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Purprosk. The role of cystic fibrosis transmembrane conductance regulator (CFTR) in lacrimal
gland (LG) function has only recently received some attention, mainly from our group. In the
present study, we investigated the potential changes of LG pathology, tear secretion, ocular
surface integrity, and fluid secretion in isolated LG ducts from CFTR knockout (KO) mice.

MerHops. Tear production and ocular surface integrity were investigated in anesthetized
wild-type (WT) and KO mice using cotton threads and fluorescein staining, respectively.
Immunofluorescence was used to localize CFTR protein in the LGs. Ductal fluid secretions
evoked by forskolin (10 pM); cell-permeable cAMP analogue (8-bromo cAMP, 100 uM); or
carbachol (100 pM) were measured in isolated LG ducts using video-microscopy.
Intracellular Ca2+ homeostasis underlying carbachol stimulation was investigated with
microfluorometry.

Resuwts. Significant decrease in tear secretion and impaired ocular surface integrity were
observed in KO mice. Immunofluorescence demonstrated the predominant presence of CFTR
protein in the apical membranes of the duct cells from WT mice. Continuous fluid secretion
was evoked by forskolin and 8-bromo cAMP in LG ducts from WT mice, while no secretory
response was observed in ducts from KO mice. Carbachol caused similar secretory responses
in ducts from WT and KO animals without significant differences in cytosolic Ca*" signaling.

Concrusions. Our results suggest the important role of CFTR in LG ductal secretion and in the
maintenance of ocular surface integrity, suggesting that CFTR may be a promising target of
novel therapeutic approaches in the treatment of dry eye.
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ry eye is the most common ocular surface disease affecting
millions of people worldwide.! However, so far there are
only very limited treatment options available, rendering the
management of this debilitating disease very challenging.*?
Unfortunately, our understanding of the physiologic and
pathologic mechanisms of lacrimal gland (LG) secretion is
limited, despite its critical importance in developing new
treatment strategies. Tear secretion is a complex process with
the involvement of the main and accessory LGs, corneal and
conjunctival epithelial cells and the Meibomian glands, etc. LG
is the main source of fluid, electrolyte and proteins in the tear,
and deficiency in its secretion results in aqueous deficient dry
eye.‘i’5
LG secretion is mediated by an array of ion transporters and
channels including cystic fibrosis transmembrane conductance
regulator (CFTR), the chloride channel that is responsible for
the driving force of fluid transport in various epithelial cells.®
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CFTR plays a critical role in the transmembrane transport of
chloride in many secretory epithelia including pancreas,
salivary glands, sweat glands, and airway epithelium and its
defect may cause cystic fibrosis (CF), the most common
genetic disease among Caucasians.””'! However, the role of
CFTR in LG secretion remains largely unknown. Recent
evidences from rat and rabbit LG studies demonstrated that
CFTR are localized in both acinar and ductal cells, with its
predominant presence in the ducts, suggesting it may play a
key role in LG ductal fluid secretion. 214 Indeed, several
clinical studies reported dry eye symptoms in CF patients,
which further strengthens the potential influence of CFTR in
altered tear secretion.'>™!”

The recent availability of transgenic mouse models carrying
genetic defects in CFTR allows the direct examination of its role
in many tissues and organs.'®*® Here we report our studies of
the functional role of CFTR in LG duct secretion by using CFTR
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TasLe. Composition of Solutions Used in the Experiments
Content of Solution
HEPES Buffered HCO3/CO;~ Isolation Storage Culture
Compound Solution Buffered Solution Solution Solution Solution
NaCl, mM 140 115
KCl, mM 5 5
Na-HEPES, mM 10
MgCl,, mM 1 1
CaCl,, mM 1
D-Glucose, mM 10 10
NaHCOs;, mM 25
Dulbecco’s modified Eagle’s medium X X
Collagenase, U/mL 100
Bovine serum albumin, mg/mL 1 0,03
McCoy'’s 5A tissue culture medium X
Fetal calf serum, vol/vol % 10
Glutamine, mM 2

transgenic mice. Our data strongly suggest that CFTR plays a
key role in LG ductal secretion and in the maintenance of
ocular surface integrity.

