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Abstract: P-glycoprotein (P-gp, ABCB1) over-expression, causing a multi-drug resistant (MDR)
phenotype, is a major problem in cancer chemotherapy that urgently requires novel approaches.
Our previous studies showed certain ecdysteroid derivatives as promising chemo-sensitizers against
MDR and non-MDR cancer cell lines while also exerting mild to moderate inhibition of P-gp function.
Here we report the preparation of a set of substituted 2,3-dioxolane derivatives of poststerone,
a known in vivo metabolite of 20-hydroxyecdysone (20E). In contrast with previously studied
ecdysteroid dioxolanes, the majority of the new compounds did not inhibit the efflux function
of P-gp. Nevertheless, a strong, dose dependent sensitization to doxorubicin was observed on a P-gp
transfected cancer cell line and on its susceptible counterpart. We also observed that the MDR cell
line was more sensitive to the compounds’ effect than the non-MDR. Our results showed for the first
time that the chemo-sensitizing activity of ecdysteroids can be fully independent of functional efflux
pump inhibition, and suggest these compounds as favorable leads against MDR cancer.

Keywords: ecdysteroid metabolite; poststerone acetonide; ABCB1 efflux transporter; cancer;
multi-drug resistance; chemo-sensitization; combination therapy

1. Introduction

Ecdysteroids have a broad range of bioactivities in mammals, as extensively reviewed
elsewhere [1–3]. In addition to these, it has recently been revealed that less polar derivatives of
these compounds can exert a potent chemo-sensitizing activity in various multi-drug resistant [4–7]
as well as drug susceptible [6–8] cancer cell lines. In particular, ecdysteroid dioxolanes such as
20-hydroxyecdysone 2,3;20,22-diacetonide were found by our group to effectively potentiate the
in vitro antitumor activity of several chemotherapeutic agents including doxorubicin, paclitaxel,
and vincristine, which was, however, not the case for cisplatin [6]. The strong synergistic action of
certain ecdysteroids with one or more of the above-mentioned chemotherapeutics was confirmed on
a broad range of cancer cell lines of various origin, including human breast (MCF-7 and its sub-cell
line MCF-7Dox adapted to doxorubicin), prostate (PC3, LNCaP), epidermal (KB-3-1 and its sub-cell
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line KB-C-1 adapted to colchicine), and neuroblastoma (SH-SY5Y), as well as two murine lymphoma
cell lines (L5178 and its sub-cell line L5178MDR transfected to express the human ABCB1 transporter,
commonly referred to as P-glycoprotein or P-gp) [4–8].

Over the last few years that have passed since the initial discovery of the chemo-sensitizing
activity of these compounds [4], our research group has been pursuing related structure-activity
relationships. In this endeavor, several important observations were made including the most recently
reported effect of fluoride substitution on the activity [7]. In particular, the presence of apolar groups
at positions 2 and 3 was found of outmost importance for the chemo-sensitizing potential, while such
a substituent at the 20,22-diol appears to be of much less or if any significance [5]. Considering that
the most abundant natural ecdysteroid, 20-hydroxyecdysone (20E) is known to undergo a side-chain
cleavage between C-20 and C-22 during its in vivo metabolism to yield poststerone (1) [9], it seems
reasonable to speculate that similar side-chain cleaved metabolites can also be formed from other
ecdysteroids with a non-substituted diol at this position. Considering that such an in vivo metabolic
alteration can apply to potential antitumor ecdysteroid derivatives containing apolar substituents on
the 2,3-diol, the aim of the present study was to prepare such derivatives from poststerone (1) and to
investigate their bioactivity as potential chemo-sensitizing agents on the L5178 cell line and on its P-gp
transfected counterpart, L5178MDR.

2. Results and Discussion

2.1. Chemistry

Oxidative side-chain cleavage of 20E was achieved by using a common hypervalent iodine
reagent (PIFA), and the subsequent purification by centrifugal partition chromatography (CPC) led
to a relatively good, 57.8% isolated yield of poststerone (1). Following this, our aim was to prepare
various substituted dioxolane rings fused to the ecdysteroid A-ring by utilizing different aldehydes or
ketones reacting with the 2,3-diol similarly to our previously applied strategy [5]. Structure elucidation
by NMR, performed as previously published in detail [10], revealed the chemical structures presented
in Figure 1.
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Figure 1. Chemical structures of compounds 1–10.

To facilitate the comparison of NMR data of products and the parental 1, we measured and
assigned the NMR signals of poststerone also in MeOH-d4, in which solvent they were not available
before [11]. The corresponding 1H- and 13C-NMR shifts are compiled in Tables 1 and 2, respectively.
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Table 1. 1H-NMR chemical shifts of compounds 1–10, in ppm, in MeOH-d4.

