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9 Abstract The excipients proved to exert strong effects on

10 the physicochemical properties of the tested systems, and it

11 is very important to study them intensively in preformu-

12 lation studies in pharmaceutical technology. In our earlier

13 paper, we already described the structure of Klucel-con-

14 taining films with various physicochemical examinations

15 (tensile strength, surface properties and positron annihila-

16 tion lifetime spectroscopy). The aim of our present inves-

17 tigations was to study the thermal behaviour of the film-

18 forming polymers with two different chain lengths, of the

19 taste-enhancing and plasticizing excipients and also of the

20 films prepared from them. The thermal behaviour of Klucel

21 LF and Klucel MF film-forming polymers was found to

22 differ only in the range of 340–400 �C, which is due to the

23 different chain lengths of the polymer molecules. Among

24 the active ingredients and excipients used, glycerol had the

25 smallest while xylitol showed the greatest thermal stability.

26 The shape of the TG curves shows that the decomposition

27 process changes with the increase in the concentration of

28 the excipients. The TG curves open up more, which is

29 probably due to the fact that the molecules built-in among

30 the polymer chains loosen the structure, which in turn is

31 decomposed more easily. The TG–MS examinations

32 revealed that during decomposition, carbon dioxide was

33 formed in the highest concentration and that acetic acid,

34 isopropyl alcohol and acetone also developed. The shape of

35 the TG curves shows that in the case of the 5 and 10 %

36 systems, the presence of lidocaine did not result in a sig-

37 nificant difference in thermal stability.38

39Keywords Hydroxypropylcellulose � Klucel� LF �

40Klucel� MF � Xylitol � Glycerol � Lidocaine � Free films �

41DSC � TG–MS

42Introduction

43Differential scanning calorimetry (DSC) is a widely used

44method to determine different properties of pharmaceuti-

45cals: glass transition in polymers (Tg) [1–5]; amorphicity

46and crystallinity [1, 6–9]; polymorphism [1, 10–14]; drug

47solubility in polymers [1, 15–18]; characterization of

48polymers and bio-polymers [1, 19–22]; and pharmaceutical

49dosage forms [23, 24]. Thermogravimetry (TG) is also used

50to characterize pharmaceuticals [18, 25–31].

51Innovative pharmaceutical production has recently

52placed great emphasis on developing drug-containing bio-

53adhesive films. In line with this, many of the increasing

54number of papers published in the literature report the

55investigation of thermal behaviour.

56A novel organic–inorganic hybrid transdermal film-

57forming system was designed by a modified poly(vinyl

58alcohol) (PVA) gel plasticized with glycerol (GLY), using

59c-(glycidyloxypropyl)trimethoxysilane (GPTMS) as an

60inorganic-modifying agent, and poly(N-vinyl pyrrolidone)

61(PVP) as a tackifier. DSC was used to determinate the

62thermal behaviour of the samples. The system was first

63heated at a rate of 10 �C min-1 from 20 to 200 �C and kept

64there for 10 min then cooled down to 50 �C at a rate of

6520 �C min-1. The second heating scan from 50 to 200 �C

66at 10 �C min-1 was applied to determinate the glass tran-

67sition temperature. It was found that all PVA–GPTMS–

68PVP–GLY samples exhibit the soft–hard segment micro-

69phase separation. The good skin adhesive properties of the

70films come from the flexible soft segments composed of

A1 M. Gottnek � K. Pintye-Hódi � G. Regdon Jr. (&)
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71 uncross-linked PVA chain, PVP and GLY, which influ-

72 enced the viscoelastic properties and low-temperature

73 performance of the films. The hard segments (PVA–

74 GPTMS and self-cross-linked GPTMS) give the mechani-

75 cal strength and appropriate film-forming properties to the

76 system [32].

77 For transdermal controlled drug delivery, a flurbiprofen

78 (FB)–inorganic nanohybrid system was made. TG–DTA

79 was used to investigate the samples; the temperature was

80 increased from ambient to 800 �C at a heating rate of

81 2 �C min-1 under 100 ml min-1 airflow. The TG–DTA

82 was used on the dry powder. Three mass losses were

83 detected. The first mass loss of 6.51 % with a weak

84 endothermic response at around 71.9 �C originated from

85 the removal of absorbed water from the surface of the

86 system. The second mass loss, approximately 8.03 % with

87 an endothermic peak at around 166.26 �C, was connected

88 to the dehydration of co-intercalated water in samples. The

89 third mass loss around 47.06 % was associated with an

90 exothermic reaction in the range from 225 to 520 �C [33].