Parts of the results in this manuscript have been presented
in abstracts in the Annual Meeting of the Association for
Research in Vision and Ophthalmology (T6th-Molnar E, et al.
IOVS 2016;57:ARVO E-Abstract 5222; Ding C, et al. IOVS
2016;57:ARVO E-Abstract 430).

MATERIALS AND METHODS

Animals

CFTR KO mice used throughout our studies were congenic on
the FVB/N background. The model was originally generated by
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Ficure 1. Tear secretions of WT and KO mice in 2 age groups. (A)
Tear secretion was measured in two age groups in both WT and CFTR
KO mice: at 8 to 10 weeks of age and at 20 to 24 weeks of age. Data
from both eyes were averaged and evaluated. Tear secretion of CFTR
KO mice were significantly lower compared to WTs in both age
groups. (B) Secretion results of male and female mice were assessed
and evaluated separately in WT and KO animals in both age groups.
Sex-based data did not show significant difference in tear secretion
either in WT or in KO mice. Data are presented as means = SEM.

Ratcliff et al.'® and was provided as a gift from Ursula Seidler

(Hannover Medical School, Hannover, Germany).'® Genotyping
was performed by RT-PCR. The animals were kept at a constant
room temperature of 24°C with a 12 hour light-dark cycle and
were allowed free access to specific CFTR chow (C1013,
Altromin, Lage, Germany) and drinking solution. Wild-type
(WT) refers to the +/+ littermates of the CFTR KO mice. The
mice used in this study were 8 to 24 weeks old and 14 to 24
grams (depending on the genotype and age), the sex ratio was
1:1 for all groups.

Animals were narcotized intraperitoneally with ketamine
(80 mg/kg) and xylazine (10 mg/kg) and euthanized with
pentobarbital overdose (100 mg/kg).
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Ficure 2. Corneal fluorescein staining in WT and CFTR KO mice. (A)
Corneal fluorescein staining was measured in two age groups: at 8 to
10 weeks of age and at 20 to 24 weeks of age in both WT and CFTR KO
mice. Data from both eyes were averaged and evaluated. Corneal
staining scores of KO mice were significantly higher compared to WTs
in both age groups. (B) Corneal fluorescein staining scores of male and
female mice were calculated separately in WT and KO animals in both
age groups. No significant differences were found between males and
females either in WT or in KO mice. Data are presented as means *
SEM.
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WT 10 weeks

KO 10 weeks KO 24 weeks

Figure 3. Evaluation of ocular surface integrity of WT and CFTR KO mice at 10 and 24 weeks. Virtually no fluorescence staining could be found in
the corneas of WT mice, whereas profound staining were observed in the corneas from KO animals, in both age groups.

All experiments were conducted in compliance with the Solutions and Chemicals

ARVO Statement for the Use of Animals in Ophthalmic and
Vision Research. The protocol has been approved by the Media and its supplements (DMEM, McCoy, FCS, glutamine and

Ethical Committee for the Protection of Animals in Research of ~ BSA), carbachol (carbamoylcholine chloride), forskolin and 8-
the University of Szeged, Szeged, Hungary and conformed to bromoadenosine-3-5-cyclic monophosphate (8-bromo cAMP)
the Directive 2010/63/EU of the European Parliament. were purchased from Sigma-Aldrich Corp. (Budapest, Hun-
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Ficure 4. H&E staining of LG from WT and CFTR KO mice. While it appears that there are some increased luminal spaces within acinar cells
(arrows) in WT mice, giving the image a less smooth appearance compared to that from KO mice, there are no significant morphologic changes of
the LGs, including ducts (arrowhbeads). Scale bar: 100 pm.

Investigative Ophthalmology & Visual Science



Investigative Ophthalmology & Visual Science

Role of CFTR in Lacrimal Gland Duct Function in Mice

IOVS | January 2018 | Vol. 59 | No. 1 | 57

FIGURE 5.