Atom No. 1 2 a 3 4 5 6 7 8 9 10 a

1 β 1.44 1.24 1.18 1.17 1.44 1.18 1.23 1.26 1.23 1.25
α 1.80 2.01 2.00 1.94 2.01 1.98 2.00 1.99
2 3.86 4.28 4.23 4.23 4.00 4.22 4.27 4.29 4.29 4.29
3 3.97 4.31 4.13 4.13 5.17 4.13 4.31 4.27 4.34 4.32

4 β 1.74 2.02 2.02 1.78 2.02 1.98 1.98 1.99
α 1.74 2.02 2.02 1.78 2.02 1.98 1.98 1.99
5 2.39 2.25 2.25 2.22 2.25 2.23 2.25 2.24
7 5.82 5.80 5.81 5.80 5.83 5.80 5.80 5.80 5.80 5.80
9 3.19 2.98 2.99 2.99 3.21 2.99 2.97 2.97 2.97 2.96

11 β 1.67 1.67 1.67 1.69 1.66 1.66 1.66 1.65
α 1.89 1.88 1.88 1.89 1.87 1.87 1.86 1.86

12 β 1.82 1.81 1.81 1.83 1.81 1.80 1.81 1.81
α 2.33 2.32 2.32 2.32 2.35 2.32 2.32 2.32 2.32 2.32

15 β 2.00 2.00 2.02 2.01 2.01 1.99 2.00 2.00
α 1.70 1.69 1.69 1.69 1.69 1.69 1.68 1.68

16 β 2.23 2.25 2.26 2.26 2.25 2.24 2.25 2.25
α 1.88 1.88 1.90 1.89 1.89 1.88 1.89 1.88
17 3.33 3.32 3.32 3.32 3.33 3.33 3.33 3.34 3.32 3.32
18 0.62 0.62 0.62 0.62 0.63 0.62 0.61 0.62 0.61 0.61
19 0.96 0.96 0.96 0.96 0.99 0.96 0.96 0.97 0.95 0.96
21 2.16 2.15 2.15 2.15 2.16 2.15 2.15 2.15 2.15 2.15
R1 - 1.47

-
0.98
1.68

-

0.97
1.46
1.65

-

0.99
1.69
2.40

-

0.93
1.39
1.40
1.67

0.98
0.98
1.83
1.63

1.42
-

0.90
1.73

-

0.95

R2 - 1.32
-

4.90
-

4.95
-

- 4.94
-

1.30
-

0.92
1.62

1.28
-

0.88

a Only the characteristic 1H chemical shifts were assigned for compounds 2 and 10, considering that these
compounds contain identical R1 and R2 groups, hence diastereomer pairs at C-22 were not distinguishable.

Table 2. 13C-NMR chemical shifts of compounds 1–10, in ppm, in MeOH-d4.

Atom No. 1 2 3 4 5 6 7 8 9 10

1 37.4 38.8 39.5 39.5 38.5 39.6 39.0 39.0 38.94 39.1
2 68.7 73.6 72.9 72.8 67.2 72.8 73.2 73.2 73.2 72.8
3 68.5 73.2 75.0 75.0 71.6 75.0 72.6 73.6 72.8 73.2
4 32.9 27.8 27.8 27.8 30.5 27.8 27.8 27.8 27.8 27.8
5 51.9 52.6 52.6 52.6 52.8 52.6 52.8 52.6 52.6 52.6
6 206.3 205.5 205.3 205.3 205.2 205.3 205.5 205.4 205.5 205.4
7 122.6 122.3 122.4 122.3 122.5 122.3 122.3 122.3 122.3 122.3
8 166.6 165.9 166.0 166.0 166.8 166.0 166.0 165.9 165.9 165.9
9 35.2 35.9 36.3 36.3 35.4 36.3 36.1 36.0 36.0 36.0
10 39.3 39.0 38.8 38.7 39.3 38.8 38.9 38.9 38.9 38.9
11 21.7 21.8 21.9 21.9 21.7 21.9 21.8 21.8 21.8 21.8
12 31.1 31.2 31.2 31.2 31.2 31.2 31.2 31.2 31.2 31.2
13 48.9 49.1 49.2 49.2 48.8 49.1 49.4 49.2 49.2 49.0
14 85.1 85.0 85.0 85.0 85.1 85.0 85.1 85.0 85.0 85.0
15 32.2 32.1 32.1 32.1 32.2 32.1 32.1 32.1 32.1 32.1
16 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.3
17 60.2 60.2 60.2 60.2 60.2 60.2 60.2 60.2 60.2 60.2
18 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6
19 24.5 24.1 24.1 24.1 24.5 24.1 24.2 24.1 24.1 24.2
20 212.6 212.6 212.5 212.5 212.5 212.5 212.5 212.5 212.5 212.5
21 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6
22 - 109.6 106.7 105.7 175.1 105.9 111.4 111.7 111.5 113.5
R1 - 28.9

