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Abstract: Novel BODIPY–estrone conjugates were synthesized via Cu(I)-catalyzed azide–alkyne
cycloaddition (CuAAC). Estrone-alkynes or an estrone-azide as starting compounds were synthesized
via Michael addition or Sonogashira reaction as key steps. Fluorescent dyes based on BODIPY-core
were provided by azide or alkyne functional groups. Fluorescent labeling of estrone was efficiently
achieved at the C-2 or C-15 position. The newly-elaborated coupling procedures might have a broad
applicability in the synthesis of fluorescent-labeled estrone conjugates suitable for biological assays.
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1. Introduction

4,4-Difluoro-4-bora-3a,4a-diaza-s-indacenes (BODIPY, 1, Figure 1.) are strongly UV-absorbing
small dyes with characteristic spectroscopic properties [1,2]. They emit relatively sharp fluorescence
peaks with high quantum yields and possess excellent photostability. Additionally, they are stable
to physiological conditions owing to their special behavior concerning their insensitivity to pH and
the polarity of their environment. Their fluorescence characteristics can be modulated by the directed
chemical tuning of the chromophore. An unambiguous trend toward red-shifted absorption and
emission maxima with increased substitution at the 1-, 3-, 5- and/or 7-positions is observed. However,
alkylation or arylation at the meso position has no substantial effect on the absorption and emission
wavelengths. These dyes are extensively used in biomolecule labeling owing to their beneficial
properties [3–8]. Nevertheless, their biological application is limited because of the limited water
solubility and emission wavelength (under 600 nm).

Figure 1. The core structure of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacenes (BODIPY) dyes.
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The data from the literature reveals several synthetic strategies for the preparation of BODIPY
dyes [1,2]. The dipyrrolylmethene core might be constructed from aromatic aldehydes and pyrroles
and the subsequent oxidation of the resulting dipyrrolylmethane [7]. After the preparation of the
heterocyclic core, complexation with boron leads to the desired BODIPY derivative. In order to obtain
the appropriately substituted compound at the meso position, a reasonable choice of the aromatic
aldehyde is needed. With the aim of avoiding the oxidation step, the dipyrrolylmethene core is
usually synthesized via the condensation of acyl chlorides with pyrroles [9,10]. In the latter case,
the meso substituent is derived from the acyl chloride, thus, the directed selection of the appropriate
acyl chloride is crucial. In the case of attaching the BODIPY dye to a biomolecule, the feasibility
of the introduction of the desired functional group onto the BODIPY core is of particular interest.
The coupling mode of the dye to a biomolecule might be determined with regard to its biological
behavior. The development of imaging probes to monitor the mechanism of action of biologically
active compounds in living systems is of great interest in medicinal chemistry.

Estrogens belong to a class of natural steroids which possess hormonal activity. However,
their chemical modifications may lead to biologically active estrone derivatives lacking hormonal
behavior [11,12]. Certain synthetic estrone-derived compounds are described as antitumoral agents,
but the mechanism of their action is mostly unknown [11]. In order to investigate and monitor their
mechanism, their labeling is essential. Enzymatic or receptorial assays are mainly based on radioisotope
labeling. Nowadays, there is a need for the replacement of the harmful radioactive methods for greener
and friendlier fluorescent ones. However, to the best of our knowledge, there is no reported general use
of BODIPY-labeled estrone derivatives in fluorescent biological assays. BODIPY–estrone conjugates
are rarely described in the literature [13]. The compounds known presently are labeled at positions 3-,
7α-, or 17α-, mainly affecting the two oxygen functionalities of the steroid. The coupling procedures
involved amide formation, olefin metathesis, the Sonogashira reaction, or the SNAr-type reaction [13].
Certain 7α-conjugates seemed to be able to bind to the estrogen receptor alpha; thus, they might
be used in fluorescent receptorial assays. Not only the position of labeling, but the nature of the
linking group and the spacing between the two moieties might also have a substantial influence on the
biological behavior. There exist BODIPY–estrone conjugates labeled at the 17α-position coupled via
Cu(I)-catalyzed azide–alkyne click-reaction (CuAAC) [14]. This is a powerful and convenient route for
the conjugation of two molecular entities via metabolically stable triazole linker [15,16]. Click chemistry
is emphasized by its high efficiency and tolerance toward several functional groups [15,16].

2. Results and Discussion

Here we aimed to synthesize BODIPY–estrone conjugates without transforming the two oxygen
functionalities of the steroid and by establishing a chemically and metabolically stabile attaching moiety.
Therefore, we chose the positions C-2 or C-15 for labeling, thereby avoiding covalent modifications
at the C-3 and C-17 positions (Figure 2). Estrone and its 17β-hydroxy counterpart display strong
secondary interactions with the enzyme or receptor targets through their keto or hydroxy groups [17,18].
The blocking of these groups may result in biological behavior different than that of estrone or
17β-estradiol. However, all conjugations at sites different than the main functionalities might be of
value. According to the literature, there are several 2- or 15-substituted estrone derivatives that are
biologically active steroids, displaying important activities such as the antitumoral effect [12,19–22].
It is known that certain derivatives act through different protein targets, including tubulin or enzymes
involved in estrogen biosynthesis [11,12,19–22]. The fluorescent labeling of compounds potentially
interacting with the above-mentioned proteins might have high biological relevance.
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Figure 2. The fluorescent labeling at positions C-2 and C-15 of estrone.

