-
defined APIs in order to provide a unified view on accessing, configuring and
operating IoT cloud systems, and demonstrated their framework for managing
electric fleet vehicles.

Atzori et al. [64,65] examined IoT systems in a survey. They identified many
application scenarios, and classified them into five application domains: trans-
portation and logistics, healthcare, smart environments (home, office, plant),
personal, social and futuristic domains. They described these domains in detail,
and defined open issues and challenges for all of them. Concerning privacy, they
stated that much sensitive information about a person can be collected without
their awareness, and its control is impossible with current techniques.

Escribano [66] discussed the first opinion [67] of the Article 29 Data Pro-
tection Working Party (WP29) on IoT. According to these reports four cate-
gories can be differentiated: the first one is wearable computing, which means
the application of everyday objects and clothes, such as watches and glasses, in
which sensors were included to extend their functionalities. The second category
is called the ‘quantified self things’, where things can also be carried by individ-
uals to record information about themselves. With such things we can examine
physical activities, track movements, and measure weight, pulse or other health
indicators. The third one is home automation, which covers applications using



Traffic Management for Cloud Federation 305

devices placed in offices or homes such as connected light bulbs, thermostats,
or smoke alarms that can be controlled remotely over the Internet. They also
mention smart cities as the fourth category, but they do not define them explic-
itly. They argue that sharing and combining data through clouds will increase
locations and jurisdictions, where personal data resides. Therefore it is crucial to
identify and realize which stakeholder is responsible for data protection. WP29
named many challenges concerning privacy and data protection, like lack of user
control, intrusive user profiling and communication and infrastructure related
security risks.

IoT application areas and scenarios have already been categorized, such as
by Want et al. [68], who set up three categories: Composable systems, which
are ad-hoc systems that can be built from a variety of nearby things by making
connections among these possibly different kinds of devices. Since these devices
can discover each other over local wireless connections, they can be combined
to provide higher-level capabilities. Smart cities providing modern utilities could
be managed more efficiently with IoT technologies. As an example traffic-light
systems can be made capable of sensing the location and density of cars in the
area, and optimizing red and green lights to offer the best possible service for
drivers and pedestrians. Finally, resource conservation scenarios, where major
improvements can be made in the monitoring and optimization of resources
such as electricity and water.

4.2 MobIoTSim for Simulating IoT Devices

Cloud Federation can help IoT systems by providing more flexibility and scala-
bility. Higher level decisions can be made on where to place a gateway service to
receive IoT device messages, e.g. in order to optimize resource usage costs and
energy utilization. Such complex IoT cloud systems can hardly be investigated
in real world, therefore we need to turn to simulations.

The main purpose of MobIoTSim [69], our proposed mobile IoT device simu-
lator, is to help cloud application developers to learn IoT device handling without
buying real sensors, and to test and demonstrate IoT applications utilizing mul-
tiple devices. The structure of the application lets users create IoT environment
simulations in a fast and efficient way that allows for customization.

MobIoTSim can simulate one or more IoT devices, and it is implemented
as a mobile application for the Android platform. Sensor data generation of
the simulated devices are random generated values in the range given by the
user, or replayed data from trace files. The data sending frequency can also be
specified for every device. The application uses the MQTT protocol to send data
with the use of the Eclipse Paho opensource library. The data is represented in
a structured JSON object compatible with the IBM IoT Foundation message
format [70].

