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Novel 13a-estrone derivatives were synthesized by Sonogashira coupling. Transformations of 2- or 4-iodo regioisomers of 13a-

estrone and its 3-methyl ether were carried out under different conditions in a microwave reactor. The 2-iodo isomers were reacted

with para-substituted phenylacetylenes using Pd(PPhs), as catalyst and Cul as a cocatalyst. Coupling reactions of 4-iodo deriva-

tives could be achieved by changing the catalyst to Pd(PPh3),Cl,. The product phenethynyl derivatives were partially or fully satu-

rated. Compounds bearing a phenolic OH group furnished benzofurans under the conditions used for the partial saturation. The

inhibitory effects of the compounds on human placental 17p-hydroxysteroid dehydrogenase type 1 isozyme (178-HSD1) were in-

vestigated by an in vitro radiosubstrate incubation method. Certain 3-hydroxy-2-phenethynyl or -phenethyl derivatives proved to be

potent 173-HSD1 inhibitors, displaying submicromolar ICs( values.

Introduction

Synthetic modifications of the naturally occurring female
prehormone estrone may lead to compounds with diverse bio-
logical activities, for example with antitumor effect [1]. One of
the main requirements of estrone anticancer derivatives is the
lack of their hormonal activity. Several core-modified estrones
have recently been produced and diversified in order to get
selectively acting compounds [2-4]. One opportunity for that is
the inversion of the configuration at C-13, which is accompa-

nied by drastic conformational change for the overall molecule

resulting from the cis junction of rings C and D [2]. The influ-
ence of inversion of the configuration at C-13 in 3,17-estradiols
on their in vivo and in vitro estrogenic activity was shown by
Poirier et al. [5]. They demonstrated that 13 epimers exhibit no
substantial binding affinity for the estrogen receptor alpha and
no uterotropic activity. Accordingly, the 13a-estrane core may
serve as fundamental moiety for the design of hormonally inac-
tive estrone derivatives bearing promising biological activities.

We recently published the syntheses and the in vitro biological

1303


http://www.beilstein-journals.org/bjoc/about/openAccess.htm
mailto:bobe@chem.u-szeged.hu
https://doi.org/10.3762%2Fbjoc.13.126

evaluations of several 13a-estrone derivatives [6-9]. Certain
compounds proved to be biologically active, bearing substan-
tial antiproliferative or enzyme inhibitory potential [7,8]. Most
literature data are mainly about 13a-estrones substituted in ring
D, but compounds modified in ring A are rarely described
[10,11]. More recently we have disclosed ring A halogenations
in this series [12]. Electrophilic brominations or iodinations
were carried out, furnishing 2-, 4- or 2,4-bis-halogenated com-
pounds. All the halogenated 3-hydroxy and the 4-substituted
regioisomers of 3-methyl ethers displayed substantial inhibitory
activity against the 17B-hydroxysteroid dehydrogenase type 1
enzyme (17p-HSD1). Certain derivatives displayed a similar or
more pronounced effect than those of their parent compounds
13a-estrone or 13a-estrone 3-methyl ether [13]. The 178-HSD1
enzyme is responsible for the stereospecific reduction of prehor-
mone estrone into the main estrogenic hormone 17-estradiol
[14,15]. 17B-Estradiol may enhance the proliferation of certain
cancer cells [16]. The inhibition of 173-HSD1 provokes an anti-
tumor effect in hormone dependent cancers, hence 178-HSD1
inhibitors could have good prospects as anti-estrogen therapeu-
tics [17,18]. The recently synthesized halogenated 13a-estrones,
in addition to their pharmacological importance, may serve as
appropriate starting compounds for Pd-catalyzed C—C coupling
reactions. Some Sonogashira couplings on estrane, but not
on the 13a-estrane core have been performed at C-2, -3, -11,
-16 and -17. To the best of our knowledge, 4-coupled regio-
isomers have not been synthesized to date [19]. Couplings of
steroidal alkynes with small molecular halides are already
described, and reactions of steroidal halides or triflates with
small molecular alkynes also exist [20]. Certain phenethynyl
estrone derivatives described in the literature possess substan-
tial biological activities. Moller et al. performed the couplings
of 2-iodoestrone-3-acetate with phenylacetylene using
Pd(OAc), and Cul as catalysts [21]. They did not investigate
the influence of the nature of the substituent on the phenyl ring
of the acetylene on the course of the reactions. They carried out
the full saturation of the C=C bond of the 2-phenethynyl estrone
with palladium on charcoal, furnishing the 2-phenethyl-substi-
tuted derivative. However, they did not study the partial satura-
tion of the estrone alkyne moiety. The 2-phenethyl and
2-phenethynyl derivatives proved to be potent 178-HSD1 inhib-
itors with the fully-saturated compound being slightly more po-
tent.

The aim of the present study was to develop facile and effec-
tive Sonogashira coupling methods for the preparation of 2- or
4-phenethynyl derivatives in the 13a-estrone series. 2- or
4-iodo-13a-estrone and their 3-methyl ethers were chosen as
starting compounds. The partial or full saturation of the C=C
bond of certain 2- or 4-regioisomeric phenethynyl compounds

was also planned. We intended to investigate the potential
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inhibitory effects of the novel 13a-estrones toward human
placental 17B-HSD1 activity in vitro.