-
8.80
29.5

-

14.5
18.8
38.7

-

14.1
19.6
37.3

-

14.4
23.8
27.7
36.7

24.9
24.9
26.1
51.8

25.7
-

9.5
35.7

-

9.07
31.7

-

R2 - 26.7
-

- - - - 24.4
-

9.40
33.4

23.6
-

9.11
29.6

A comparison of the δ H-2 and δ H-3 (3.86 and 3.97 ppm), moreover the corresponding δ

C-2 and δ C-3 (68.7 and 68.5 ppm) values of the parental 1, with the corresponding 1H and 13C
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chemical shifts obtained for the dioxolane derivatives (4.22–4.29 and 4.13–4.34 ppm) and (72.8–73.6 and
72.6–75.0 ppm) shows a pronounced deshielding. With the exception of the low-yield 3-acyl compound
5, an unexpected by-product of compound 4 likely formed through the oxidation of an intermediate,
the targeted dioxolane derivatives were obtained. Similar to our previous observation with analogous
derivatives of 20E [5,10], whenever an asymmetrically substituted dioxolane ring was formed, the
C-22 atom of the 2,3-dioxolane ring turns into a new stereogenic center. Steric effects caused the
larger substituent on C-22 to be situated preferentially in the β-position [5,10] except for the present
case of compounds 8 and 9 where the two possible 22-epimers were obtained in nearly identical
yields. Their differentiation was then elucidated by one-dimensional Rotating frame Overhauser
Enhancement (ROE) experiments, because this experiment in our case was much more effective than
the analogous selective Nuclear Overhauser Enhancement (NOE) experiment. As shown in Figure 2,
selective irradiation on the CH3 signal (1.28 ppm) of compound 8 resulted in strong ROESY responses
on H-2 and H-3 signals, therefore their cis α positions as well as the R configuration of C-22 was
unequivocally established.
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2.2. Bioactivity

The poststerone derivatives 2–10 represented an ideal set of compounds to investigate the effect
of a lacking side-chain on the chemo-sensitizing activity, and to study the relevant structure-activity
relationships around C-2,3 in comparison with those concluded from our previous studies [4,5].

2.2.1. Cytotoxic Activity and Functional Inhibition of P-Glycoprotein

Evaluation of the cytotoxicity of compounds 1–10 showed that, with the exception of compound 7,
the 50% inhibitory concentration (IC50) was higher than 75 µM, both on the L5178 and the L5178MDR

cell lines. Compound 7 had an IC50 equal to 59.6 ± 0.8 and 55.4 ± 4.9 µM against L5178 and
L5178MDR, respectively.

The inhibitory effect on the efflux function was studied by measuring the compounds’ activity
on the intracellular accumulation of rhodamine 123, a well-known P-gp substrate fluorescent dye,
within the L5178MDR cells. The efflux pump inhibitor tariquidar was used as positive control.
Each compound was dissolved in DMSO whose final concentration (2%) was also evaluated for
any effect on the retention of the fluorochrome, but no effect of the solvent was observed. The values
were normalized to the fluorescence (FL) of rhodamine accumulated by L5178 and L5178MDR cells
such as: rhodamine 123 accumulation in the L5178 cells that do not overexpress the human P-gp,
was considered as 100% P-gp inhibition while accumulation of Rhodamine 123 in L5178MDR cells, that
do overexpress the human P-gp, was considered as 0% inhibition. The obtained results are compiled
in Table 3.
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Table 3. Functional inhibition of P-gp by compounds 1–10. a

Compound Inhibition (%) Compound Inhibition (%)
2 µM 20 µM 2 µM 20 µM

1 0.31 0.43 6 −0.06 2.32
2 0.08 0.64 7 3.08 56.36
3 0.24 0.29 8 −0.19 0.19
4 0.03 3.85 9 −0.32 −0.16
5 −0.19 0.03 10 −0.30 0.11

a Positive control: 50 nM of tariquidar (109.59% inhibition), negative control: 2% DMSO (−0.42% inhibition).

Compound 7 was the only one showing an effect in this bioassay, with approximately twice the
activity of 20-hydroxyecdysone 2,3;20,22-diacetonide (20.91% inhibition at 20 µM, recalculated from
data published in [4]); none of the other ecdysteroids exerted any significant inhibitory effect on the
efflux function of P-gp. This indicates that lacking a side-chain significantly decreases this activity of
apolar ecdysteroid derivatives, while a bulky 2,3-substituent, such as the methyl-isobutyl substituted
dioxolane ring in compound 7, can restore the P-gp inhibitory effect.

2.2.2. Combination Studies with Doxorubicin

Considering the negligible cytotoxic activity of each of the compounds, we evaluated the capacity
of the compounds to potentiate the effect of doxorubicin. The effect of 10 or 25 µM of each compound
was studied on the IC50 value of doxorubicin on both cell lines in order to allow evaluation of the
effect of the missing side-chain on the chemo-sensitizing activity by comparing our new compounds’
activity with that of the non-substituted poststerone (1) as well as with our previous lead compound
20-hydroxyecdysone 2,3;20,22-diacetonide (20DA); results of this study are presented in Figure 3.