The basic usage of the simulator is to (i) connect to a cloud gateway, where
the data is to be sent, (ii) create and configure the devices to be simulated
and (iii) start the (data generation of the) required devices. These main steps
are represented by three main parts of the application: the Cloud settings, the
Devices and the Device settings screens. In the Cloud settings screen, the user



306 W. Burakowski et al.

can set the required information about the targeted cloud, where the data will be
received and processed. Currently there are two types of clouds supported: IBM
Bluemix and MS Azure. For the IBM cloud we have two options: the Bluemix
quickstart and the standard Bluemix IoT service. The Bluemix quickstart is a
public demo application, it can visualise the data from a selected device. For
a fast and easy setup (i.e. to try out the simulator) this type is recommended.
The standard Bluemix IoT service type can be used if the user has a registered
account for the Bluemix platform, and already created an IoT service. This IoT
service can be used to handle devices, which have been registered before. The
main part of the IoT service is an MQTT broker, this is the destination of the
device messages, and it forwards them to the cloud applications. Such cloud
applications can process the data, react to it or just perform some visualisation.
The required configuration parameters for the standard Bluemix IoT service in
MobIoTSim are: the Organization ID, which is the identifier of the IoT service
of the user in Bluemix, and an authentication key, so that the user does not
have to register the devices on the Bluemix web interface, and the command
and event IDs, which are customizable parts of the used MQTT topics to send
messages from the devices to the cloud and vice versa. MobIoTSim can register
the created devices with these parameters automatically, by using the REST
interface of Bluemix.

The Devices screen lists the created devices, where every row is a device or
a device group. These devices can be started and stopped by the user at will,
both together or separately for the selected ones. Some devices have the ability
to display warnings and notifications sent back by a gateway. In this screen we
can also create new devices or device groups. There are some pre-defined device
templates, which can be selected for creation. These device templates help to
create often used devices, such as a temperature sensor, humidity sensor or a
thermostat. If the user selects a template for the base of the device, the message
content and frequency will be set to some predefined values. The Thermostat
template has a temperature parameter, it turns on by reaching a pre-defined
low-level value and turns off at the high-level value. The On/Off state of the
device is displayed all the time. It is possible to select the Custom template to
configure a device in detail.

The new device creation and the editing of an existing one are made in the
Device settings screen. The user can add more parameters to a device and can
customize it with its own range. The range will be used to generate random
values for the parameters. A device group is a group of devices with the same
base template and they can be started and stopped together. If a device wants
to send data to the Bluemix IoT service, it has to be registered beforehand. The
registered devices have device IDs and tokens for authentication. The MobIoT-
Sim application handles the device registration in the cloud with REST calls,
so the user does not have to register the devices manually on the graphical web
interface. There is an option to save the devices to a file and load them back to
the application later. The device type attribute can be used to group devices.
The simulation itself can also be saved, so the randomly generated data can be



Traffic Management for Cloud Federation 307

replayed later many times. Even trace files from real world applications can be
played from other sources, i.e. saved samples from the OpenWeatherMap public
weather data provider [71]. The OpenWeatherMap monitors many cities and
stores many parameters for them, including temperature, humidity, air pressure
and wind speed. Using this trace loader feature, the simulation becomes closer
to a real life scenario. In some cases, the user may want to send data to not just
one but more cloud gateways at the same time. This is also possible by changing
the organization ID attribute of a device to one of the already saved ones in the
cloud settings.

We modified the Bluemix visualisation application to create a new private
gateway to handle more than one device at the same time. In this way we can see
the data from all devices in a real time chart. The node.js application subscribes
to all device topics with the MQTT protocol, and waits for the data. In this
revised gateway we use paging to overcome device management limitations (25
devices at a time). In order to enhance and better visualize many device data at
the same time, we introduced device grouping for the chart generation.

To summarize, MobIoTSim together with the proposed gateways provide
a novel solution to enable the simulation and experimentation of IoT cloud
systems. Our future work will address extensions for additional thing and sensor
templates, and will provide cases for scalability investigations involving multiple
cloud gateways.

5 Summary

In this chapter we have reported activities of the COST IC1304 ACROSS Euro-
pean Project corresponding to traffic management for Cloud Federation. In
particular, we have provided survey of discussed CF architectures and corre-
sponding standardization activities, we have proposed comprehensive multi-level
model for traffic management for CF together with proposed solutions for each
level. The effectiveness of these solutions were verified by simulation and ana-
lytical methods. The proposed levels are: Level 5 - Strategies for building CF,
Level 4 - Network for CF, Level 3 - Service specification and provision, Level 2 -
Service composition and orchestration, Level 1 - Task service in cloud resources.
Finally, we have presented specialized simulator for testing CF solution in IoT
environment.