91 Ibuprofen (IBU) mucoadhesive tablets containing

92 chitosan and its half-acetylated derivative as excipients

93 were compared. Polymer–IBU interactions and the degree

94 of IBU crystallinity were investigated by DSC. Samples

95 were heated under a nitrogen atmosphere at 5 �C min-1

96 from 25 to 90 �C. DSC was used to determine the effect of

97 co-grinding and chitosan on IBU crystallinity. The onset of

98 IBU melting was observed at 73.9 �C, and the enthalpy

99 was 125.4 J g-1. In the co-ground mixture with chitosan,

100 IBU’s onset melting point decreased by approximately

101 3 �C and the enthalpy was 121.6 J g-1 of IBU. Chitosan

102 did not show any thermal changes over this temperature

103 range. The decreased enthalpy on co-grinding equates to a

104 4 % loss in IBU crystallinity [34].

105 Matrix-type mucoadhesive tablet from a mixture of hard

106 fat, ethylcellulose and polyethylene glycol, containing

107 indomethacin, was developed. The thermal behaviour of

108 matrix bases was investigated with DSC. Samples were

109 heated at a rate of 10 �C min-1 from 20 to 170 �C in air. In

110 the DSC curve, an endothermic peak was observed at

111 approximately 150 �C [35].

112 Development of novel mucoadhesive pellets containing

113 valsartan (VAL) was the goal of a study of Caoa et al.

114 Two types of drug-loaded core pellets were prepared by

115 different technology, namely extrusion/spheronization

116 method. Pellets were dry-coated with a mixture of

117 hydroxypropylmethylcellulose and carbomer at different

118 ratios. The thermal properties of VAL, Povidone� K30,

119 Poloxamer, Avicel� PH 101, NaOH and core pellet

120 powders (F1 and F2) were determined with DSC. The

121 samples were heated from 25 to 200 �C at a heating rate

122 of 10 �C min-1 under nitrogen atmosphere. A broad sin-

123 gle endothermic peak was found in case of pure VAL,

124while no melting peak was detected in the cases of both

125F1 and F2 pellets. This phenomenon confirmed that there

126was some impact between VAL and additives during

127extrusion process [36].

128Pressure-sensitive IBU-containing adhesive was inves-

129tigated by DSC. Samples were heated from 130 to 100 �C

130at a heating rate of 10 K min-1 under nitrogen atmosphere.

131The second heating runs were evaluated. It was found that

132IBU increasing in the formulation caused the decrease in

133the Tg, which phenomenon was connected to the plastici-

134zation effect of IBU on the product [37].

135A hydrophobic mucoadhesive thiolated chitosan for

136pipirine (PIP) delivery was designed. The thermal degra-

137dation behaviour of the samples was determined with TG.

138The mass loss curves were recorded with a heating rate of

13925 �C min-1 under nitrogen flow from 50 to 600 �C. For

140chitosan, the highest thermal decomposition stage occurred

141at 326 �C with a mass loss of 41.8 %. The TG curves of

142PIP revealed the highest thermal decomposition occurred at

143363 �C. The chitosan–PIP microparticles curve showed a

144maximum decomposition rate at 293 �C, which was lower

145than the pure chitosan and may indicate a lower thermal

146stability of the PIP–chitosan microspheres than the chito-

147san ones [38].

148Buccal poly(ethylene oxide) (PEO) film with (2-

149hydroxypropyl)-b-cyclodextrin (CD) was evaluated. Films

150were prepared at different PEO/CD ratios. The degree of

151crystallinity was determined by DSC. The degree of crys-

152tallinity was roughly constant for platform with a CD

153content B60 % w/w. On the other hand, PEO/CD75 and

154PEO/CD80 platforms showed a drastic decrease in the

155degree of crystallinity [39].