Immunofluorescence staining of CFTR in LGs from WT and CFTR KO mice. In LGs from WT mice (A, B), CFTR staining was most

prominent in the apical membranes of duct cells (d), compared to acinar cells (ac). No staining could be observed in LGs from KO mice (C, D). DAPI
was used to stain nuclei as blue. Scale bar in (A, C, D): 50 um; in (B): 10 pm.

gary). Collagenase was purchased from Worthington Biochem-
ical Corp. (Lakewood, NJ, USA). The composition of solutions
used in our studies is summarized in the Table. The pH of
standard HEPES-buffered solution was set to 7.4 with HCI at 37
°C. The standard HCO5; /CO,"~ buffered solution was gassed
with 95% 0,/5% CO, at 37 °C. FURA2-AM was purchased from
Invitrogen (Waltham, MA, USA).

Measurement of Tear Secretion and Corneal
Fluorescein Staining

Tear production was measured in anesthetized mice using
phenol red impregnated cotton threads (Zone-Quick, Showa
Yakuhin Kako Ltd., Tokyo, Japan) applied into the lateral
canthus of both eyes for 5 minutes. Color of the threads turns
red in contact with the tears. Wetting length was measured in
millimeters under a dissecting microscope.

Ocular surface integrity was evaluated by applying 0.5 pL of
5% fluorescein sodium into the conjunctival sac, followed by
slitlamp biomicroscopy (Inami L0198, Tokyo, Japan) through
cobalt-blue filter. Images were captured with an anterior
segment digital camera (Inami L-0541DC) attached to the slit-
lamp. Staining was assessed by using the NEI grading system.>'
To quantify the staining changes, corneas were divided into

five regions and staining was assessed and rated in each region
from O to 3. Total scores from the five regions were recorded.

Hematoxylin & Eosin (H&E) Staining

Freshly dissected LG tissues, from both WT and KO mice, were
fixed in 4% buffered formaldehyde and embedded in paraffin,
then 3.5-um thin serial sections were cut and stained with
H&E.

Immunofluorescence

A total of 15-um thick cryostat sections were rehydrated by
washing in tris-buffered saline (TBS, 20 mM Tris-HCI, pH: 7.5,
150 mM NaCl) for 5 minutes, then fixed in 2% paraformalde-
hyde (PFA). After washing the sections in TBS three times for 5
minutes each, the samples were permeabilized with 0.1%
Triton-X in TBS for 10 to 15 minutes. The sections were
blocked with 5% FCS in TBS for 1 hour at room temperature
followed by an overnight incubation with primary antibody for
CFTR (1:100, Alomone Labs, Jerusalem, Israel) at 4°C. The next
day the samples were incubated with secondary antibody,
Alexa-488 conjugated goat anti-rabbit (1:1000, Abcam, Cam-
bridge, UK) for 1 hour and Hoechst (1:1000, Sigma-Aldrich
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Ficure 6.  Effect of forskolin on fluid secretion in mouse ducts isolated
from WT and CFTR KO LGs. (A) WT ducts were exposed either to 10
uM forskolin (filled rhombus) or to no agonist (empty triangle). (B)
CFTR KO ducts were exposed either to 10 uM forskolin (filled square)
or to no agonist (empty triangle). Changes in relative luminal volume
(Vr) are shown. Data were obtained from six ducts isolated from three
different animals in each series and are presented as means * SEM. (C)
Photo series of secreting isolated LG duct segments in response to
forskolin stimulation shown in Supplementary Videos S2 and S3. The
secretory responses observed in HEPES-buffered and in HCO3 /COy-
buffered solutions were similar. The luminal space is marked with blue
color.

Corp.) for 20 minutes at room temperature and examined
under a confocal laser scanning microscope (Zeiss LSM 880;
Oberkochen, Germany).

Isolation and Culture of Lacrimal Duct Segments

Interlobular and intralobar ducts from both WT and KO mice
were isolated as previously described in detail by our
laboratory.*? Isolated ducts were cultured overnight in a 37°C
incubator gassed with 5% CO,.