It is noteworthy, that all compounds showed a dose dependent chemo-sensitizing activity on both
cell lines. With the exception of poststerone, 2, 9, and 10, sensitization of the L5178 cells to doxorubicin
was higher than 2-fold on the cells compared to when doxorubicin was applied alone, at least at the
higher concentration (25 µM). On this cell line, the strongest activity was exerted by compounds 6–8,
each of which was significantly stronger than the diacetonide of 20E (20DA) when tested in a planned
comparison by one-way ANOVA followed by Bonferroni’s post hoc test.

Concerning the transfected MDR cell line L5178MDR, compounds 2–6 and 8–10 showed remarkably
strong chemo-sensitizing activity, even though they did not inhibit the efflux function of P-gp
(in contrast with 20DA’s mild inhibition). As seen from Figure 3C, these compounds have up to
5–7 times stronger sensitizing effect on the MDR cells than on the parental cells, indicating that
overexpression of P-gp by MDR cells induces a significant collateral sensitivity to the chemo-sensitizing
activity of ecdysteroids. Exploiting collateral sensitivity—i.e., an evolutionary disadvantage connected
to the MDR phenotype making such cells paradoxically hypersensitive to certain agents other than
the ones they have become resistant to—appears to be a highly attractive strategy for overcoming
MDR-related therapeutic difficulties [12]. A number of compounds have been identified that are
able to exploit the fitness cost of resistance through various mechanisms [13]. In our case, further
studies are necessary to clarify which mechanisms can be responsible for the observed MDR selective
chemo-sensitizing activity, nevertheless, it appears clear that it can be completely separated from a
functional efflux pump inhibition.

According to the structure-activity relationships (SARs), even though the acyl compound 5 was
also active, the dioxolane derivatives were found favorable in this regard. Among these, a clear
tendency was observed for gradually increasing the chemo-sensitizing activity on both cell lines when
increasing the size of the β-substituent on the 2,3-dioxolane ring (in the order of compounds 2, 3,
4, and 6). Moreover, from the activities of compounds 8 and 9 it can also be seen that, in case of
22-epimers, the larger substituent is preferred to be in the 22 α-position (as in compound 8) for a
stronger sensitizing activity particularly on the non-MDR cell line. This extends our previous findings
for the SAR observed at this position of side-chain bearing ecdysteroid dioxolanes [5] also to this series
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of compounds. Interestingly, however, the same difference between the bioactivites of compounds
8 and 9 was not observed on the L5178MDR cells, which resulted in the higher MDR-selectivity of
compound 9 as compared to 8. In contrast with the other compounds investigated in this study,
compound 7 could inhibit the efflux of rhodamine 123 by P-gp. Nevertheless, this compound showed a
great sensitizing activity on both cell lines. It could completely reverse the resistance of the MDR cells
at as low as 10 µM concentration, and at the higher dose (25 µM) it decreased the IC50 of doxorubicin
from 0.41 and 11.8 µM (L5178 and L5178MDR, respectively) to 0.12 and 0.17 µM (L5178 and L5178MDR,
respectively), highlighting its potential interest as a chemo-sensitizing agent.
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Figure 3. Chemo-sensitizing activity of compounds 1–10 on the two lymphoma cell lines. (A,B) Show
the IC50 value of doxorubicin (Dox) alone or in combination with 10 or 25 µM of 20-hydroxyecdysone
2,3;20,22-diacetonide (20DA) or compounds 1–10. The dashed line marks the threshold of two-fold
sensitization. With the exception of 10 µM of compound 1 (either cell line), and 2, 3, and 9 (L5178),
all IC50 values differ from that found for Dox alone at p < 0.01 by means of one-way ANOVA followed by
Dunnett’s post-hoc test; IC50 values and levels of significance are provided as supporting information
(Table S1); (C) Fold sensitization on both cell lines is presented, corresponding to how many times a
certain concentration (10 or 25 µM) of the tested compound decreased the IC50 of Dox as compared
to when it was used alone; MDR selectivity refers to the ratios of the IC50 values on the resistant and
sensitive cell line: MDR selectivity = IC50(L5178MDR)/IC50(L5178).