Recent advances in chemical synthesis techniques, in particular, in cross coupling and conjugation
methods, allow for the accomplishment of reactions which could formerly not be achieved.
Concerning the mode of conjugation, clicking via CuAAC reaction is one of the most feasible and
effective strategies [15,16,23]. On the basis of our longstanding experience [24–31] in developing
steroidal azides and alkynes suitable for the formation of biologically active triazolyl conjugates, here,
we chose the CuAAC reaction for attaching the dye to the steroid. An added advantage of the presence
of this heterocycle on a steroid core is due to its behavior being similar to that of a peptide bond [32].
Nevertheless, there is a great challenge in the labeling process concerning the establishment of the best
reaction sequence after taking into account the reactivity and the sensitivity of the already introduced
functional groups.

At first, we prepared the building elements for the couplings. That is, the BODIPY derivatives
bearing terminal alkyne or azide functions (5, 11) and the estrone derivatives possessing the
complementary functions (17, 18, 21) were synthesized. BODIPY-alkyne 5 was synthesized using
the aldehyde–pyrrole condensation strategy described above (Scheme 1). The propargylation
of p-hydroxybenzaldehyde was efficiently achieved based on our earlier established procedure
using propargyl bromide and potassium carbonate [31]. The dipyrrolylmethane core was built via
trifluoroacetic acid (TFA) -catalyzed condensation of the aldehyde (2) and the pyrrole (3). The literature
procedures were modified and combined in order to avoid the formation of oligomers [33,34].
Accordingly, a large excess of pyrrole was used, which served as both the reactant and the solvent in
the condensation, allowing the selective formation of the dipyrrolylmethane. The desired compound 4
could efficiently be purified by flash chromatography by adding triethylamine to the eluent and
covering the silica gel column with Al foil. Subsequent oxidation of the dipyrrolylmethane with
DDQ (2,3-dichloro-5,6-dicyano-p-benzoquinone) and complexation with boron furnished the desired
terminal alkyne (5) in high yield.

Scheme 1. Reagents and conditions: (i) 0.1 equiv. TFA, excess of pyrrole, rt (room temperature), 10 min;
(ii) 1 equiv. DDQ, CH2Cl2, 45 min, rt; 7 equiv. Et3N, 4 equiv. BF3·OEt2, rt, 3 h.

The parent BODIPY derivative bearing azide function (11) was synthesized using the acyl
chloride–pyrrole condensation strategy (Scheme 2) [35]. ω-Bromovaleric acid 6 was used as the
azide precursor in order to build in a four-carbon-long spacer chain to the conjugate. Acyl chloride 7
was formed in situ with oxalyl chloride and a few drops of DMF. 3-Ethyl-2,4-dimethylpyrrole 8 was
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used for the condensation as a building block in order to avoid couplings at different positions or the
formation of other side-products. Taking into consideration the different methodologies described in
the literature [1–8,35], we tried to perform modifications in order to achieve the best yields and the
highest chemoselectivity. We found that the order of reagent addition greatly influences the outcome
of the condensation. It was found that the optimal conditions of the crucial step involved the use
of diluted solutions of acyl chloride (7) and pyrrole (8). Additionally, the dropwise addition of the
solution of 7 to that of 8 seemed to be superior to that of the reverse order. Subsequent complexation
with BF3·OEt2 led to the bromo-BODIPY product (10) in high yield. The last step in the reaction
sequence in the formation of the new azido-BODIPY product (11) was a bromine to azide exchange
reaction using NaN3 as an azide source in the dimethyl sulfoxide (DMSO) solvent with a catalytic
amount of AcOH.

Scheme 2. Reagents and conditions: (i) 1.5 equiv. oxalyl chloride, CH2Cl2, catalytic amount of
N,N-dimethylformamide (DMF), rt, 2.5h; (ii) 2.5 equiv. of 8, CH2Cl2, reflux, 4h; (iii) 20 equiv. Et3N,
reflux, 30 min, 20 equiv. BF3·OEt2, reflux, 4 h; (iv) 1 equiv. of NaN3, DMSO, catalytic amount of AcOH.