References

1. Schubert, L., Jeffery, K.: Advances in Clouds - Research in Future Cloud Comput-
ing, Report from the Cloud Computing Expert Working Group Meeting. Cordis
(Online), BE: European Commission (2012). http://cordis.europa.eu/fp7/ict/ssai/
docs/future-cc-2may-finalreport-experts.pdf

2. Grozev, N., Buyya, R.: Inter-cloud architectures and application brokering: taxon-
omy and survey. Softw. Pract. Exper. (2012). https://doi.org/10.1002/spe.2168

http://cordis.europa.eu/fp7/ict/ssai/docs/future-cc-2may-finalreport-experts.pdf
http://cordis.europa.eu/fp7/ict/ssai/docs/future-cc-2may-finalreport-experts.pdf
https://doi.org/10.1002/spe.2168


308 W. Burakowski et al.

3. Celesti, A., Tusa, F., Villari, M., Puliafito, A.: How to enhance cloud architectures
to enable cross-federation. In: Proceedings of the 3rd International Conference on
Cloud Computing (CLOUD 2010), Miami, Florida, USA, pp. 337–345. IEEE (2010)

4. Bernstein, D., Ludvigson, E., Sankar, K., Diamond, S., Morrow, M.: Blueprint for
the intercloud - protocols and formats for cloud computing interoperability. In:
Proceedings of the Fourth International Conference on Internet and Web Applica-
tions and Services, pp. 328–336 (2009)

5. Marosi, A.C., Kecskemeti, G., Kertesz, A., Kacsuk, P.: FCM: an architecture for
integrating IaaS cloud systems. In: Proceedings of the Second International Con-
ference on Cloud Computing, GRIDs, and Virtualization (Cloud Computing 2011),
IARIA, pp. 7–12, Rome, Italy (2011)

6. International Telecommunication Union (ITU-T): Framework of Inter-Could Com-
puting (2014)

7. Internet Engineering Task Force (IETF): Working group on Content Delivery Net-
work Interconnection (CDNI) (2011)

8. National Institute of Standards and Technology [NIST]: U.S. Dept. of Commerce,
NIST Cloud Computing Standards Roadmap, Spec. Publ. 500–291 (2013)

9. Institute of electrical and electronics engineering (IEEE): Inter-cloud working
group, Standard for Intercloud Interoperability and Federation (SIIF) (2017)

10. Darzanos, G., Koutsopoulos, I., Stamoulis, G.D.: Economics models and policies
for cloud federations. In: 2016 IFIP Networking Conference (IFIP Networking) and
Workshops, Vienna, pp. 485–493 (2016). https://doi.org/10.1109/IFIPNetworking.
2016.7497246

11. Samaan, N.: A novel economic sharing model in a federation of selfish cloud
providers. IEEE Trans. Parallel Distrib. Syst. 25(1), 12–21 (2014). https://doi.
org/10.1109/TPDS.2013.23

12. Kleinrock, L.: Queueing Systems Volume 1: Theory, p. 103. Wiley, Hoboken (1975).
ISBN 0471491101

13. Carlini, E., Coppola, M., Dazzi, P., Ricci, L., Righetti, G.: Cloud federations in
contrail. In: Alexander, M., et al. (eds.) Euro-Par 2011. LNCS, vol. 7155, pp. 159–
168. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29737-3 19

14. Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S.,
Wanderer, J., Zhou, J., Zhu, M., Zolla, J., Hölzle, U., Stuart, S., Vahdat, A.: B4:
experience with a globally-deployed software defined WAN. In: ACM SIGCOMM
2013 Conference, New York, USA (2013)