3. Materials and Methods

3.1. General Information

The compound 20-hydroxyecdysone (20E) was purchased from Shaanxi KingsSci Biotechnology
Co., Ltd. (Shanghai, China) at 90% purity and recrystallized from ethyl acetate/methanol (2:1, v/v)
to reach a purity of 97.8% by means of HPLC–DAD. Reverse phase HPLC was performed on a system
of two Jasco PU-2080 pumps connected to a Jasco MD-2010 Plus photodiode-array detector (Jasco Co.,
Tokyo, Japan). Normal phase HPLC was performed on a Waters 600 Pump connected to a Waters
2487 Dual λ Absorbance Detector (Waters Co., Milford, MA, USA). Mass spectra were recorded on an
API 2000 triple quadrupole tandem mass spectrometer (AB SCIEX, Foster City, CA, USA) in positive
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mode with atmospheric pressure chemical ionization (APCI) ion source except for compounds 8–10,
which were measured with electron-spray ionization (ESI).

1H- (500.1 MHz) and 13C- (125.6 MHz) NMR spectra were recorded at room temperature on a
Bruker Avance spectrometer and on Avance-III spectrometer (Bruker Biospin Co., Karlsruhe, Germany)
equipped with a cryo probehead. Regarding the compounds, amounts of approximately 1–5 mg
were dissolved in 0.1 mL of methanol-d4 and transferred to 2.5 mm Bruker MATCH NMR sample
tube (Bruker). Chemical shifts are given on the δ-scale and are referenced to the solvent (MeOH-d4:
δC = 49.1 and δH = 3.31 ppm). Pulse programs of all experiments (1H, 13C, DEPTQ, DEPT-135,
sel-TOCSY, sel-ROE, edited gs-HSQC and gs-HMBC) were taken from the Bruker software library.
The NMR signals of the product were assigned by comprehensive one- and two-dimensional NMR
methods using widely accepted strategies [14,15]. Most 1H assignments were accomplished using
general knowledge of chemical shift dispersion with the aid of the proton-proton coupling pattern
(1H-NMR spectra).

3.2. Synthetic Procedure

Poststerone (1) was synthesized from 20E as follows: 2.0 g (4.17 mmol) of 20E was dissolved in
50.0 mL of methanol, and 2.7 g (1.5 equiv.) of [bis(trifluoroacetoxy)iodo]benzene (PIFA, Sigma-Aldrich,
Budapest, Hungary) was added, and the reaction mixture was stirred at room temperature for 1 h.
On completion, the mixture was quenched with 5% aqueous solution of NaHCO3 (Reanal Plc.,
Budapest, Hungary) and evaporated to dryness. The residue was dissolved in ethyl acetate, filtered
through silica (Merck, Darmstadt, Germany) and dried in vacuo. The product was purified by
centrifugal partition chromatography (Armen Spot CPC 250 mL, Armen Instrument, Saint Ave, France)
in ascending mode with a solvent system of ethyl acetate/water/methanol (20:20:1, v/v/v), and 20 mL
fractions were collected. Corresponding fractions were combined and dried to give poststerone (1),
(871.6 mg, 57.8%).

Compounds 2–10 were synthesized from poststerone (1) according to the followings: 60 mg
(0.166 mmol) of poststerone (1) was dissolved in 10 mL of methanol, then the reagent was added to the
solution (2: acetone, 20 mL; 3: propionaldehyde, 5 mL; 4 and 5: butyraldehyde, 5 mL; 6: valeraldehyde,
5 mL; 7: methyl isobutyl ketone, 5 mL; 8 and 9: methyl ethyl ketone, 5 mL; 10: 3-pentanone, 5 mL).
Catalytic amounts of p-toluenesulfonic acid (Sigma-Aldrich) were added, and the mixture was stirred
at room temperature for two days in case of compound 2 and one week in case of compounds 3–10.
Then the reaction mixture was quenched with 5% aqueous solution of NaHCO3 and diluted with
water. The mixture was concentrated by vacuum distillation until only water was present, and the
aqueous solution was extracted three times with methylene chloride. The combined organic layers
were dried with anhydrous Na2SO4 and evaporated to dryness. The products were isolated by
rotational planar chromatography on silica gel with appropriate eluents composed of ethyl acetate
and ethanol. Compounds 3 and 5–9 were further purified by semi-preparative HPLC using isocratic
elution with aqueous methanol (63%, 70%, 68%, 75% for compounds 3, 5, 6, and 7, respectively,
and 65% for compounds 8 and 9) at a flow rate of 3.0 mL/min, by utilizing an Agilent Eclipse XDB-C8
(Agilent Technologies, Santa Clara, CA, USA) (9.4 mm × 250 mm, 5 µm) column. The yields were as
follows: 2 (39.2 mg, 58.8%), 3 (16.7 mg, 25.1%), 4 (10.0 mg, 14.5%), 5 (7.3 mg, 10.2%), 6 (7.6 mg, 10.7%),
7 (1.5 mg, 2.0%), 8 (8.9 mg, 12.9%), 9 (7.0 mg, 10.2%), 10 (16.2 mg, 22.7%).

3.3. Compound Characterization Data

Poststerone (1): White crystals; m.p. 238–240 ◦C; for 1H- and 13C-NMR data, see Tables 1 and 2,
respectively; APCI-MS: 363 [M + H]+, 345 [M + H − H2O]+, 327, 309.