Next, we shifted our attention to the synthesis of estrone azide 18 and alkyne derivatives 17 and 21
suitable for CuAACs with BODIPY-alkyne 5 or -azide 11. We earlier developed an efficient methodology
for the generation of a ∆15-double bond in ring D of 3-O-methyl- and 3-O-benzyl-13α-estrone [36].
The α,β-unsaturated ketone 16 may serve as the key intermediate in the synthesis of 15-substituted
estrone derivatives. Herein, we present the synthesis of the α,β-unsaturated ketone 16 in the
13β-estrone series without etherification of its 3-OH function (Scheme 3). We started with the
3-acetylated compound (12) developing a protecting group at C-17 in order to prevent the formation
of undesired side-products during the reaction sequence. The next step was the reaction with
pyridinium hydrobromide perbromide, which afforded the desired 16α-bromo derivative [37].
The dehydrobromination with potassium tert-butylate was accompanied by the hydrolysis of the
acetate ester. The deprotection of the 17-ketal (15) led to the unsaturated ketone (16). The resulting
ketone intermediate (16) was transformed into the appropriate alkyne (17) or azide (18) derivative
by Michael addition. The nucleophile was stereoselectively introduced to C-15 in both cases, leading
to the formation of one stereoisomer. The terminal alkyne function was introduced onto C-15 via
O-propargylation with propargyl alcohol in dichloromethane, using a catalytic amount of NaOH as
the base. The 15β-azide (18) was synthesized via the addition of HN3 formed in situ from NaN3
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and AcOH. The data from the literature indicates 15β-orientation for the nucleophiles introduced via
Michael addition onto the 3-protected α,β-unsaturated estrones [38]. We established the β-orientation
of the functional group at C-15 in compound 17 through two-dimensional NMR measurements.
The α-position of 15-H was deduced from the NOESY spectra since a cross-peak was observed
between 15-H and 16α-H.

Scheme 3. Reagents and conditions: (i) 2.5 equiv. of ethylene glycol; 2 equiv. of triethyl orthoformate;
catalytic amount of p-TsOH; rt; 2 h; (ii) 1 equiv. of pyridinium hydrobromide perbromide;
tetrahydrofurane (THF); rt; (iii) 2 equiv. of KOtBu; DMSO; 80 ◦C; 1 h; (iv) 15 equiv. of H2CO; catalytic
amount of p-TsOH; acetone; rt; 30 min; (v) propargyl alcohol (31 equiv.), catalytic amount of NaOH
(5% aq), CH2Cl2, rt, 24 h; (vi) 1 equiv. of NaN3, DMSO, 4 equiv. of AcOH.

The terminal alkyne function was introduced not only onto the C-15 but also directly onto the
C-2 position via the Sonogashira reaction (Scheme 4). Coupling at C-2 could efficiently be achieved via
our microwave-assisted Sonogashira procedure established earlier [39]. The synthesis of the steroidal
2-iodo derivative starting compound 19 has been reported by us recently [40]. It was reacted with
trimethylsilylacetylene using 0.1 equiv. of Pd(PPh3)4 and 0.1 equiv. of CuI in tetrahydrofurane (THF)
as a solvent in the presence of Et3N as a base at 50 ◦C for 20 min in a microwave reactor. The resulting
2-trimethylsilylethynyl-estrone (20) was purified by flash chromatography and served as a precursor
of 2-ethynyl-estrone (21).

Scheme 4. Reagents and conditions: (i) 0.1 equiv. of Pd(PPh3)4, 0.1 equiv. of CuI, 6 equiv. of Et3N,
2 equiv. of TMS-C≡CH, THF, MW, 50 ◦C, 20 min; (ii) 1 equiv. tetrabutylammonium fluoride (TBAF),
toluene, 5 min.

With alkyne (5, 17, 21) and azide (11, 18) complementers in hand, CuAAC reactions were carried
out in order to synthesize the desired fluorescent estrone conjugates (Scheme 5). Estrone alkynes (17, 21)
or azides (18) were reacted with BODIPY-azide 11 or BODIPY-alkyne 5 under the previously reported
CuAAC reaction conditions, using CuI as a catalyst, PPh3 as a ligand, and DIPEA as a base under
conventional heating in toluene solvent. This protocol proved to be suitable for the efficient formation
of the fluorescent conjugates (22–24). The 2-trimethylsilylethynyl-estrone derivative 20 underwent
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deprotection with tetrabutylammonium fluoride in situ during the click reaction. The conjugates
(22–24) were regioselectively synthesized in high yields. The structures of the newly-synthesized
labeled compounds (22–24) and their precursors were confirmed by 1H and 13C-NMR measurements.

Scheme 5. Reagents and conditions: (i) CuI (0.05 equiv.), Ph3P (0.1 equiv.), DIPEA (3 equiv.), 1 equiv.
TBAF, toluene, reflux, 2 h; (ii) CuI (0.05 equiv.), Ph3P (0.1 equiv.), DIPEA (3 equiv.), toluene, reflux, 2 h.

Figure 3 shows the absorption and the fluorescence emission spectra of the non-conjugated
BODIPY dyes (5, 11) and the steroid-BODIPY conjugates (22–24). Absorbance and emission spectra
were normalized to maximum fluorescence of the unconjugated dye 5 measured at 545 nm emission
and 610 nm excitation wavelengths, respectively. The absorption spectra of all the compounds have
similar shape with two peaks of maximum absorption at 350–400 and 510–555 nm. The emission
spectra of the dyes (5, 11) and the conjugates (22–24) are also similar with a band around 580 nm for
compounds 11, 23 and 24; 600 nm for 22 and 610 nm for 5. These data suggest the feasibility of the
observation of conjugates 22–24 in living cells and tissues.