Measurement of Ductal Fluid Secretion

Video-microscopic method was used to measure ductal fluid
secretion. The method was originally developed for the

IOVS | January 2018 | Vol. 59 | No. 1 | 58

measurement of pancreatic ductal fluid secretion and was
modified by our laboratory for the investigation of LG duct
secretion.?>?! In brief, the ends of isolated LG ducts seal after
overnight culture, forming a closed luminal space. Secretory
process of the ductal epithelium results in swelling of the ducts
as the luminal space fills with the secreted fluid. The change in
ductal volume can be analyzed using video-microscopy.
Commercial software (Scion Image; Scion Corp., Frederick,
MD, USA) was used to analyze and calculate changes in the
luminal space in each image.

Measurement of Intracellular Ca2+ Concentration

Intracellular Ca*" concentration [Ca®']; was measured using
Ca’*sensitive fluorescent dye FURA 2AM (4-5 pM) as
described earlier.?? Changes in [Ca2+]i were measured using
an imaging system (xcellence; Olympus, Budapest, Hungary).
We excited 4 to 5 small areas (region of interests: ROIs) of 5 to
10 cells in each intact duct with light at 340 and 380 nm, and
the 380/340 fluorescence emission ratio was measured at 510

nm. One [Cazﬁi measurement was obtained per second.

Statistics

Kruskal-Wallis test with Dunn method was used for the analysis
of tear secretion. A mixed ANOVA model was applied. Effects
of the stimulatory compounds (forskolin or carbachol) were
taken into account as “fixed effects.” The effect of the
individual “duct” and the “duct and effects of forskolin, 8-
bromo-cAMP or carbachol” interaction (we assumed that the
value of the effect of the stimulatory compounds depend on
the individual duct) were taken into account as random effects
in the model. Statistical software (SigmaPlot Systat; Software,
Inc., London, UK) was used to analyze the data, which were
presented as means * SEM. A value of P < 0.05 was regarded
as significant.

RESULTS

Tear Secretion and Corneal Fluorescein Staining

Tear secretion was measured in two age groups in both WT and
KO mice, at 8 to 10 weeks of age and at 20 to 24 weeks of age.
Data from both eyes were averaged and evaluated. Tear
secretion result at 8 to 10 weeks of age was 2.47 * 0.43
mm/5 min (z = 11) in WT mice, and 1.27 = 0.19 mm/5
minutes (7 = 11) in KO mice, while at 20 to 24 weeks of age,
tear secretion was 3.86 = 0.91 mm/5 minutes (z = 11) in the
WT group and 1.36 *= 0.14 mm/5 minutes (z = 10) in the KO
group. Tear secretion of KO animals in both age groups were
significantly lower as compared to their WT littermates (8-10
weeks: P =0.0008; 20-24 weeks: 0.0004). To study the effect
of age (or duration of the disease in KO animals) in tear
secretion, results were calculated not only vertically (.e.,
separately in two different age groups, comparing WT and KO
measurements, see above) but also horizontally, with the
comparison of tear secretion in different age groups separately
in WT and in KO animals. In WT animals, no significant
difference was observed between the secretion data at the age
of 8 to 10 weeks and 20 to 24 weeks. Similarly, we could not
find statistically significant difference in tear secretion of KO
animals measured in different age groups (Fig. 1A).

The potential difference in tear secretion between male and
female mice was investigated in WT and in CFTR KO animals in
both age groups. Tear secretion results calculated separately in
male and in female mice did not show statistically significant
difference either in WT or in KO mice (Fig. 1B).
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Ficure 7. Role of 8-bromo cAMP on ductal fluid secretion isolated from WT and CFTR KO LGs. (A) WT ducts were exposed either to 100 pM 8-
bromo cAMP (filled rbombus) or to no agonist (empty triangle). (B) CFTR KO ducts were exposed either to 100 pM 8-bromo cAMP (filled square)
or to no agonist (empty triangle). Changes in Vr are shown. Data were obtained from six ducts isolated from three different WT animals and from
six ducts isolated from two KO animals and are presented as means * SEM.

