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ABSTRACT 

Transient receptor potential (TRP) ion channels were first characterized on neurons, where 

they are classically implicated in sensory functions; however, research in recent decades has 

shown that many of these channels are also expressed on non-neuronal cell types. Emerging 

findings have highlighted the role of TRP channels in the skin, where they have been shown 

to be important in numerous cutaneous functions. Of particular interest is TRPV3, which was 

first described on keratinocytes. Its functional importance was supported when its gain-of-

function mutation was linked to Olmsted syndrome, which is characterized by palmoplantar 

keratoderma, periorifacial hyperkeratosis, diffuse hypotrichosis and alopecia, as well as itch. 

In spite of these exciting results, we have no information about the role and functionality of 

TRPV3 on keratinocytes at the cellular level. In our current study, we have identified TRPV3 

expression both on human skin and cultured epidermal keratinocytes. TRPV3 stimulation was 

found to function as a Ca2+-permeable ion channel which suppresses proliferation of 

epidermal keratinocytes and induces cell death. Stimulation of the channel also triggers a 

strong proinflammatory response via the NF-κB pathway. Collectively our data shows that 

TRPV3 is functionally expressed on human epidermal keratinocytes and that it plays a role in 

cutaneous inflammatory processes. 
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INTRODUCTION 

The 27 cation channels that compose the transient receptor potential (TRP) ion channel 

superfamily in humans respond to a remarkably diverse variety of chemical and physical 

stimuli (Nilius and Owsianik 2011; Wu et al. 2010). An interesting subset of these cellular 

sensors are activated by changes in temperature, and are therefore classified as thermo-TRPs. 

This subset encompasses a total of ten channels, which are members of the vanilloid (TRPV1, 

TRPV2, TRPV3 and TRPV4), ankyrin (TRPA1), and melastatin (TRPM2, TRPM3, TRPM4, 

TRPM5 and TRPM8) subfamilies of TRP channels (Oberwinkler and Philipp 2014; Saito and 

Shingai 2006; Vay et al. 2012). Of note, these channels not only respond to discreet, at times 

overlapping temperature ranges but many of them are activated by pungent compounds found 

in common spices (e.g. capsaicin from chili peppers activates TRPV1, allicin from garlic 

activates TRPV1 and TRPA1, while eugenol from cloves, carvacrol from oregano, thymol 

from thyme all activate TRPV3) (Nilius and Appendino 2013). Although most TRP channels 

were first characterized on neurons, where they are classically implicated in sensory functions 

(pain, itch, thermal hyperalgesia, thermosensation, mechanosensation), research in recent 

decades has shown that many of these channels are also expressed on non-neuronal cell types 

(Fernandes et al. 2012). Of particular interest is the role of TRP channels in the skin, where 

they have been shown to be important in epidermal barrier formation and maintenance 

(TRPV1 [(Denda et al. 2007; Tóth et al. 2011)], 3 [(Cheng et al. 2010; Denda et al. 2007)], 4 

[(Denda et al. 2007)], 6 [(Lehen’kyi et al. 2011; Lehen’kyi et al. 2007)] and TRPM8 [(Denda 

et al. 2010)], TRPA1[(Atoyan et al. 2009)]), the regulation of the hair cycle (TRPV1 [(Bodó 

et al. 2005)] and 3 [(Borbíró et al. 2011)]), melanogenesis (TRPM1 [(Devi et al. 2009; Oancea 

et al. 2009)]) and tumor progression (TRPC1 and 4 [(Beck et al. 2008)]).  

Interestingly, while most TRP channels were first described on neurons, TRPV3, a sensor of 

innocuous warm temperatures (31-39 °C), was first described in keratinocytes (Peier et al. 
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2002). TRPV3 is a 6 transmembrane protein that forms non-selective cation channels mainly 

permeable to calcium as homo- or heterotetramers and is 43% homologous with TRPV1. 

TRPV3 is also activated by the aforementioned plant-derived compounds, as well as the 

synthetic agonist 2-aminoethoxydiphenyl-borate (2-APB) (Chung et al. 2004a; Xu et al. 

2006).  

The physiological relevance of TRPV3 expression in the skin was highlighted when the 

hairless DS-Nh mouse strain was linked to a gain-of-function mutation in the TRPV3 gene 

caused by a Gly573Ser mutation in keratinocytes (Asakawa et al. 2006). This mutation led to 

not only hairlessness but also to the development of spontaneous dermatitis and pruritus, 

increased Staphylococcus aureus colonization, higher IgE and IL-4 levels, increased CD4+ T-

cell infiltration, and hyperkeratosis in the affected mice, hinting at the potentially complex 

role of TRPV3 in cutaneous pathophysiology (Yoshioka et al. 2009). 