Figure 3. Cont.
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Figure 3. The normalized absorbance (a) and emission (b) spectra of the dyes (5, 11) and the conjugates (22–24).

3. Materials and Methods

General
The melting points (m.p.) were determined with a Kofler hot-stage apparatus and are uncorrected.

Elemental analyses were performed with a Perkin-Elmer CHN analyzer model 2400. Thin-layer
chromatography: silica gel 60 F254; layer thickness 0.2 mm (Merck); eluent: a: 10% EtOAc/hexane,
b: 2% EtOAc/CH2Cl2, and c: 20% EtOAc/CH2Cl2, if otherwise not stated, detection with I2 or UV
(365 nm) after spraying with 5% phosphomolybdic acid in 50% aqueous phosphoric acid and heating
at 100–120 ◦C for 10 min. Flash chromatography: silica gel 60, 40–63 µm (Merck). Reactions under
microwave irradiation were carried out with a CEM Corporation focused microwave system, Model
Discover SP. The 1H-NMR spectra were recorded in DMSO-d6, a CDCl3 solution with a Bruker
DRX-500 instrument at 500 MHz, with Me4Si as an internal standard. The 13C-NMR spectra were
recorded with the same instrument at 125 MHz under the same conditions. Mass spectrometry: a full
scan mass spectra of the compounds were acquired in the range of 50–1000 m/z with a Finnigan
TSQ-7000 triple quadrupole mass spectrometer (Finnigan-MAT, San Jose, CA, USA) equipped with
a Finnigan electrospray ionization source. Analyses were performed in the positive ion mode using
flow injection mass spectrometry with a mobile phase of 50% aqueous acetonitrile containing 0.1 v/v%
formic acid. The flow rate was 0.3 mL/min. A 5-µL aliquot of the samples was loaded into the flow.
The ESI capillary was adjusted to 4.5 kV and N2 was used as a nebulizer gas. Compound stocks
prepared in DMSO (20 mM) were further diluted in 1× phosphate buffered saline, pH 7.4 to a final
concentration of 500 µM. Absorption (at fixed 620 nm emission wavelengths) and emission (at fixed
400 nm excitation wavelength) spectra were measured using an Enspire plate reader (Perkin Elmer,
Waltham, MA, USA).

3.1. Synthesis of BODIPY-alkyne 5

3.1.1. Propargylation of 4-Hydroxybenzaldehyde

4-Hydroxybenzaldehyde (12.22 g, 10.0 mmol) was dissolved in acetone (100 mL) and then,
propargyl bromide (1.7 mL (80 wt.% in toluene), 15.0 mmol) and K2CO3 (9.68 g, 70 mmol) were added.
The reaction mixture was stirred at 70 ◦C for 24 h, the solvent was then evaporated off, and the residue
was purified by flash chromatography with CH2Cl2/hexane = 80/20 as an eluent. Compound 2
was obtained as a white solid (14.9 g, 93%). Compound 2 is identical with that described in the
literature [41,42].
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3.1.2. Synthesis of Dipyrrolylmethane 4

To a solution of compound 2 (0.48 g, 3 mmol) and pyrrole (9.0 mL, 1.29 mol), trifluoroacetic acid
(0.024 mL, 0.3 mmol) was added. The solution was stirred for 10 min at room temperature under a
nitrogen atmosphere. The mixture was diluted with CH2Cl2 (200 mL), washed with 0.1 M aq NaOH,
water, and dried Na2SO4. The solvent and a great amount of unreacted pyrrole were removed under
reduced pressure. The residue was purified by flash chromatography on a silica gel column covered
with Al foil with hexane/EtOAc/Et3N = 80/20/1 as an eluent. Compound 4 was obtained as a brown
solid (550 mg, 67%). Compound 4 is identical with that described in the literature [41,42].

3.1.3. Synthesis of Boron Dipyrrolylmethene 5

Dipyrrolylmethane (4, 0.6 g, 2.2 mmol) was dissolved in dry CH2Cl2 (30 mL), then DDQ (0.49 g,
2.2 mmol) was added and the reaction mixture was stirred for 1 h at rt (room temperature) under a
nitrogen atmosphere. This was followed by the successive addition of Et3N (2 mL, 14.4 mmol) and
BF3·Et2O (2.3 mL, 8.6 mmol) and the stirring was continued for 4 h. The reaction was quenched by
the addition of a saturated NaHCO3 solution (25 mL). The organic layer was separated and dried
over with Na2SO4. The solvents were removed under reduced pressure and the residue was purified
by flash chromatography with EtOAc/hexane = 20/80 as an eluent. Compound 5 was obtained as a
tawny solid (550 mg, 78%). M.p.: 147–150 ◦C, Rf = 0.78b. Compound 5 is identical with that described
in the literature [34]. 1H-NMR (CDCl3) δ (ppm): 2.60 (s, 1H, C≡CH); 4.80 (s, 2H, OCH2); 6.55 (s, 2H);
6.97 (s, 2H); 7.14 (m, 2H); 7.56 (m, 2H); 7.92 (s, 2H).