Fluorescein staining was evaluated in both WT and KO mice
at 8 to 10 weeks of age and at 20 to 24 weeks of age. Data from
both eyes were pooled together. Corneal staining score was 1.0
+ 0.66 in WT mice (n=6) and 6.83 * 1.16 in KO mice (7 =6)
in animals at 8 to 10 weeks of age, while in the 20 to 24 weeks
group, the staining was 4.17 * 0.88 in WT mice (n = 6) and
11.17 = 1.16 in KO animals (2 = 6). Corneal staining scores of
KO animals in both age groups were significantly higher in KO
mice as compared to their WT littermates (8 to 10 weeks: P =
0.0002; 20-24 weeks: 0.0004; Fig. 2A). Staining scores of female
and male mice were also calculated separately. We could not
find statistically significant difference in corneal fluorescein
staining between female and male mice either in WTs or in KO
animals (Fig. 2B). Corneal staining images of WT and KO mice at
10 weeks and at 24 weeks of age can be seen in Figure 3.

H&E Staining of LGs From WT and CFTR KO Mice

To assess the potential morphologic differences between LGs
from KO and WT mice, freshly dissected LGs were processed
for H&E staining. LGs of 8- to 10- and 20- to 24-week-old
animals were investigated. However, no obvious structural
changes have been observed in KO LG tissues as compared to
their age-matched WT counterparts (Fig. 4).

Immunofluorescence

As demonstrated in Figures 5A and 5B, intense CFTR staining
could be found most prominently in the apical membranes of LG
duct cells from WT animals, although some diffuse staining was
also found in acinar cells, mostly within the cytoplasm
(Supplementary Video S1). This observation is consistent with
previous reports in rat and rabbit, where the presence of CFTR
mRNA and protein were demonstrated in acinar and ductal cells,
with intense fluorescence staining in the apical membranes of
the duct cells.'>1325 As anticipated, we were unable to detect the
presence of CFTR protein in LGs from KO mice (Figs. 5C, 5D).

Forskolin and 8-Bromo cAMP-Induced Fluid
Secretion of Isolated LG Ducts
Effects of forskolin stimulation on WT and KO LG interlobular

and intralobar duct segments isolated from 14- to 24-week-old
animals were investigated in HEPES- and in HCO5; /CO»-

buffered solutions. The secretory rates were calculated for
the first 10 minutes of stimulation. Forskolin stimulation (10
uM) resulted in a continuous swelling response in WT ducts
(secretory rate in HCO3 /COy-buffered solution: 176 *£ 5 pl/
min/mm?®). In contrast, no forskolin-evoked fluid secretion
could be measured in ducts from KO animals (secretory rate in
HCO; /CO,-buffered solution: 1.9 + 5.6 pl/min/mm?). The
secretory responses observed in HEPES-buffered and in
HCO5; /COy-buffered solutions were similar.

Figures 6A, 6B, and 6C show the luminal volume changes
for forskolin stimulation in WT and KO ducts.

Overall, forskolin-induced fluid secretion was significantly
lower in ducts from KO mice, as compared to WTs (in both
HEPES and HCO3 /COy-buffered solutions: P = 0.0006).

Supplementary Videos S2 and S3 demonstrate the effects of
forskolin on ductal fluid secretion in WT and KO ducts,
respectively.

To further substantiate the secretory effect of elevated
cytosolic cAMP level, cell-permeable cAMP analogue 8-bromo
cAMP was used. 8-bromo cAMP resulted in a continuous
secretion in WT ducts (secretory rate in HCO53 /COy-buffer in
the first 10 minutes of stimulation: 141 = 7 pl/min/mmz) while
no fluid secretory response could be observed in KO ducts
(secretory rate in HCO5; /COy-buffer in the first 10 minutes of
stimulation: 0.5 = 0.4 pl/min/mmz). Similar results were
obtained in HEPES-buffered solution. 8-bromo cAMP-induced
fluid secretion was significantly lower in KO ducts, as compared
to WTs (in both HEPES and HCO5; /COx-buffered solutions: P =
0.0004; Figs. 7A, 7B). Overall, we could not find statistically
significant difference between the secretory rates evoked by
forskolin and 8-bromo cAMP either in WT or in KO ducts.