Results and Discussion

Synthetic work

Sonogashira coupling

Iodo compounds 3—6 synthesized recently have been chosen as
starting materials for the Sonogashira couplings, since the reac-
tivity of the aryl iodides is higher than that of their bromo coun-
terparts (Scheme 1) [22]. The optimizations of the coupling
reactions were carried out using phenylacetylene (7a) as a
model reagent. The optimal reaction conditions were found to
differ depending on the position of the iodo substituent on the
sterane skeleton (Scheme 1). Couplings at C-2 could efficiently
be achieved using 0.1 equiv of Pd(PPh3)4 and Cul in tetrahydro-
furan (THF) or dimethylformamide (DMF) as solvent in the
presence of Et3N as a base at 50 °C for 20 min in a microwave
reactor. 4-Phenylalkynyl regioisomers (10a, 11a) were ob-
tained in high yields using 0.05 equiv of Pd(PPh3),Cl, and Cul
in CH3CN or DMF, in the presence of Et3N as a base at 80 °C
for 20 min in a microwave reactor. After establishing the most
favorable reaction conditions, the Sonogashira reactions (of
both regioisomers) were carried out with several para-substi-
tuted phenylacetylenes (7b—e). All the couplings resulted in the
desired products (8—11) in high yields. The newly synthesized
4-phenethynyl derivatives are the first 4-substituted Sono-
gashira coupled estrones in the literature. The structures of the
new compounds were confirmed by 'H, 13C and two-dimen-
sional NMR measurements (see Supporting Information File 1).

Full and partial saturation of the alkyne moiety

We have chosen four 4”-methoxy-substituted phenylalkynyl
compounds (8c—11c) for partial or full saturation of the C=C
bond in both the 3-OH and the 3-OMe series (Scheme 2). The
trans counterpart of the resulting diphenylethenyl moiety is
related to the fully-methoxylated derivative of resveratrol
(3,5,4’-trihydroxystilbene), a compound exhibiting diverse bio-
logical activities [23,24]. The chemo- and stereoselective semi-
hydrogenation of internal alkynes may be achieved by two main
catalytic methods: with molecular hydrogen using Lindlar’s
catalyst [25,26] or by transfer hydrogenation with hydrogen
donors [27,28]. Additionally, alkynes undergo reduction with
diimide to produce cis-alkenes [29]. Li et al. carried out the
semihydrogenation of different arylacetylenes using Pd(OAc),
or Pd(PPh3),Cl; as the catalyst and DMF/KOH as a hydrogen
source, under conventional heating [30]. The first catalyst
afforded cis-alkenes in high yields with excellent chemo- and
stereoselectivity. The latter catalyst displayed lower catalytic
activity and stereoselectivity. The stereoselectivity of the semi-
hydrogenation process may play a crucial role concerning the

biological activity of the resulting alkenes, since geometrical
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Scheme 1: Syntheses of 2- or 4-phenethynyl-13a-estrones (8—11) by Sonogashira coupling.
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isomers may possess different biological functions [31]. Here
we performed the partial saturation of compounds 8c—11c¢ by
the modified procedure of Li et al. using Pd(OAc), or
Pd(PPh3),Cl, as a catalyst, and DMF/KOH as a hydrogen
source, in a microwave reactor. The cis-alkene 13 and the trans-
alkene 15 were formed chemo- and stereoselectively under the
applied conditions. The different stereochemical outcome of the
hydrogenations of the two regioisomers presumably arose from
the steric hindrance caused by the vicinity of ring B in the case
of compound 15.

The cis or trans orientation of the resulting geometric isomers
was deduced from the vicinal coupling constants according to
the literature data, because cis and trans couplings across a
double bond are very reliable indicators of stereochemistry
[32,33]. In the case of the 2-regioisomer 13, the signals of the
vicinal olefinic protons appear as a singlet with double intensi-
ty, similar to those of 2,4’-dimethoxystilbene [32,33]. In the
'H NMR spectrum of the 4-substituted counterpart 15, the
olefinic protons are shown as doublets with a large coupling
constant of 12.2 Hz, which refers to their frans arrangement.
Under the conditions used for the partial saturation, the ethynyl
derivatives bearing a phenolic OH group (8¢, 10c¢) furnished
benzo[b]furans 12 and 14. There are literature reports about
similar transition-metal-catalyzed cyclizations of o-alkynyl-
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phenols to construct benzofurans [34,35]. These heterocycles
are important structural units in a variety of biologically active
natural or synthetic compounds [36,37]. Full hydrogenation of
the 2- or 4-phenethynyl intermediates (8c—11¢) with palladium-
on-charcoal furnished the 2- or 4-phenethyl-substituted deriva-
tives (16-19).