3.2. Synthesis of BODIPY-azide 11

3.2.1. Synthesis of BODIPY-bromide 10

DMF (3 drops) and oxalyl chloride (0.5 mL, 5.8 mmol) were added to a solution of 5-bromovaleric
acid (6, 0.76 g, 4.2 mmol) in dry CH2Cl2 (20 mL) and the mixture was stirred for 3 h at rt.
Then the mixture was evaporated with toluene (3 × 10 mL). The residue was re-dissolved in
anhydrous CH2Cl2 (20 mL) and the resulting solution was added dropwise to a stirred solution
of 3-ethyl-2,4-dimethylpyrrole (8, 1.23 g, 10 mmol) in dry dichloromethane (20 mL). After heating
under reflux for 3 h, the mixture was cooled to rt and triethylamine (11 mL, 80 mmol) was added.
After a 30 min reflux, BF3·Et2O (10 mL, 80 mmol) was added and the reaction mixture was stirred
for 3 h under reflux. After cooling to rt, the reaction was quenched by the addition of a saturated
NaHCO3 solution (30 mL) and extracted with dichloromethane (3 × 20 mL). The combined organic
layers were dried (Na2SO4) and the solvents were removed under a reduced pressure. The residue
was purified by flash chromatography with EtOAc/hexane = 10/90 as an eluent. Compound 10 was
obtained as a red solid (1.01 g, 55%). M.p.: 160–161 ◦C, Rf = 0.54a. Compound 10 is identical with
that described in the literature without characterization [43]. Anal calcd. for C21H30BBrF2N2: C, 57.43;
H, 6.89. Found: C, 57.52; H, 6.73. 1H-NMR (DMSO-d6) δ (ppm): 1.05 (t, 6H, J = 7.5 Hz, 2xCH2CH3);
1.80 (m, 2H), 2.06 (m, 2H); 2.34 and 2.50 (2xs, 2x6H, 4xCH3); 2.40 (q, 4H, J = 7.5 Hz, 2xCH2CH3); 3.02
(m, 2H); 3.45 (m, 2H). 13C-NMR δ (ppm): 12.4 (2C); 13.4 (2C), 14.8 (2C); 17.2 (2C); 27.6; 30.2; 32.7; 33.1;
130.9; 132.7 (2C); 135.5 (2C), 143.5 (2C); 152.4 (2C). MS m/z (%): 419 (100, [M − F]+).

3.2.2. Synthesis of BODIPY-azide 11

A stirred solution of compound 10 (878 mg, 2.0 mmol) in dry DMSO (5 mL) was treated with
acetic acid (3 drops) and NaN3 (130 mg, 2.0 mmol). The mixture was stirred for 0.5 h at rt, poured into
water (50 mL), and extracted with dichloromethane (3 × 20 mL). The combined organic layers were
dried (Na2SO4) and the solvents were removed under a reduced pressure. The residue was purified
by flash chromatography with EtOAc/hexane = 10/90 as an eluent. Compound 11 was obtained as a
red solid (746 mg, 92%). M.p.: 110–112 ◦C, Rf = 0.50a. Anal calcd. for C21H30BF2N5: C, 62.85; H, 7.53.
Found: C, 62.92; H, 7.47. 1H-NMR (DMSO-d6) δ (ppm): 1.05 (t, 6H, J = 7.5 Hz, 2xCH2CH3); 1.73–1.80
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(overlapping multiplets, 4H); 2.33 and 2.50 (2xs, 2x6H, 4xCH3); 2.41 (q, 4H, J = 7.5 Hz, 2xCH2CH3);
3.02 (m, 2H); 3.37 (m, 2H). 13C-NMR δ (ppm): 12.4 (2C); 13.3 (2C), 14.8 (2C); 17.2 (2C); 27.8; 28.8; 29.2;
51.0; 130.9; 132.7 (2C); 135.5 (2C), 143.6 (2C); 152.4 (2C). MS m/z (%): 382 (100, [M − F]+).

3.3. Synthesis of α,β-Unsaturated Ketone Intermediate 16

3.3.1. Synthesis of 16-Bromo-17-ketal 14

To a suspension of 12 (13.75 g, 44 mmol) in triethyl orthoformate (15 mL, 88 mmol) and ethylene
glycol (6 mL, 110 mmol), a catalytic amount of p-TsOH was added, and the mixture was gently heated
for 0.5 h until the suspension transformed into a clear solution. The warm reaction mixture was then
poured into a saturated solution of sodium bicarbonate (100 mL). The white precipitate formed was
filtered off, washed with water, and dried in air. To a solution of crude product 13 (10.70 g, 30 mmol)
in dry tetrahydrofuran (100 mL), 10 g (30 mmol) of pyridinium hydrobromide perbromide was added.
A white precipitate formed immediately from the yellow solution. The reaction mixture was stirred
at rt for 2 h, then it was diluted with a saturated aqueous solution of sodium bicarbonate (500 mL).
The precipitate formed was filtered off, washed with water, and dried in air. The crude product reacted
further without purification. Compound 14 is identical with that described in Reference [44].