156Novel sildenafil citrate (SC)-loaded PVA-polyethylene

157glycol (PEG) graft copolymer (Kollicoat1 IR)-based orally

158dissolving films (ODFs) were designed. The thermal

159properties and physicochemical behaviour of samples were

160evaluated using DSC. Kollicoat1 IR, sodium alginate

161(ALG-Na) and glycerol were combined. The films were

162heated at a rate of 10 �C min-1 from 10 to 250 �C under

163nitrogen flow. A sharp endothermic peak of SC was found

164at 198 �C, which was connected to the melting point of SC

165[40]. Melting SC peak was not detected in the curves of

166SC-loaded ODF. This indicated that interactions between

167SC and excipients had occurred in the preparation process

168of the film [40].

169The goal of a study was to investigate the potential of

170isothermal calorimetry to monitor and characterize crys-

171tallization in indomethacin (IND)-loaded fast-dissolving

172PVP oral films. Subsequent analysis of the crystals with

173DSC was made. Samples were heated from 25 to 190 �C at

174200 �C min-1 with nitrogen flow. It was found that iso-

175thermal calorimetry is able to monitor IND crystallization

176in polymer films [41].
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177 Lidocaine (LID)-loaded mucoadhesive buccal patches

178 for controlled release in different formulations were stud-

179 ied. Films were loaded with LID–Compritol solid disper-

180 sion in the form of microspheres, and the effects of the

181 composition were evaluated by DSC. Samples were heated

182 at a rate of 10 �C min-1 between 30 and 300 �C. Melting

183 points at 82 �C for lidocaine and at 75 �C for the main

184 peak of Compritol were found. An irregularly shaped

185 melting endotherm main peak at 73 �C was found for the

186 microsphere samples. It suggested that the solid ‘‘micro-

187 sphere’’ system was heterogeneous in nature [42].

188 Enrofloxacin (ENR)-loaded PVP thin films were for-

189 mulated for enhanced drug delivery and were evaluated

190 using DSC. Samples were heated from 25 to 300 �C with a

191 heating rate of 10 �C min-1 in argon atmosphere. An

192 endothermic peak of ENR was found at 222 �C corre-

193 sponding to the melting point of the drug. A large endo-

194 thermic peak of ENR–PVP at 94.57 �C was found. The

195 absence/reduction in ENR peaks suggested that the drug is

196 amorphous. The result indicated that there was good

197 compatibility between ENR and PVP [43].

198 The excipients proved to exert strong effects on the

199 physicochemical properties of the tested systems, and it is

200 very important to study them intensively in preformulation

201 studies in pharmaceutical technology. For this reason, in

202 our earlier paper, we already reported our various physi-

203 cochemical examinations with Klucel-containing films

204 (tensile strength, surface properties and the measurement of

205 the free volume with positron annihilation lifetime spec-

206 troscopy), which were performed to study and to describe

207 the resulting film structure [44].

208 The aim of our present investigations was to study the

209 thermal behaviour of the film-forming polymers with two

210 different chain lengths, of the taste-enhancing and plasti-

211 cizing excipients and also of the films prepared from them,

212 as these data can provide useful information on the storage

213 conditions and stability of drug-containing films.

214 Materials

215 HPC (Klucel MF and LF) (Aqualon; Hercules Inc., Wil-

216 mington, USA.) was used as a film-forming polymer. The

217 main differences between the two Klucel products are in

218 the molecular mass and the viscosity of the solution. MF

219 has a higher viscosity in solution and a higher molecular

220 mass. HPC is a non-ionic, water-soluble cellulose ether,

221 and its films are appropriately flexible even without any

222 plasticizer.

223 The local anaesthetic lidocaine basis (Lid) (Ph. Eur.,

224 Società Italiana Medicinali Scandicci, Firenze, Italy) was

225 chosen as the active ingredient. Xylitol (Xyl) (Ph.Eur.,

227227Roquette, Lestrem, France) was used as the taste improver.

228Glycerol (Gly) (Ph. Eur., Molar Chemicals Kft., Budapest,

229Hungary) was used as a plasticizer, and in films it can act

230as a taste coverer.