In vitro 173-HSD1 enzyme inhibition test

With the new compounds in hand (8-19, Table 1), we also de-
termined their in vitro inhibitory potencies on human placental
178-HSD1. In the 3-OH series, all the 2-phenylalkynyl regio-
isomers 8a—e proved to be effective inhibitors with ICsq values
depending on the nature of the 4”-functional group. The most
potent compound was unsubstituted 8a with an ICs(y of
0.15 pM. The 4-substituted regioisomers 10a—e inhibited the
enzyme scarcely, suppressing the conversion by less than 15%.
The phenylalkynyl derivatives in the 3-OMe series 9a—e and
11a—e exerted weak inhibitions. Phenylalkenyl compounds 13
and 15 and benzofuran compounds 12 and 14 displayed weaker
inhibitory activity than their alkynyl counterparts 8c and 10c.
The full saturation (leading to compounds 16-19) did not influ-
ence the inhibitory potential markedly. The weak inhibitory ac-
tivities of 9¢, 10¢ or 11¢ were not improved in compounds 17,
18 or 19, whereas the good inhibitory effect of the 2-regio-
isomer 8¢ was retained in compound 16.

Table 1: 173-HSD1 inhibition data of Sonogashira coupled compounds and their precursors (1-6) [12,13] indicated with an asterisk (*).

Structure Compound

R1 1

HO
R2

R‘I 2

MeO
RZ

8a
8b
R2 8c
9 :
8e
N
e o
9b
R'O 9c

9d
9e

Relative conversion? + SD (%) or

1 2
R R ICs0 + SD (M)
H H ICso = 1.2*
| H ICs0 = 0.59%
H | |C50 =1.0"
H H ICso = 5.5*
| H ICs0 > 10*
H | ICso = 0.56*
H ICs0 = 0.15 + 0.02
Me ICsp = 1.40 £ 0.78
H OMe ICsp = 0.23 + 0.03
F ICs0 = 0.30 + 0.08
CF3 ICs0=0.93 + 0.13
H 88 +12
Me 845
Me OMe 85+ 1
F 94+5
CF3 76 + 1
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Table 1: 173-HSD1 inhibition data of Sonogashira coupled compounds and their precursors (1-6) [12,13] indicated with an asterisk (*). (continued)

. 10a H 92+ 15
O : 10b Me 89+ 0.4

R10 : 10c H OMe 91+2
10d F 96+7

Il 10e CF3 85+ 1

11a H 9212

O 11b Me 52412

11c Me OMe 83+8

f2 11d F 83+ 1

11e CF3 79+3

I
R2: 12 9242
O I
I
QI
|
! - OMe

14 102+6

p— 1
@ ! 13 70+6
R0 :
]
I
R10 | Me OMe

H
H 15 80 + 12
R2
R2 16 H ICsg = 0.47 + 0.04
. M
\‘\k/‘i 17 Me OMe 63+8
1
1
R'0 g :
O | 18 H 98 +3
]
R0 |
19 Me OMe 94 + 1

R2

@At 10 M, non-inhibited control 100%. Reference for precursors (1-6) [12,13].

1307



When all the inhibition data of the novel compounds and their
precursors from Table 1 are taken into consideration, some
valuable structure—activity relationships appear. 13a-Estrone (1)
displays 17B-HSDI1 inhibitory potential similar to that of the
natural substrate estrone. lodination at C-2 of 1 improves the
inhibitory potential, resulting in a submicromolar ICs, for com-
pound 3. Phenylalkynylation of the 2-iodo compound 3 retains
or further improves the inhibition, depending on the nature of
the substituent at C-4”. Concerning the 4-regioisomers, iodina-
tion leads to an efficiency similar to that of compound 1, where-
as the inhibition is lost following C—C coupling. 13a-Estrone
3-methyl ether 2 possesses a weaker inhibitory effect than the
3-hydroxy compound 1. lodination or phenylalkynylation at C-2
diminishes inhibition of 2. Introducing iodine onto C-4 of com-
pound 2 leads to a 10-fold decrease in its ICsg value. 4-Phenyl-
alkynyl derivatives 10 and 11, nevertheless, exert weak inhibi-
tions on the estrone to 17p-estradiol conversion

The results reveal a great influence of the 2,4-regioisomerism
on the inhibition potential of the iodinated 3-methyl ethers 4
and 6, the phenylalkynyl 8 and 10 and the phenylalkyl 16 and
18 3-hydroxy compounds.

Conclusion

In conclusion, we described here an efficient synthetic micro-
wave procedure for the synthesis of novel phenylalkynyl deriva-
tives of 13a-estrone (1) and its 3-methyl ether 2. The steroidal
alkynes were chemo- and stereoselectively hydrogenated by
transfer hydrogenation in a microwave reactor, furnishing
alkenes or benzofurans depending on the nature of the substitu-
ent at C-3. Full hydrogenations of certain phenethynyl deriva-
tives were also achieved. The newly-synthesized potent 17f3-
HSD1 inhibitors may serve as suitable tools for ligand-based
enzyme studies. Further derivatizations of our compounds may
provide promising candidates for drug development in order to
get nanomolar inhibitors.

Supporting Information

Supporting Information File 1

Experimental procedures for compounds 8-19 and their 'H,
13C NMR, MS, elemental analysis data.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-13-126-S1.pdf]
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