3.3.2. Synthesis of α,β-Unsaturated Ketal 15

To a solution of 14 (4.35 g, 10 mmol) in dimethyl sulfoxide (50 mL), potassium tert-butylate
(2.24 g, 20 mmol) was added. The suspension was vigorously stirred and heated (80 ◦C) for 5 h until it
became a clear yellow-brown solution. The mixture was poured into ice-water (1 L) and the resulting
precipitate was filtered off, washed with water, and dried in air. The crude product was subjected
to chromatographic separation with dichloromethane as an eluent. Compound 15 was obtained as a
white solid (2.6 g, 83%). Compound 15 is identical with that described in Reference [44].

3.3.3. Synthesis of α,β-Unsaturated Ketone 16

To a solution of 15 (1.25 g, 4 mmol) in acetone (25 mL), formaldehyde (5 mL, 37% in water,
60 mmol formaldehyde) and a catalytic amount of p-TsOH were added. The mixture was stirred for
1.5 h at rt and then poured into water (100 mL). The precipitate formed was filtered off, washed with
water, and dried in air. The crude product (16) was subjected to chromatographic separation with
EtOAc/CH2Cl2 = 2/98 as an eluent. Compound 16 was obtained as a white solid (1.0 g, 84%). M.p.:
245–246 ◦C, Rf = 0.16b. Compound 16 is identical with that discussed in the literature without full
characterization [44]. Anal calcd. for C18H20O2: C, 80.56; H, 7.51. Found: C, 80.64; H, 7.42. 1H-NMR
(DMSO-d6) δ (ppm): 0.99 (s, 3H, 18-H3); 2.79 (m, 2H, 6-H2); 6.05 (d, 1H, J = 2.5 Hz, 16-H); 6.47 (d, 1H,
J = 2.2 Hz, 4-H); 6.52 (double doublet 1H, J = 8.6 Hz, J = 2.2 Hz, 2-H); 7.04 (d, 1H, J = 8.6 Hz, 1-H); 7.84
(d, 1H, J = 5.6 Hz, 15-H); 9,02 (s, 1H, OH). 13C-NMR δ (ppm): 20.5 (C-18); 25.0; 26.0; 28.6; 28.8; 35.2;
44.3; 50.7; 55.2; 112.7; 114.9; 125.6; 129.8; 130.8; 136.9; 155.0; 159.5; 211.9. MS m/z (%): 310 (100); 269
(66, [M + H]+).

3.4. Synthesis of Steroidal Alkyne 17

To a stirred solution of compound 16 (268.4 mg, 1.0 mmol) in dry CH2Cl2 (15 mL), propargyl
alcohol (3.6 mL, 31 mmol) and 5 drops of 5% aq. NaOH were added. The reaction mixture was
stirred at rt for 24 h. The reaction was quenched by the addition of water (150 mL) and extracted with
dichloromethane (3 × 20 mL). The combined organic layers were dried (Na2SO4) and the solvent was
removed under a reduced pressure. The residue was purified by flash chromatography with CH2Cl2
as an eluent. Compound 17 was obtained as a white solid (256 mg, 79%). M.p.: 167–169 ◦C, Rf = 0.20b.
Anal calcd. for C21H24O3: C, 77.75; H, 7.46. Found: C, 77.83; H, 7.38. 1H-NMR (DMSO-d6) δ (ppm):
1.03 (s, 3H, 18-H3); 2.75 (m, 2H, 6-H2); 3.44 (s, 1H, C≡CH); 4.11 and 4.25 (2xm, 2x1H, OCH2); 4.37
(t, 1H, J = 5.1 Hz, 15-H); 6.46 (d, 1H, J = 2.2 Hz, 4-H); 6.51 (d, 1H, J = 8.6 Hz, J = 2.2 Hz, 2-H); 7.05 (d, 1H,



Molecules 2018, 23, 821 10 of 13

J = 8.6 Hz, 2-H); 9.03 (s, 1H, OH). 13C-NMR δ (ppm): 17.2 (C-18); 25.3 (2C); 28.9; 32.3; 34.6; 42.3; 43.6;
46.5; 52.9; 55.6 (OCH2); 73.1 (C-15); 76.9 (C≡CH); 80.4 (C≡CH); 112.7 (C-2); 114.9 (C-4); 125.8 (C-1);
129.9 (C-10); 137.0 (C-5); 154.9 (C-3); 218.6 (C-17).