231Methods

232Preparation of free films

233The optimum polymer concentration was first established,

2342 % w/w solutions were chosen for both types of Klucel as

235we wished to compare their physicochemical properties.

236Lidocaine (Lid) was grounded in a mill (Retsch RM 100,

237Retsch GmbH, Haan, Germany), and the 100–200-lm

238powder fraction was incorporated into the solution. Xylit

239(Xyl) dissolved readily, and glycerol (Gly) compounded

240well in the water–polymer mixture. Lid, Gly and Xyl were

241all used in the same concentration (5, 10 or 15 % w/w of

242the film-forming polymer). Samples were poured onto a

243non-stick surface. All the films were made by the same

244solvent-casting technology and stored at room temperature

245(25 �C/65 % RH) for a day and then placed into a climate

246chamber for 24 h (40 �C/50 % RH).

247Thermoanalytical measurements

248The thermoanalytical examinations of the materials were

249carried out with a Mettler Toledo TG/DSC1 instrument

250(Mettler Toledo, Switzerland). During the DSC measure-

251ments, the start temperature was -40 �C, the end temper-

252ature was 300 �C, and the applied heating rate was

25310 �C min-1. Argon atmosphere was used, and nitrogen

254was used as drying gas. 10 ± 1-mg sample was measured

255into an aluminium pan (40 ll). The curves were calculated

256from the average of three parallel measurements and were

257evaluated with STARe software.

258For the TG and the DSC measurements, the start tem-

259perature was ?25 �C, the end temperature was 400 �C, and

260the applied heating rate was 10 �C min-1. Nitrogen

261atmosphere was used. 10 ± 1-mg sample was measured

262into an aluminium pan (100 ll). The curves were calcu-

263lated from the average of three parallel measurements and

264were evaluated with STARe Software.

265The thermal characteristics of the sample mass loss were

266determined with a thermal gravimetric analyzer (Mettler

267Toledo, model TG/DSC1) coupled with a quadrupole mass

268spectrometer (Pfeiffer Vacuum, model ThermostarTM GSD

269320), operated under N2 atmosphere (purity = 99.999 %,

27070 ml min-1 flow rate). The connection between the TG

271and the mass spectrometer was made by means of a silica

272capillary, which was maintained at 120 �C.
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273 Results and discussion

274 The thermal studies were started by studying the film-

275 forming polymers as well as the active ingredient and ex-

276 cipients to be used, and the changes were monitored

277 between 25 and 400 �C at a constant heating rate. The

278 changes in heat flow were followed with the help of DSC

279 curves. The thermal behaviour of the two film-forming

280 polymers, lidocaine used as an active ingredient and the

281 two excipients (glycerol and xylitol) is shown in Fig. 1.

282 A slight endothermic baseline shift can be observed in

283 the DSC curves of the Klucel� LF and MF polymers

284 between 40 and 100 �C, which can be explained with the

285 removal of the water content of the polymer. The heat flow

286 curves show no difference until 340 �C, and then signs of

287 decomposition appear in both curves.

288 The DSC curve of glycerol shows a definite endothermic

289 peak between 50 and 150 �C due to the higher water

290 content, while at about 200 �C signs of decomposition can

291 be observed until 300 �C.

292 In the DSC curve of xylitol, an onset value of 92.2 �C is

293 followed by a peak melting point at 95.6 �C. The enthalpy

294 change of the process is 217.4 J g-1. Xylitol has much

295 greater thermal stability as the baseline change and the

296 decomposition process start only at about 280 �C and end

297 over 380 �C.

298 Lidocaine, which is used as an active ingredient, has a

299 lower melting point than the excipients because the onset

300 value is 67.2 �C and the peak of the melting point appears

301 at 68.6 �C. The enthalpy change of the process is

302 59.1 J g-1. The baseline change appears over 180 �C, and

303 then the decomposition process is accelerated over 200 �C

304 and finishes at about 330 �C.

305The TG curves of the same materials in Fig. 2 show that

306the two different film-forming materials are thermally

307stable, a mass loss of only 1–1.5 % can be detected until

308100 �C, the decomposition process starts over 300 �C, and

309mass loss is 85 % for Klucel LF and 87 % for Klucel MF

310until 400 �C. However, the rate of the decomposition

311process is different, and it is faster for the LF product and

312slower for the MF product, which is also shown clearly by

313the numerical data of the mass loss of the two polymers

314(see Table 1).