Further underlining the human relevance of these results the same Gly573Ser mutation was 

found in a very rare disorder in humans, Olmsted syndrome. Symptoms of the condition 

include palmoplantar keratoderma, periorifacial hyperkeratosis, diffuse hypotrichosis and 

alopecia, and itch. Concomitant histological findings include hyperkeratosis, parakeratosis 

and psoriasiform lesions, with mast cell infiltration in the upper part of the dermis, which 

coincides with the murine data mentioned above (Lin et al. 2012). The functional relevance of 

this channel is further highlighted by a search of the GEO Profiles database (Barrett et al. 

2013) which shows that the level of TRPV3 expression is higher in psoriasis, a common 

inflammatory skin disease (GEO ascension GDS4602) (Nair et al. 2009). TRPV3 expression 

was also shown to be increased in papulopusutlar rosacea and erythematotelangiectic rosacea 

(Sulk et al. 2012). 
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In line with these results our workgroup has previously investigated the role of TRPV3 on 

hair follicles and outer root sheath keratinocytes (Borbíró et al. 2011). Based on these 

previous results TRPV3 is not only functionally expressed, but its activation inhibits hair 

growth and cellular proliferation and induces cell death on these cells.  

In the current study we aimed at characterizing the native role of TRPV3 on normal human 

keratinocytes, to elucidate the role of the channel on the most abundant cell type of the skin 

on a cellular level.   
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RESULTS 

Human skin and cultured human epidermal keratinocytes express TRPV3 

First, we intended to define TRPV3 expression in the human skin, using full-thickness normal 

skin obtained from healthy individuals by punch biopsy. As revealed by 

immunohistochemistry, TRPV3 was identified the outermost layer of the skin, the epidermis 

(Figure 1a). TRPV3-immunoreactivity (IR) showed a homogenous staining between the 

stratum basale and stratum corneum. In good accord with these data, a strong TRPV3-IR was 

observed on normal human cultured keratinocytes (NHEKs), both by immunocytochemistry 

(Figure 1c) and Western blotting (Figure 1e) in both preconfluent (80%) and postconfluent 

(PC2) cells. The specificity of the immunosignal was assessed by appropriate negative 

controls (Figure 1b and d) (see also Materials and Methods section for details). 

This corresponded well to expression of the TRPV3 gene in human tissue and NHEKs, as 

demonstrated by quantitative real-time PCR. As shown in Figure 1f, mRNA transcripts for 

TRPV3 were unambiguously identified in normal human skin, as well as in pre- and post-

confluent cultured epidermal keratinocytes.  

TRPV3 is expressed as a Ca
2+

-permeable ion channel on NHEKs 

Next, we studied the functionality of TRPV3 channel in a series of dynamic imaging and 

electrophysiological experiments, performed on NHEKs. Using whole-cell patch-clamp 

configurations, membrane currents were elicited by voltage-ramp protocols (Figure 2a and b). 

Control NHEKs showed outwardly rectifying currents with an average reversal potential of -

46.1 ± 1 mV (mean ± SEM, n=6). Then currents were normalized to cell membrane 

capacitance at four different potentials, i.e., at -90, -40, +40, and +90 mV resulting -3.6 ± 1.1, 

-0.4 ± 0.1, 3.5 ± 0.5, and 8.2 ± 1.4 pA/pF, respectively (all data are mean ± SEM values) 

(Figure 2c).  
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Of great importance, both inward and outward currents were markedly and significantly 

(P<0.05) increased by 100µM carvacrol (Figure 2a-c), a TRPV3 agonist, which effect was 

found to be reversible by thorough washout. In the presence of carvacrol, the currents 

measured at -90, -40, +40, and +90 mV were -7.2 ± 2.3, -2.4 ± 1.0, +5.4 ± 1.0, and +14.5 ± 

3.0 pA/pF, respectively (mean ± SEM, n=6).  