22,22-Dimethyl-2,3-O-methylidene-poststerone (2): White crystals; m.p. 185–186 ◦C; for 1H- and 13C-NMR
data, see Tables 1 and 2, respectively; APCI-MS: 403 [M + H]+, 385 [M + H − H2O]+, 359, 345, 327.
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22β-Ethyl-2,3-O-methylidene-poststerone (3): White crystals; m.p. 82–83 ◦C; for 1H- and 13C-NMR data,
see Tables 1 and 2, respectively; APCI-MS: 403 [M + H]+, 385 [M + H − H2O]+, 359, 345, 327.

22β-Propyl-2,3-O-methylidene-poststerone (4): White crystals; m.p. 76–77 ◦C; for 1H- and 13C-NMR data,
see Tables 1 and 2, respectively; APCI-MS: 417 [M + H]+, 399 [M + H − H2O]+, 395, 377, 345, 327.

Poststerone 3-butyrate (5): White crystals; m.p. 95–97; for 1H- and 13C-NMR data, see Tables 1 and 2,
respectively; APCI-MS: 433 [M + H]+, 415 [M + H − H2O]+, 391, 377, 345, 327.

22β-Butyl-2,3-O-methylidene-poststerone (6): White crystals; m.p. 162–163 ◦C; for 1H- and 13C-NMR
data, see Tables 1 and 2, respectively; APCI-MS: 431 [M + H]+, 413 [M + H − H2O]+, 377, 359, 345, 327.

22β-Isobutyl-22α-methyl-2,3-O-methylidene-poststerone (7): White crystals; m.p. 195–197 ◦C; for 1H- and
13C-NMR data, see Tables 1 and 2, respectively; APCI-MS: 445 [M + H]+, 427 [M + H − H2O]+, 423,
409, 391, 377, 359, 345, 327.

22α-Ethyl-22β-methyl-2,3-O-methylidene-poststerone (8): White crystals; m.p. 193–194 ◦C; for 1H- and
13C-NMR data, see Tables 1 and 2, respectively; ESI-MS: 449 [M + CH4O]+, 417 [M + H]+.

22β-Ethyl-22α-methyl-2,3-O-methylidene-poststerone (9): White crystals; m.p. 88–89 ◦C; for 1H- and
13C-NMR data, see Tables 1 and 2, respectively; ESI-MS: 449 [M + CH4O]+, 417 [M + H]+.

22,22-Diethyl-2,3-O-methylidene-poststerone (10): White crystals; m.p. 183–185 ◦C; for 1H- and 13C-NMR
data, see Tables 1 and 2, respectively; ESI-MS: 463 [M + CH4O]+, 431 [M + H]+.

3.4. Cytotoxicity Assay

Cytotoxicity activities on the L5178 and L5178MDR cell lines were performed as described
before [6]. Briefly, 104 cells/well were incubated with serial dilutions of each compound (n = 3)
in McCoy’s 5 A medium (Sigma-Aldrich) for 48 h at 37 ◦C, 5% CO2. Then, 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT, Sigma) was added to each well at a final concentration
of 0.5 mg/mL per well and after 4 h of incubation, 100 µL of sodium dodecyl sulfate (SDS) 10%
(Sigma-Aldrich) in 0.01 M HCl was added to each well. Plates were further incubated overnight and
the optical densities were read at 540 and 630 nm using an ELISA reader (Multiskan EX, Thermo
Labsystem, Milford, MA, USA). Fifty percent inhibitory concentrations (IC50) were calculated using
non-linear regression curve fitting of log (inhibitor) vs. response and variable slope with a least
squares (ordinary) fit of GraphPad Prism 5 software (GraphPad Software Inc., San Diego, CA, USA).
IC50 values were statistically evaluated by one-way ANOVA followed by Dunnett’s (with doxorubicin
applied alone as control column) or Bonferroni’s post hoc test (with planned comparisons between the
activities of compounds of particular interest).

3.5. Sensitization of L5178 and L5178MDR Cells to Doxorubicin

Sensitization assay was performed in the same way as the cytotoxicity assay described above.
However, in this assay doxorubicin was serially diluted in the 96 well plate and compounds 1–10
were added to each well at fix concentrations of 10 µM or 25 µM. In addition to the medium and cell
control, wells that contained only cells and compound at the studied concentration were also included
to assure that the concentrations used did not affect the cell growth by themselves.