3.5. Synthesis of the Steroidal Azide 18

A stirred solution of compound 16 (268 mg, 1.0 mmol) in dry DMSO (5 mL) was treated with
acetic acid (0.24 mL, 4.0 mmol) and NaN3 (65 mg, 1.0 mmol). The mixture was stirred for 0.5 h at rt,
poured into water (50 mL), and extracted with dichloromethane (3 × 20 mL). The combined organic
layers were dried (Na2SO4) and the solvents were removed under a reduced pressure. The residue
was purified by flash chromatography with EtOAc/hexane = 1/99 as an eluent. Compound 18 was
obtained as a white solid (252 mg, 81%). M.p.: 138–139 ◦C, Rf = 0.24b. Anal calcd. for C18H21N3O2: C,
69.43; H, 6.80. Found: C, 69.48; H, 6.72. 1H-NMR (DMSO-d6) δ (ppm): 0.89 (s, 3H, 18-H3); 2.76 (m, 2H,
6-H2); 4.16 (m, 1H, 15-H); 6.44 (d, 1H, J = 2.2 Hz, 4-H); 6.52 (dd, J = 8.6 Hz, J = 2.2 Hz, 2-H); 7.05 (d, 1H,
J = 8.6 Hz, 1-H); 9.04 (s, 1H, OH). 13C-NMR δ (ppm): 14.7 (C-18); 25.6; 26.3; 29.0; 31.0; 37.7; 42.0; 43.1;
49.7; 53.1; 58.1; 112.8; 114.7; 126.3; 129.3; 136.8; 155.0; 214.4.

3.6. Synthesis of Triazoles 22 and 23

To a stirred solution of 5 (322 mg, 1.0 mmol) or 17 (324 mg, 1.0 mmol) in toluene (5 mL), Ph3P
(26 mg, 0.1 mmol), CuI (9.5 mg, 0.05 mmol), DIPEA (0.52 mL, 3.0 mmol), and 18 (311 mg, 1.0 mmol) or
11 (401 mg, 1.0 mmol) were added. The reaction mixture was kept at the reflux temperature for 2 h
and then allowed to cool and evaporate in vacuo. The residue was purified by flash chromatography
with EtOAc/CH2Cl2 = 10/90 as an eluent.

Compound 22 was obtained as a red solid (557 mg, 88%). M.p.: 273–275 ◦C, Rf = 0.42c. Anal calcd. for
C36H34BF2N5O3: C, 68.55; H, 5.41. Found: C, 68.63; H, 5.33. 1H-NMR (DMSO-d6) δ (ppm): 1.03 (s, 3H,
18-H3); 5.34 (s, 2H, OCH2); 5.42 (m, 1H, 15-H); 6.32 (d, 1H, J = 2.2 Hz, 4-H); 6.50 (dd, 1H, J = 8.6 Hz,
J = 2.2 Hz, 2-H); 6.64 (m, 2H); 7,01 (m, 2H); 7,03 (d, 1H, J = 8.6 Hz, 1-H); 7.27 (m, 2H); 7.64 (m, 2H); 8.09
(s, 2H); 8.59 (s, 1H); 9.00 (s, 1H). 13C-NMR δ (ppm): 14.5 (C-18); 24.4; 28.6; 31.0; 37.7; 43.0; 44.0; 50.0;
53.2; 57.6; 61.4; 112.8; 114.6; 115.1 (2C); 118.9 (2C); 123.4; 125.6; 126.2; 129.1; 131.4 (2C); 132.5 (2C); 133.9;
136.5; 142.8; 143.9 (2C); 146.8; 154.9; 160.5; 213.6. MS m/z (%): 143 (100); 634 (80, [M + H]+).

Compound 23 was obtained as a red solid (588 mg, 81%). M.p.: 177–179 ◦C, Rf = 0.24c. Anal calcd.
for C42H54BF2N5O3: C, 69.51; H, 7.50. Found: C, 69.59; H, 7.40. 1H-NMR (DMSO-d6) δ (ppm): 0.95
(t, 6H, J = 7.5 Hz, 2xCH2CH3); 1.01 (s, 3H, 18-H3); 2.24 (overlapping multiplets, 4H, 2xCH2CH3); 2.33
(overlapping singlets, 12H, 4xCH3); 2.96 (m, 2H, 6-H2); 4.13 (m, 1H, 15-H); 4.41 and 4.61 (2xd, 2x1H,
J = 12.5 Hz, OCH2); 4.45 (m, 2H); 6.39 (d, 1H, J = 2.2 Hz, 4-H); 6.50 (dd, 1H, J = 8.6 Hz, J = 2.2 Hz, 2-H);
7.01 (d, 1H, J = 8.6 Hz, 1-H); 8.10 (s, 1H, C≡CH); 9.01 (s, 1H, OH). 13C-NMR δ (ppm): 12.7 (2C); 14.0
(2C); 14.6 (2C); 16.4; 17.2 (C-18); 25.3; 25.4; 27.2; 28.0; 28.8; 30.0; 32.3; 34.4; 42.6; 43.3; 46.5; 48.9; 53.0; 54.8;
61.6; 73.0; 112.5; 114.9; 123.9; 125.7; 130.0 (3C); 132.2 (2C); 136.0; 136.1; 137.0; 143.9 (2C); 144.3; 154.9
(2C); 218.7. MS m/z (%): 706 (100, [M − F]+).