15. Yen, J.Y.: Finding the K shortest loopless paths in a network. Manag. Sci. JSTOR
17(11), 712–716 (1971). www.jstor.org/stable/2629312

16. Aljazzar, H., Leue, S.: K∗: a heuristic search algorithm for finding the k shortest
paths. Artif. Intell. 175(18), 2129–2154 (2011). https://doi.org/10.1016/j.artint.
2011.07.003. ISSN 0004–3702

17. Puleri, M., Sabella, R.: Cloud robotics: 5G paves the way for mass-market autma-
tion. In: Charting the Future of Innovation, 5th edn., vol. 93, Ericsson, Stockholm
(2016)

18. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
Internet of Things. In: Proceedings of the First Edition of the MCC Workshop
on Mobile Cloud Computing, pp. 13–16. ACM (2012). https://doi.org/10.1145/
2342509.2342513

https://doi.org/10.1109/IFIPNetworking.2016.7497246
https://doi.org/10.1109/IFIPNetworking.2016.7497246
https://doi.org/10.1109/TPDS.2013.23
https://doi.org/10.1109/TPDS.2013.23
https://doi.org/10.1007/978-3-642-29737-3_19
http://www.jstor.org/stable/2629312
https://doi.org/10.1016/j.artint.2011.07.003
https://doi.org/10.1016/j.artint.2011.07.003
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513


Traffic Management for Cloud Federation 309

19. Al-Muhtadi, J., Campbell, R., Kapadia, A., Mickunas, M.D., Yi, S.: Routing
through the mist: privacy preserving communication in ubiquitous computing envi-
ronments. In: Proceedings 22nd International Conference on Distributed Com-
puting Systems, pp. 74–83 (2002). https://doi.org/10.1109/ICDCS.2002.1022244.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1022244

20. ISO/IEC-25010: Systems and software engineering - Systems and software Qual-
ity Requirements and Evaluation (SQuaRE) - System and software quality mod-
els, Standard, International Organization for Standardization, Geneva, CH, March
2010

21. Spinnewyn, B., Latré, S.: Towards a fluid cloud: an extension of the cloud into the
local network. In: Latré, S., Charalambides, M., François, J., Schmitt, C., Stiller,
B. (eds.) AIMS 2015. LNCS, vol. 9122, pp. 61–65. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-20034-7 7

22. Camati, R., Calsavara, A., Lima Jr., L.: Solving the virtual machine placement prob-
lem as a multiple multidimensional Knapsack problem. In: ICN 2014, no. c, pp. 253–
260 (2014). https://www.thinkmind.org/download.php?articleid=icn 2014 11 10
30065

23. Xu, J., Fortes, J.A.B.: Multi-objective virtual machine placement in virtualized
data center environments. In: 2010 IEEE/ACM International Conference on \&
International Conference on Cyber, Physical and Social Computing (CPSCom),
GREENCOM-CPSCOM 2010, IEEE Computer Society, Washington, DC, USA,
pp. 179–188 (2010). https://doi.org/10.1109/GreenCom-CPSCom.2010.137

24. Ren, Y., Suzuki, J., Vasilakos, A., Omura, S., Oba, K.: Cielo: an evolutionary game
theoretic framework for virtual machine placement in clouds. In: Proceedings - 2014
International Conference on Future Internet of Things and Cloud, FiCloud 2014,
pp. 1–8 (2014). https://doi.org/10.1109/FiCloud.2014.11

25. Moens, H., Truyen, E., Walraven, S., Joosen, W., Dhoedt, B., De Turck, F.: Cost-
effective feature placement of customizable multi-tenant applications in the cloud.
J. Netw. Syst. Manag. 22(4), 517–558 (2014). https://doi.org/10.1007/s10922-013-
9265-5