3.6. Evaluation of P-glycoprotein Function through Rhodamine 123 Accumulation Assay

Inhibition of efflux function was evaluated using rhodamine 123, a fluorescent dye, whose
retention inside the cells was evaluated by flow cytometry [4]. Briefly, 2 × 106 cells/mL were treated
with 2 and 20 µM of each compound. After 10 min incubation, rhodamine 123 (Sigma-Aldrich) was
added to a final concentration of 5.2 µM and the samples were incubated at 37 ◦C in a water bath
for 20 min. Samples were centrifuged (Heraeus Labofuge 400, Thermo Fisher Scientific, Waltham,
MA, USA) (2000 rpm, 2 min) and washed twice with phosphate buffer saline (PBS, Sigma). The final
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samples were re-suspended in 0.5 mL PBS and its fluorescence measured with a Partec CyFlow flow
cytometer (Partec, Münster, Germany). Tariquidar was kindly provided by Dr. Milica Pesic from
the Institute for Biological Research Sinisa Stankovic, Belgrade, Serbia, and it was used at 50 nM as
positive control.

4. Conclusions

Through the synthesis and bioactivity testing of a series of poststerone 2,3-dioxolanes, we have
shown for the first time that structure-activity relationships connected to the chemo-sensitizing activity
of ecdysteroids can in fact be separated from those describing their inhibitory effect on P-gp function.
On the one hand, this strongly supports our previous assumption, namely that a mechanism(s) other
than a functional P-gp inhibition must primarily be responsible for the chemo-sensitizing activity of
less-polar ecdysteroid derivatives, and P-gp inhibition, if any, is rather a side-effect to this. On the
other hand, side-chain cleaved ecdysteroid 2,3-dioxolanes, originated from the in vivo ecdysteroid
metabolite poststerone, are hereby suggested as promising, non-P-gp inhibitor MDR selective adjuvant
agents for further development.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/22/
2/199/s1. Figure S1: 1H-NMR spectrum of compound 8, Figure S2: DEPTQ spectrum of compound 8, Figure S3:
1H-NMR spectrum of compound 9, Figure S4: DEPTQ spectrum of compound 9, Figure S5: Confirmation of the
stereochemistry of compound 9 at C-22, Table S1: Cytotoxicity of doxorubicin alone and in combination with 10 or
25 µM of compounds 1–10 on the L5178 and L5178MDR cell lines.

Acknowledgments: This work was supported by the National Research, Development and Innovation Office,
Hungary (NKFIH; K119770). Networking contribution by the COST Action CM1407 “Challenging organic
syntheses inspired by nature—from natural products chemistry to drug discovery” and support from the
Foundation for Cancer Research Szeged is acknowledged. A.H. acknowledges support from the János Bolyai
fellowship of the Hungarian Academy of Sciences and from the Kálmán Szász prize.

Author Contributions: A.H. conceived and designed the experiments and wrote the main manuscript text;
J.C. and A.M. performed the experiments; A.H., J.C. and A.M. analyzed the data; J.M. provided cell lines and
laboratory facilities for bioactivity testing; A.B. and G.T. performed NMR studies and analyzed related data.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Lafont, R.; Dinan, L. Practical uses for ecdysteroids in mammals including humans: An update. J. Insect Sci.
2003, 3, 7. [CrossRef] [PubMed]

2. Dinan, L. The Karlson Lecture. Phytoecdysteroids: What use are they? Arch. Insect Biochem. Physiol. 2009, 72,
126–141. [CrossRef] [PubMed]

3. Báthori, M.; Tóth, N.; Hunyadi, A.; Márki, A.; Zádor, E. Phytoecdysteroids and anabolic-androgenic
steroids—Structure and effects on humans. Curr. Med. Chem. 2008, 15, 75–91.

4. Martins, A.; Tóth, N.; Ványolós, A.; Béni, Z.; Zupkó, I.; Molnár, J.; Báthori, M.; Hunyadi, A. Significant
activity of ecdysteroids on the resistance to doxorubicin in mammalian cancer cells expressing the human
ABCB1 transporter. J. Med. Chem. 2012, 55, 5034–5043. [CrossRef] [PubMed]

5. Martins, A.; Csábi, J.; Kitka, D.; Balázs, A.; Amaral, L.; Molnár, J.; Simon, A.; Tóth, G.; Hunyadi, A. Synthesis
and Structure-Activity Relationship Study of Novel Ecdysteroid Dioxolanes as MDR Modulators in Cancer.
Molecules 2013, 18, 15255–15275. [CrossRef] [PubMed]

6. Martins, A.; Sipos, P.; Dér, K.; Csábi, J.; Miklos, W.; Berger, W.; Zalatnai, A.; Amaral, L.; Molnár, J.;
Szabó-Révész, P.; et al. Ecdysteroids sensitize MDR and non-MDR cancer cell lines to doxorubicin, paclitaxel,
and vincristine but tend to protect them from cisplatin. Biomed. Res. Int. 2015, 2015, 895360. [CrossRef]
[PubMed]