3.7. Synthesis of 3-Hydroxy-2-trimethylsilylethynyl-estra-1,3,5(10)-trien-17-one 20

3-Hydroxy-2-iodo-estra-1,3,5(10)-trien-17-one (19, 276 mg, 1.0 mmol), Pd(PPh3)4 (115 mg,
0.01 mmol), CuI (19 mg, 0.01 mmol), and THF (3 mL) were added together under a nitrogen
atmosphere. Then, Et3N (0.56 mL, 4.0 mmol) was added and the mixture was stirred at 50 ◦C
for 10 min. Ethynyltrimethylsilane (0.28 mL, 2.0 mmol) was added with a syringe into 10 mL Pyrex
pressure vessels (CEM, Part #: 908035) with silicone caps (CEM, Part #: 909210) and the mixture was
heated in a CEM microwave reactor at 50 ◦C for 20 min under stirring. The solvent was evaporated in
vacuo and the residue was purified by flash chromatography with diisopropyl ether/hexane = 50/50
as an eluent. Compound 20 was obtained as a white solid (1.0 g, 84%). M.p.: 179–181 ◦C, Rf = 0.26a.
Anal calcd. for C23H30O2Si: C, 75.36; H, 8.25. Found: C, 75.42; H, 8.16 1H-NMR (CDCl3) δ (ppm): 0.26
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(s, 9H, 3xSi-CH3); 2.87 (m, 2H, 6-H2); 5.62 (s, 1H, OH); 6.67 (s, 1H, 4-H); 7.25 (s, 1H, 1-H). 13C-NMR δ
(ppm): 0.01 (3C, 3xSi-CH3); 13.8 (C-18); 21.6; 25.8; 26.3; 29.5; 31.4; 35.8; 38.1; 43.7; 47.9 (C-13); 50.4; 99.4;
101.3; 106.9, 114.3; 128.5; 131.9; 139.9; 154.8 (C-3); 220.8 (C-17)

3.8. Synthesis of BODIPY–estrone Conjugate 24

To a stirred solution of 20 (367 mg, 1.0 mmol) in toluene (5 mL), Ph3P (26 mg, 0.1 mmol), CuI
(9.5 mg, 0.05 mmol), DIPEA (0.52 mL, 3.0 mmol), and 11 (1 equiv.) were added. The reaction mixture
was treated at boiling temperature for 0.5 h and TBAF (1 mL, 1 mmol) was added. The heating
was continued for 2 h at the reflux temperature. The mixture was allowed to cool and evaporate in
vacuo. The residue was purified by flash chromatography with EtOAc/CH2Cl2 = 10/90 as an eluent.
Compound 24 was obtained as a red solid (550 mg, 79%). M.p.: 218–220 ◦C, Rf = 0.26b. Anal calcd. for
C41H52BF2N5O2: C, 70.78; H, 7.53. Found: C, 70.85; H, 7.41. 1H-NMR (CDCl3) δ (ppm): 0.95 (s, 3H,
18-H3); 1.01 (t, 6H, J = 7.5 Hz, 2xCH2CH3); 2.26 and 2.47 (2xs, 2x6H, 4xCH3); 2.37 (q, 4H, J = 7.5 Hz,
2xCH2CH3); 2.90 (m, 2H, 6-H2); 3.05 (m, 2H); 4.46(m, 2H, N-CH2); 6.79 (s, 1H, 4-H); 7.29 (s, 1H, 1-H);
7.79 (s, 1H, C≡CH/OH). 13C-NMR δ (ppm): 12.4 (2C); 13.4 (2C); 13.8 (2C); 14.8 (C-18); 17.1; 21.6; 26.0;
26.4; 27.5; 28.6; 29.2; 30.3; 31.5; 35.9; 38.2; 43.8; 48.0; 50.4; 50.5; 111.5; 117.3; 118.6; 122.6; 130.8 (2C); 131.1;
132.9 (2C); 135.3 (2C); 138.7; 142.9 (2C); 147.9; 152.6; 153.7; 220.9(C-17) MS m/z (%): 696 (100, [M + H]+).
MS m/z (%): 696 (100, [M + H]+).

4. Conclusions

In conclusion, we described here a facile and efficient synthetic route to C-2- or C-15-labeled
BODIPY–estrone conjugates via Sonogashira and/or click chemistry. Our strategy enables variations
in the length of linkers, thereby providing a library of fluorescing conjugates. The selection of the site
of conjugation as well as the nature of the substituents on the estrone moiety and the use of different
linkers allow for the determination of the effect of structural modifications on the biological properties
of the labeled compound. The methodologies developed should find extensive applications owing
to the great importance of fluorescent labeled biomolecules. The newly synthesized labeled estrone
derivatives may serve as good candidates for the development of imaging probes for biological assays.
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