26. Fischer, A., Botero, J.F., Beck, M.T., De Meer, H., Hesselbach, X.:
Virtual network embedding: a survey. IEEE Commun. Surv. Tutor.
15(4), 1888–1906 (2013). https://doi.org/10.1109/SURV.2013.013013.00155.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6463372

27. Moens, H., Hanssens, B., Dhoedt, B., De Turck, F.: Hierarchical network-aware
placement of service oriented applications in clouds. In: IEEE/IFIP NOMS 2014 -
IEEE/IFIP Network Operations and Management Symposium: Management in
a Software Defined World, pp. 1–8 (2014). https://doi.org/10.1109/NOMS.2014.
6838230

28. Cheng, X., Su, S., Zhang, Z., Wang, H., Yang, F., Luo, Y., Wang, J.: Virtual net-
work embedding through topology-aware node ranking. ACM SIGCOMM Comput.
Commun. Rev. 41(2), 38 (2011). https://doi.org/10.1145/1971162.1971168

29. Zhu, Y., Ammar, M.: Algorithms for assigning substrate network resources to vir-
tual network components. In: Proceedings - IEEE INFOCOM, pp. 1–12 (2006).
https://doi.org/10.1109/INFOCOM.2006.322

30. Ajtai, M., Alon, N., Bruck, J., Cypher, R., Ho, C., Naor, M., Szemeredi,
E.: Fault tolerant graphs, perfect hash functions and disjoint paths. In: Pro-
ceedings, 33rd Annual Symposium on Foundations of Computer Science, pp.
693–702 (1992). https://doi.org/10.1109/SFCS.1992.267781. http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=267781

https://doi.org/10.1109/ICDCS.2002.1022244
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1022244
https://doi.org/10.1007/978-3-319-20034-7_7
https://doi.org/10.1007/978-3-319-20034-7_7
https://www.thinkmind.org/download.php?articleid=icn_2014_11_10_30065
https://www.thinkmind.org/download.php?articleid=icn_2014_11_10_30065
https://doi.org/10.1109/GreenCom-CPSCom.2010.137
https://doi.org/10.1109/FiCloud.2014.11
https://doi.org/10.1007/s10922-013-9265-5
https://doi.org/10.1007/s10922-013-9265-5
https://doi.org/10.1109/SURV.2013.013013.00155
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6463372
https://doi.org/10.1109/NOMS.2014.6838230
https://doi.org/10.1109/NOMS.2014.6838230
https://doi.org/10.1145/1971162.1971168
https://doi.org/10.1109/INFOCOM.2006.322
https://doi.org/10.1109/SFCS.1992.267781
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=267781
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=267781


310 W. Burakowski et al.

31. Mihailescu, M., Sharify, S., Amza, C.: Optimized application placement for net-
work congestion and failure resiliency in clouds. In: 2015 IEEE 4th International
Conference on Cloud Networking, CloudNet 2015, pp. 7–13 (2015). https://doi.
org/10.1109/CloudNet.2015.7335272

32. Csorba, M.J., Meling, H., Heegaard, P.E.: Ant system for service deployment in
private and public clouds. In: Proceeding of the 2nd Workshop on Bio-inspired
Algorithms for Distributed Systems - BADS 2010, p. 19. ACM (2010). https://doi.
org/10.1145/1809018.1809024. http://portal.acm.org/citation.cfm?doid=1809018.
1809024

33. Khan, M.M.A., Shahriar, N., Ahmed, R., Boutaba, R.: SiMPLE: survivability in
multi-path link embedding. In: Proceedings of the 11th International Conference
on Network and Service Management, CNSM 2015, pp. 210–218 (2015). https://
doi.org/10.1109/CNSM.2015.7367361

34. Chowdhury, S., Ahmed, R., Alamkhan, M.M., Shahriar, N., Boutaba, R., Mitra,
J., Zeng, F.: Dedicated protection for survivable virtual network embedding. In:
IEEE Transactions on Network and Service Management, p. 1 (2016). https://doi.
org/10.1109/TNSM.2016.2574239. http://ieeexplore.ieee.org/document/7480798/