315From the data, it can be stated that the mass loss of

3161.0–1.5 % observed at the beginning of heating can be

317explained by the removal of water from the film, and then

318further mass loss starts only at about 300 �C. The thermal

319behaviour of the two polymers differs significantly between

320340 and 400 �C, which can be explained by the different

321chain lengths of the two polymers. The Klucel� MF

322product with a longer chain has greater thermal stability,

323and probably the more stable structure is broken only at

324higher temperatures.

325The thermal behaviour of the excipients as shown by

326their TG curves (see Fig. 2) can be described well, and it

327confirms the information obtained from the DSC curves.

328Although both excipients were entirely decomposed by the

329end of the examination, considerable differences can be

330observed in their behaviour. Xylitol proved to be the most

331stable as the decomposition process really starts only over

332300 �C. Ensuing from its material properties, glycerol first

333loses its water content at the beginning of heating, and then

334its decomposition starts over 180 �C and finishes at

335290 �C. The thermal behaviour of the active ingredient is

336somewhere between those of the two excipients, as in the

337case of lidocaine, the mass loss curve reveals that

338decomposition starts at about 180–200 �C (see Table 1.).

40

Lidocaine

Xylitol

Glycerol

Klucel MF

Klucel LF
Heat flow/W g–1
^exo

60

5 W g–1

80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

Temperature/°C

Fig. 1 Thermal properties of Klucel� film-forming materials, active

ingredient and excipients as shown by the DSC curves

40

Mass/%

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

Temperature/°C

Glycerol Lidocaine Xylitol

MF
87.4 %

LF
85.2 %

97.6 %100.6 %99.4 %

50

%

Fig. 2 Thermal properties of Klucel� film-forming materials, active

ingredient and excipients as shown by the TG curves
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339After studying and learning about the thermal behaviour

340of the film-forming polymer and the excipients to be used,

341we wished to study the behaviour of the free films which

342were prepared from them and contained both excipient and

343active ingredient. As regards Klucel LF and MF products,

344differences in thermal stability were observed only over

345300 �C, so they behaved in the same way when applied

346under the conditions of the oral mucosa. Klucel LF pro-

347ducts were chosen for the formulation of bioadhesive films

348and the examination of their thermal stability, and these

349results are presented in this paper.

350The thermal behaviour of Klucel� LF films containing

351both xylitol and glycerol is illustrated in Fig. 3.

352Glycerol and xylitol were present in the films in the

353same concentrations (at 0–5–10–15 % w/w of the poly-

354mer). The shape of the TG curves shows that although the
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355 decomposition process changes with the increase in the

356 concentration of the excipients, when heated up to 400 �C,

357 mass loss does not differ significantly compared to Klucel�

358 LF films without excipients. At the beginning of heat

359 treatment, mass loss can be explained by the removal of the

360 water content in every case and it is proportional to the

361 concentration of glycerol. However, over 180–200 �C, the

362 decomposition processes start, and the TG curves open up

363 more, which is probably due to the fact that the molecules

364 built-in among the polymer chains loosen the structure,

365 which in turn is decomposed more easily.

366 Then, we studied the thermal behaviour of drug-con-

367 taining films. In Fig. 4, the thermal behaviour of Klucel�

368LF films containing lidocaine as well xylitol and glycerol is

369presented. The effect of the ratio (quantity) of the com-

370ponents on the shape of the TG curves as well as on the

371quantity and disproportion of the arising mass loss can be

372seen clearly. It is remarkable that while a smaller mass loss

373was observed for the 5 and 10 % films, the mass loss of the

37415 % film was greater, which can be explained by the

375loosening effect of glycerol and lidocaine on the polymer

376structure.

377The concentrations of the active ingredient and the ex-

378cipients in the films were always the same (0–5–10–15 %

379w/w of the film-forming polymer). The shape of the TG

380curves is similar to the one shown by films without lido-

381caine, but they can be compared really well if the TG

382curves of films with lidocaine (continuous line) and with-

383out lidocaine (broken line) are plotted together (see Fig. 5).