7. Csábi, J.; Martins, A.; Sinka, I.; Csorba, A.; Molnár, J.; Zupkó, I.; Tóth, G.; Tillekeratne, L.M.V.; Hunyadi, A.
Synthesis and chemo-sensitizing activity of fluorinated ecdysteroid derivatives. Med. Chem. Commun. 2016,
7, 2282–2289. [CrossRef]

http://www.mdpi.com/1420-3049/22/2/199/s1
http://www.mdpi.com/1420-3049/22/2/199/s1
http://dx.doi.org/10.1673/031.003.0701
http://www.ncbi.nlm.nih.gov/pubmed/15844229
http://dx.doi.org/10.1002/arch.20334
http://www.ncbi.nlm.nih.gov/pubmed/19771554
http://dx.doi.org/10.1021/jm300424n
http://www.ncbi.nlm.nih.gov/pubmed/22578055
http://dx.doi.org/10.3390/molecules181215255
http://www.ncbi.nlm.nih.gov/pubmed/24335576
http://dx.doi.org/10.1155/2015/895360
http://www.ncbi.nlm.nih.gov/pubmed/26075272
http://dx.doi.org/10.1039/C6MD00431H


Molecules 2017, 22, 199 10 of 10

8. Müller, J.; Martins, A.; Csábi, J.; Fenyvesi, F.; Könczöl, A.; Hunyadi, A.; Balogh, G.T. BBB Penetration-targeting
Physicochemical Lead Selection: Ecdysteroids as Chemo-sensitizers Against CNS Tumors. Eur. J. Pharm. Sci.
2017, 96, 571–577. [CrossRef] [PubMed]

9. Kumpun, S.; Girault, J.P.; Dinan, L.; Blais, C.; Maria, A.; Dauphin-Villemant, C.; Yingyongnarongkul, B.;
Suksamrarn, A.; Lafont, R. The metabolism of 20-hydroxyecdysone in mice: Relevance to pharmacological
effects and gene switch applications of ecdysteroids. J. Steroid Biochem. Mol. Biol. 2011, 126, 1–9. [CrossRef]
[PubMed]

10. Balázs, A.; Hunyadi, A.; Csábi, J.; Jedlinszki, N.; Martins, A.; Simon, A.; Tóth, G. 1H- and 13C-NMR
investigation of 20-hydroxyecdysone dioxolane derivatives, a novel group of MDR modulator agents.
Magn. Reson. Chem. 2013, 51, 830–836. [CrossRef] [PubMed]

11. Lafont, R.; Harmatha, J.; Marion-Poll, F.; Dinan, L.; Wilson, I.D. Ecdybase: Poststerone. Available online:
http://ecdybase.org/index.php?&action=browse&row=423 (accessed on 24 January 2017).

12. Imamovic, L.; Sommer, M.O. Use of collateral sensitivity networks to design drug cycling protocols that
avoid resistance development. Sci. Transl. Med. 2013, 5, 204ra132. [CrossRef] [PubMed]

13. Szakács, G.; Hall, M.D.; Gottesman, M.M.; Boumendjel, A.; Kachadourian, R.; Day, B.J.; Baubichon-Cortay, H.;
Di Pietro, A. Targeting the Achilles heel of multidrug-resistant cancer by exploiting the fitness cost of
resistance. Chem. Rev. 2014, 114, 5753–5774. [CrossRef] [PubMed]

14. Duddeck, H.; Dietrich, W.; Tóth, G. Structure Elucidation by Modern NMR; Springer-Steinkopff: Darmstadt,
Germany, 1998.

15. Pretsch, E.; Tóth, G.; Munk, M.E.; Badertscher, M. Computer-Aided Structure Elucidation. Spectra Interpretation
and Structure Generation; Wiley-VCH: Weinheim, Germany, 2002.

Sample Availability: Samples of compounds 1–10 are available from the authors.

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ejps.2016.10.034
http://www.ncbi.nlm.nih.gov/pubmed/27810561
http://dx.doi.org/10.1016/j.jsbmb.2011.03.016
http://www.ncbi.nlm.nih.gov/pubmed/21439380
http://dx.doi.org/10.1002/mrc.4015
http://www.ncbi.nlm.nih.gov/pubmed/24114927
http://ecdybase.org/index.php?&action=browse&row=423
http://dx.doi.org/10.1126/scitranslmed.3006609
http://www.ncbi.nlm.nih.gov/pubmed/24068739
http://dx.doi.org/10.1021/cr4006236
http://www.ncbi.nlm.nih.gov/pubmed/24758331
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Chemistry 
	Bioactivity 
	Cytotoxic Activity and Functional Inhibition of P-Glycoprotein 
	Combination Studies with Doxorubicin 


	Materials and Methods 
	General Information 
	Synthetic Procedure 
	Compound Characterization Data 
	Cytotoxicity Assay 
	Sensitization of L5178 and L5178MDR Cells to Doxorubicin 
	Evaluation of P-glycoprotein Function through Rhodamine 123 Accumulation Assay 

	Conclusions 