35. Jayasinghe, D., Pu, C., Eilam, T., Steinder, M., Whalley, I., Snible, E.: Improv-
ing performance and availability of services hosted on IaaS clouds with structural
constraint-aware virtual machine placement. In: Proceedings - 2011 IEEE Inter-
national Conference on Services Computing, SCC 2011, pp. 72–79. IEEE (2011).
https://doi.org/10.1109/SCC.2011.28

36. Wang, W., Chen, H., Chen, X.: An availability-aware virtual machine placement
approach for dynamic scaling of cloud applications. In: Proceedings - IEEE 9th
International Conference on Ubiquitous Intelligence and Computing and IEEE
9th International Conference on Autonomic and Trusted Computing, UIC-ATC
2012, pp. 509–516 (2012). https://doi.org/10.1109/UIC-ATC.2012.31

37. Yeow, W.-L., Westphal, C., Kozat, U.: Designing and embedding reliable virtual
infrastructures. In: Proceedings of the Second ACM SIGCOMM Workshop on Vir-
tualized Infrastructure Systems and Architectures - VISA 2010, vol. 41(2), p. 33
(2010) . arXiv:1005.5367. https://doi.org/10.1145/1851399.1851406. http://portal.
acm.org/citation.cfm?doid=1851399.1851406

38. Laskey, K.B., Laskey, K.: Service oriented architecture. Wiley Interdisc. Rev. Com-
put. Stat. 1(1), 101–105 (2009). https://doi.org/10.1002/wics.8

39. Spinnewyn, B., Braem, B., Latre, S.: Fault-tolerant application placement in het-
erogeneous cloud environments. In: Proceedings of the 11th International Confer-
ence on Network and Service Management, CNSM 2015, pp. 192–200. IEEE (2015).
https://doi.org/10.1109/CNSM.2015.7367359

40. Spinnewyn, B., Mennes, R., Botero, J.F., Latre, S.: Resilient application placement
for geo-distributed cloud networks. J. Netw. Comput. Appl. 85(1), 14–31 (2017).
https://doi.org/10.1016/j.jnca.2016.12.015

41. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for QoS-
aware service composition based on genetic algorithms. In: Proceedings of the
2005 Conference on Genetic and Evolutionary Computation, pp. 1069–1075. ACM
(2005)

42. Yu, T., Zhang, Y., Lin, K.J.: Efficient algorithms for web services selection with
end-to-end QoS constraints. ACM Trans. Web (TWEB) 1, 6 (2007). ACM

43. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: A framework for QoS-aware
binding and re-binding of composite web services. J. Syst. Softw. 81, 1754–1769
(2008). Elsevier

https://doi.org/10.1109/CloudNet.2015.7335272
https://doi.org/10.1109/CloudNet.2015.7335272
https://doi.org/10.1145/1809018.1809024
https://doi.org/10.1145/1809018.1809024
http://portal.acm.org/citation.cfm?doid=1809018.1809024
http://portal.acm.org/citation.cfm?doid=1809018.1809024
https://doi.org/10.1109/CNSM.2015.7367361
https://doi.org/10.1109/CNSM.2015.7367361
https://doi.org/10.1109/TNSM.2016.2574239
https://doi.org/10.1109/TNSM.2016.2574239
http://ieeexplore.ieee.org/document/7480798/
https://doi.org/10.1109/SCC.2011.28
https://doi.org/10.1109/UIC-ATC.2012.31
http://arxiv.org/abs/1005.5367
https://doi.org/10.1145/1851399.1851406
http://portal.acm.org/citation.cfm?doid=1851399.1851406
http://portal.acm.org/citation.cfm?doid=1851399.1851406
https://doi.org/10.1002/wics.8
https://doi.org/10.1109/CNSM.2015.7367359
https://doi.org/10.1016/j.jnca.2016.12.015