384The temperature range (200–400 �C) of the greatest

385importance with respect to the phenomenon is focussed on

386here. The shape of the curves shows that in the case of the 5

387and 10 % systems, the presence of lidocaine practically did

388not result in a significant difference in thermal stability,

389while in the concentration of 15 %, the films which con-

390tained lidocaine were decomposed more easily, which is

391due to the greater quantity of the materials used and to the

392ensuing looser structure.

393This can probably be explained by the fact that the

394plasticizer, when used in a lower concentration, can be

395incorporated into the film structure, which we have already

396confirmed in the case of Metolose free films [45–47].

397However, when it is applied in higher concentrations, the
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Fig. 5 Comparison of the thermal properties of xylitol and glycerol
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398 stability of the film structure deteriorates, which is illus-

399 trated well by the presented curves, when 15 % of other

400 components were used besides the polymer.

401 We also performed the TG–MS examination of all the

402 films, we analysed the evolved gases with a mass spectro-

403 graph coupled with the TG in order to obtain information

404 about the stability of the film structure. Among the several

405 measurements, the data obtained with films containing 15 %

406 glycerol are presented in Fig. 6. Although no change can be

407 observed for the m/z = 18 fragment on axis ‘‘Y’’ with a

408 logarithmic scale, in the case of an absolute scale water

409 removal can be seen between both 40–150 and 350–400 �C,

410 and with the start of decomposition, a concentration increase

411 was experienced for further fragments (m/z = 41, 42, 43, 44,

412 45 and 58), starting practically at the same time. The peak

413 intensity of the fragments depicted decreased in the fol-

414 lowing order: m/z = 44–43–42–41–58–45. All these indi-

415 cate that carbon dioxide is formed in the greatest

416 concentration, which is confirmed by the increase of m/

417 z = 44. m/z = 43, 45 may indicate the development of

418 acetic acid and/or isopropyl alcohol, while m/z = 43, 58

419 may be indicative of the formation of acetone.

420 Conclusions

421 In the course of our experiments, free films were prepared

422 from Klucel film-forming materials with various chain

423 lengths for buccal administration, with glycerol and/or

424 xylitol taste enhancer excipient and lidocaine active

425 ingredient incorporated in various concentrations. During

426 the study of the bioadhesive films, it was found that the

427 thermal behaviour of Klucel LF and Klucel MF film-

428 forming polymers was different from each other only in the

429 temperature range of 340–400 �C, which is due to the

430 difference in the chain length of the polymer molecule.

431 Among the active ingredients and excipients used,

432 glycerol proved to be the least stable thermally, while

433 xylitol was the most stable. The shape of the TG curves

434 shows that the decomposition process changes with the

435 increase in the concentration of the excipients. In the case

436 of glycerol, the decomposition processes start over

437 180–200 �C, and the TG curves open up more, which is

438 probably due to the fact that the molecules built-in among

439 the polymer chains loosen the structure, which in turn is

440 decomposed more easily.

441 The role of the active ingredient lidocaine in thermal

442 stability was also examined, and it was found that the shape

443 of the curves shows that in the case of the 5 and 10 %

444 systems, the presence of lidocaine did not result in a sig-

445 nificant difference in thermal stability, while in the con-

446 centration of 15 %, the films which contained lidocaine

447 were decomposed more easily, which is due to the greater

448quantity of the materials used and to the ensuing looser

449structure.

450The TG–MS examinations revealed that with the start of

451decomposition, a concentration increase was seen in the

452case of m/z = 41, 42, 43, 44, 45 and 58 fragments, starting

453practically at the same time. The peak intensity of the

454fragments in the highest concentration may indicate the

455formation of carbon dioxide and also the development of

456acetic acid, isopropyl alcohol and acetone.

457As a summary, it can be stated that the thermal stability

458of free films prepared from Klucel LF polymer is appro-

459priate, and in the case of the 5 and 10 % systems, the

460presence of lidocaine did not result in a significant differ-

461ence in thermal stability. The results not only help to

462choose the formulation conditions but also provide useful

463information concerning the packaging and storage condi-

464tions as well as the stability of the final product.
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