Cholinergic-Stimulated Fluid Secretion in Isolated
LG Ducts

To examine the role of CFTR in cholinergic-evoked ductal fluid
secretion, responses to muscarinic agonist carbachol were
investigated in WT and KO LG duct segments isolated from 14-
to 24-week-old mice. Rapid secretion could be observed in the
first 4 to 5 minutes of carbachol stimulation (100 pM) followed
by a slower phase both in WT ducts (secretory rate in HCO3 ™/
CO,_-buffered solution in the first 10 minutes of stimulation:
133 = 6 pl/min/mmz) and in KO ducts (secretory rate in
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Ficure 8. Effect of carbachol on ductal fluid secretion in mouse ducts
isolated from WT and CFTR KO LGs. (A) WT ducts were exposed either
to 100 pM carbachol (filled rbombus) or to no agonist (empty
triangle). (B) KO ducts were exposed either to 100 uM carbachol
(filled square) or to no agonist (empty triangle). Changes in Vr are
shown. Data were obtained from six ducts isolated from three different
animals in each series and are presented as means = SEM. (C) Photo
series of secreting isolated LG duct segments in response to carbachol
stimulation were captured from Supplementary Videos S4 and S5. The
secretory responses observed in HEPES-buffered and in HCO;3 /CO,-
buffered solutions were similar. The luminal space is marked with blue
color.

HCO3; /CO,_-buffered solution in the first 10 minutes of
stimulation: 130 * 5 pl/min/mmz). Similar results were
obtained in HEPES-buffered solution. Secretory rates in WT
and in KO ducts did not differ significantly either in HEPES-
buffered or in HCO5; /CO,_-buffered solutions.

Figures 8A, 8B, and 8C demonstrate the carbachol-induced
luminal volume changes in WT and KO ducts.

Supplementary Videos S4 and S5 show the effect of
carbachol on ductal fluid secretion in WT and KO ducts.

Carbachol-Evoked Ca®" Signaling of Isolated LG
Ducts

To investigate the potential difference in [Ca“]i between WT
and KO ducts, carbachol-evoked elevation of [Ca“]i was
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measured in both groups of isolated ducts (Fig. 9). Carbachol
dose-dependently elevated the [Ca®']; in both WT (Frax: 1 HM:
1.19 = 0.01; 10 pM: 1.67 * 0.05; 100 uM: 1.76 £ 0.05) and
KO duct cells (Fyay: 1 pM: 1.15 £ 0.02; 10 pM: 1.48 = 0.03;
100 pM: 1.83 * 0.05) without significant differences between
WT and KO ducts.

DIsCcUSSION

Previous reports have shown that CFTR plays an important role
in epithelial secretion. Dysfunctional CI” and consequent fluid
secretion can be observed in the pancreatic ducts, airway
epithelia, and salivary glands when CFTR is absent or
defective.3112%:26 Unfortunately, little is known about the role
CFTR may play in LG function, in contrast to the considerable
attention paid to the other components of the ocular surface
system, the cornea and the conjunctiva.®®*' It has been
reported, that CFTR was found on the apical membrane of
conjunctival and corneal epithelial cells.>** Levin and Verk-
man found high capacity of CFTR-facilitated CI” transport at the
ocular surface in mice.”’

In the present study, we demonstrated decreased tear
secretion and increased corneal fluorescein staining in KO
mice in two age groups studied, as compared to age-matched
WT mice, suggesting CFTR plays a critical and essential role in
tear secretion and in the maintenance of ocular surface
integrity. Increased corneal fluorescein staining in the absence
of CFTR may reflect the global dysfunction of the lacrimal
functional unit including corneal, conjunctival, and LG
epithelial cells. Our results show that KO mice are a useful
model to investigate the role of CFTR may play in lacrimal
secretion. As female sex is an established risk factor for dry eye
disease, we calculated both the tear secretion results and the
fluorescein staining scores separately in female and male
mice.’® We could not demonstrate the role of sex in tear
secretion and ocular surface integrity which may be explained
by the relatively young age of our animals.