Traffic Management for Cloud Federation 311

44. Zeng, L., Lingenfelder, C., Lei, H., Chang, H.: Event-driven quality of service
prediction. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008.
LNCS, vol. 5364, pp. 147–161. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89652-4 14

45. Leitner, P.: Ensuring cost-optimal SLA conformance for composite service
providers. ICSOC/ServiceWave 2009. Ph.D. symposium, p. 49 (2009)

46. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F.: Adaptive management
of composite services under percentile-based service level agreements. In: Maglio,
P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp.
381–395. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17358-
5 26

47. Gao, A., Yang, D., Tang, S., Zhang, M.: Web service composition using Markov
decision processes. In: Fan, W., Wu, Z., Yang, J. (eds.) WAIM 2005. LNCS,
vol. 3739, pp. 308–319. Springer, Heidelberg (2005). https://doi.org/10.1007/
11563952 28

48. Živković, M., Bosman, J.W., van den Berg, J.L., van der Mei, R.D., Meeuwissen,
H.B., Núnez-Queija, R.: Run-time revenue maximization for composite web ser-
vices with response time commitments. In: 2012 IEEE 26th International Confer-
ence on Advanced Information Networking and Applications (AINA), pp. 589–596.
IEEE (2012)

49. Doshi, P., Goodwin, R., Akkiraju, R., Verma, K.: Dynamic workflow composition
using Markov decision processes. Int. J. Web Serv. Res. 2, 1–17 (2005)

50. Choudhury, G.L., Houck, D.J.: Combined queuing and activity network based mod-
eling of sojourn time distributions in distributed telecommunication systems. In:
Labetoulle, J., Roberts, J.W. (eds.) The Fundamental Role of Teletraffic in the
Evolution of Telecommunications Networks, Proceedings ITC, vol. 14, pp. 525–
534 (1994)

51. Gosavi, A.: Reinforcement learning: a tutorial survey and recent advances.
INFORMS J. Comput. 21, 178–192 (2009)

52. Barto, A.G., Mahadeva, S.: Recent advances in hierarchical reinforcement learn-
ing. Discrete Event Dyn. Syst. 13, 341–379 (2004). https://doi.org/10.1023/A:
1022140919877

53. Zheng, H., Zhao, W., Yang, J., Bouguettaya, A.: QoS analysis for web service
composition. In: 2009 IEEE International Conference on Services Computing, pp.
235–242. IEEE (2009)

54. Preist, C.: A conceptual architecture for semantic web services. In: McIlraith, S.A.,
Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 395–409.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30475-3 28

55. Bosman, J.W., van den Berg, J.L., van der Mei, R.D.: Real-time QoS control for
service orchestration. In: 27-th International Teletraffic Congress, Ghent, Belgium
(2015)

56. Poullie, P., Bocek, T., Stiller, B.: A survey of the state-of-the-art in fair multi-
resource allocations for data centers. IEEE Trans. Netw. Serv. Manag. 15(1), 169–
183 (2017). TNSM 2017

57. Bellard, F.: QEMU, a fast and portable dynamic translator. In: Annual Conference
on USENIX Annual Technical Conference, ATEC 2005, p. 41, Anaheim, CA, USA
(2005)

58. Selenic Consulting: smem memory reporting tool. https://www.selenic.com/
smem/. Accessed 7 Feb 2017

59. Phoronix Media: Phoronix test suite (2017). http://www.phoronix-test-suite.com.
Accessed 18 Jan 2017

https://doi.org/10.1007/978-3-540-89652-4_14
https://doi.org/10.1007/978-3-540-89652-4_14
https://doi.org/10.1007/978-3-642-17358-5_26
https://doi.org/10.1007/978-3-642-17358-5_26
https://doi.org/10.1007/11563952_28
https://doi.org/10.1007/11563952_28
https://doi.org/10.1023/A:1022140919877
https://doi.org/10.1023/A:1022140919877
https://doi.org/10.1007/978-3-540-30475-3_28
https://www.selenic.com/smem/
https://www.selenic.com/smem/
http://www.phoronix-test-suite.com