Cystic fibrosis can cause wide range of morphologic
alterations in the secretory epithelia, including lung, mucosa
of the trachea, salivary glands or the pzlnc1‘eas.7‘10’“’26 Normal
ion and water secretion is required to produce thin, free-
flowing mucus. Defective chloride channels can result in
reduced fluid secretion causing sticky and thick mucus
formation that clogs the ducts and subsequently damages
various organs. Our histologic examinations did not reveal any
significant morphologic differences between the WT and KO
LG tissues either in the 8- to 10- week or in the 20- to 24-week-
old group. These histologic results demonstrated that func-
tional deterioration may precede morphologic alterations
during the course of disease progression. However, investiga-
tion of the duration of the disease in the alteration of LG
morphology in CFTR KO mice has strong limitations as shorter
life expectancies of KO mice hinder long lasting observations.
Further studies are needed in order to clarify potential
alterations in LG morphology later in life. In a case report by
Alghadyan et al.>” histopathologic examinations of LGs of CF
patient who died of pulmonary complications revealed clogged
small duct lumens and subsequent degeneration of acinar cells.

Our immunofluorescence data demonstrated the presence
of CFTR in both acinar and ductal cells, with the staining most
prominent in the apical membranes of ductal cells. Therefore,
to further elucidate the role of CFTR in LG function, we have
focused our study on the ducts by using our isolated duct
segment model described earlier by our laboratory.** Both
HEPES-buffered (nominally HCO5; -free) and HCOj3;/ CO»-
buffered solutions were used in the experiments in order to
investigate the potential role of HCOjz transport in the
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Ficure 9.  Effects of carbachol on intracellular Ca*" concentration ([Ca2+],-), in LG ductal cells from WT and KO mice. (A) Representative recordings
of the microfluorescence experiments. (B) Carbachol dose-dependently elevated the [Ca2+]i, although no significant differences were found in the

responses between ducts from WT and KO animals.

secretory processes. The secretory rates were independent
from the buffer used (HEPES versus HCO; /CO, buffer)
suggesting the predominant role of Cl” transport mechanisms
over HCOj3™ secreting processes in mouse LG ducts. These
findings are in accordance with our previous results derived
from rabbit LG ducts.?* As we have shown above, the absence
of forskolin or 8-bromo cAMP-stimulated fluid secretion in
ducts from KO mice suggests the important role of CFTR may
play in LG duct secretion. Lack of cAMP-mediated fluid
secretion in KO ducts demonstrates that CFTR may be the
only cAMP-dependent transporter on the luminal surface of
duct cells in mouse LG. In contrast to our findings from mouse
LG ducts, pancreatic ducts isolated from CFTR KO mice has
significant secretory capacity for forskolin stimulation.>®
Considering the strong predominance of CFTR protein in LG
ducts, CFTR may play a key role in LG secretion through
modification of LG fluids while being transported in the ducts.
CI” secretion through CFTR may be a major contributor to the
transmembrane electrochemical gradient and subsequent
electrolyte and water movements and therefore defects in
CFTR may significantly compromise ClI- and water secretion
from LG ducts.

Carbachol-evoked fluid secretion and cytosolic Ca*" signal-
ing in WT and CFTR KO ducts did not differ significantly,
suggesting the preservation of secretory mechanisms activated
by Ca*" mobilizing stimuli in the absence of CFIR protein.
Other CI° channels (i.e., voltage- and Ca*"sensitive CI~
channels (not investigated in the present study) appeared
unaffected when CFTR protein is missing.

In recent studies by Flores et al. and Lee et al., small-
molecule CFTR activators increased tear secretion in a LG-
ablated mouse model of dry eye.z‘o’41 Since LG was absent in
this animal model, the enhanced Cl -driven fluid secretion
could be from the conjunctival and corneal epithelial cells.
Data presented here, however, suggest that CFTR affects not
only corneal and conjunctival epithelial cell function, but also
LG secretion.

In conclusion, our data demonstrated decreased tear
secretion and impaired ocular surface integrity in CFTR KO

mice, suggesting the important role of CFTR may play in LG
function and in the maintenance of ocular surface integrity.
Our functional studies by employing the isolated duct segment
model, suggest that CFTR plays a pivotal role in the fluid
secretion of LG duct system. Further studies are needed to
clarify whether modification of CFTR function may serve as a
potential target to stimulate LG secretion and therefore can be
an option in treating aqueous deficient dry eye.
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