312 W. Burakowski et al.

60. Poullie, P.: Decentralized multi-resource allocation in clouds. Dissertation, Univer-
sity of Zurich, Zurich, Switzerland, September 2017

61. Gruhler, A.L.: Investigation of resource reallocation capabilities of KVM and Open-
Stack. Bachelor Thesis, Universität Zürich, Zurich, Switzerland, August 2015.
https://files.ifi.uzh.ch/CSG/staff/poullie/extern/theses/BAgruhler.pdf

62. Botta, A., de Donato, W., Persico, V., Pescape, A.: On the integration of cloud
computing and Internet of Things. In: The 2nd International Conference on Future
Internet of Things and Cloud (FiCloud-2014), August 2014

63. Nastic, S., Sehic, S., Le, D., Truong, H., Dustdar, S.: Provisioning software-defined
IoT cloud systems. In: The 2nd International Conference on Future Internet of
Things and Cloud (FiCloud-2014), August 2014

64. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

65. Farris, I., Militano, L., Nitti, M., Atzori, L., Iera, A.: MIFaaS: a Mobile-IoT-
Federation-as-a-Service model for dynamic cooperation of IoT cloud providers.
Future Gene. Comp. Syst. 70, 126–137 (2017)

66. Escribano, B.: Privacy and security in the Internet of Things: challenge or
opportunity. In: OLSWANG, November 2014. http://www.olswang.com/me-dia/
48315339/privacy and security in the iot.pdf

67. Opinion 8/2014 on the on Recent Developments on the Internet of Things, Octo-
ber 2014. http://ec.europa.eu/justice/data-protection/article-29/documentation/
opinion-recommendation/files/2014/wp223 en.pdf

68. Want, R., Dustdar, S.: Activating the Internet of Things. Computer 48(9), 16–20
(2015)

69. Pflanzner, T., Kertesz, A., Spinnewyn, B., Latre, S.: MobIoTSim: towards a mobile
IoT device simulator. In: 2016 IEEE 4th International Conference on Future Inter-
net of Things and Cloud Workshops (FiCloudW), pp. 21–27 (2016)

70. IBM IoT Foundation message format. https://docs.internetofthings.ibmcloud.com/
gateways/mqtt.html#/managed-gateways#managed-gateways. Accessed Mar
2017

71. OpenWeatherMap. http://www.openweathermap.org. Accessed Mar 2017

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://files.ifi.uzh.ch/CSG/staff/poullie/extern/theses/BAgruhler.pdf
http://www.olswang.com/me-dia/48315339/privacy_and_security_in_the_iot.pdf
http://www.olswang.com/me-dia/48315339/privacy_and_security_in_the_iot.pdf
http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/files/2014/wp223_en.pdf
http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/files/2014/wp223_en.pdf
https://www.docs.internetofthings.ibmcloud.com/gateways/mqtt.html
https://www.docs.internetofthings.ibmcloud.com/gateways/mqtt.html
http://www.openweathermap.org
http://creativecommons.org/licenses/by/4.0/

	Traffic Management for Cloud Federation
	1 Introduction
	2 Cloud Federation Architectures
	2.1 Cloud Architectural Views
	2.2 Standardization for Cloud Federation

	3 Multi-level Model for Traffic Management in Cloud Federation
	3.1 Level 5: Strategy for Cloud Resource Distribution in Federation
	3.2 Level 4: Network for Cloud Federation
	3.3 Level 3: Service Provision
	3.4 Level 2: Service Composition and Orchestration
	3.5 Level 1: Resource Management in Virtualized Infrastructure

	4 Cloud Federation for IoT
	4.1 State-of-the-Art in IoT Cloud Research
	4.2 MobIoTSim for Simulating IoT Devices

	5 Summary
	References