To further support the functionality of TRPV3, we took advantage of the well-known fact that 

TRPV3 (similarly to the majority of the TRP channels) operates as a mostly (but not 

exclusively) calcium permeable ion channel (Moran et al. 2011). Using a fluorescent Ca2+-

measurement technique, we found that TRPV3 agonists significantly increased the 

intracellular calcium concentration ([Ca2+]ic) in a dose-dependent manner (Figure 2d-f). Of 

further importance, the actions of the TRPV3 agonists to elevate [Ca2+]ic was abrogated in 

nominally calcium-free extracellular medium (from 1.8 to 0.02 mM) (Figure 2f), suggesting 

that these agents indeed opened surface membrane Ca2+-permeable channels of the NHEKs. 

Supporting these findings we have also shown that RNAi mediated knock-down of TRPV3 

significantly reduces the calcium signal elicited by carvacrol (Supplementary Figure 2). 

Cellular physiology data and Ca2+-measurement data collectively argued for the fact that 

NHEKs indeed express functional TRPV3, which operates as a nonselective cation channel at 

the plasma membrane of the cells that are most permeable to Ca2+, similar to that previously 

described for human outer root sheath keratinocytes and murine epidermal keratinocyte 

populations (Borbíró et al. 2011; Cheng et al. 2010; Chung et al. 2004a; Chung et al. 2004b; 

Huang et al. 2008; Peier et al. 2002). 

TRPV3 stimulation suppresses proliferation of epidermal keratinocytes and induces cell 

death 
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We then investigated the cellular effects of TRPV3 activation on growth and survival of 

human epidermal keratinocytes. Cells were exposed to various TRPV3 agonists, such as 

carvacrol – a plant derived agent – and a synthetic agonist 2-aminoethoxydiphenyl borate (2-

APB) (Chung et al. 2004b; Xu et al. 2006). We found that carvacrol and 2-APB dose-

dependently reduced cell viability and proliferation of NHEK cells (Figure 3a and b).  

Several lines of evidence suggest that the above agents may also activate other TRP channels 

(Bíró et al. 2007; Xu et al. 2006). Furthermore, we lack highly selective and commercially 

available TRPV3 antagonists. Therefore, the TRPV3 specificity of the effect of carvacrol and 

2-APB was further assessed and verified by RNA interference. A series of TRPV3-targeted 

RNAi knockdown experiments were carried out in accordance with the techniques developed 

in our previous studies and which were optimized for various cultured human skin cells 

(Borbíró et al. 2011; Dobrosi et al. 2008; Oláh et al. 2014; Szöllősi et al. 2013; Tóth et al. 

2009). Importantly, we found that successful silencing of TRPV3 (Supplementary Figure 1.) 

was able to almost completely prevent the aforementioned detrimental effects on the viability 

and proliferation (Figure 3a and b), indicating that TRPV3-mediated signaling indeed plays a 

crucial role in conducting cellular actions of these agents. We also determined the mechanism 

of these observed effects, by investigating the decrease of mitochondrial membrane potential 

(one of the earliest markers of apoptosis) and the membrane integrity (to rule out necrotic 

events). According to our data a high concentration of carvacrol (300 µM) and 2-APB (100 

µM) both cause significant decrease of mitochondrial membrane potential (Supplementary 

Figure 3) , while membrane integrity was not affected (Supplementary Figure 3). Based on 

these data we can assert that TRPV3 activation leads to apoptotic cell death. Interestingly the 

use of the calcium chelator ethylenediaminetetraacetic acid (EDTA) did not influence the 

observed effects (Supplementary Figure 4), which shows that this effect of carvacrol and 2-

APB is not dependent on calcium mobilization from the extracellular space. 
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TRPV3 triggers strong proinflammatory response  

As the 24 hr treatments were found to decrease proliferation and viability, we next 

investigated the cellular effects of TRPV3 activation in short-term experiments, by 

monitoring the expressional alterations of key pro-inflammatory cytokines (interleukin [IL]-

1α, IL-6, IL-8 and tumor necrosis factor [TNF]-α), since TRPV3 activation and gain-of-

function mutation have been shown to result in marked cutaneous inflammation in both men 

and mice (Danso-Abeam et al. 2013; Yoshioka et al. 2009). We found that TRPV3 agonists 

significantly increased the expression of pro-inflammatory cytokines (Figure 4a and b) and 

also triggered a remarkable IL-6 and IL-8 release on the epidermal keratinocytes (Figure 4c 

and d). Importantly, we found that, similar to the above mentioned effects on the viability and 

proliferation, selective silencing of TRPV3 was able to almost completely abolish the up-

regulation and release of the aforementioned cytokines (Figure 4a-d), indicating that pro-

inflammatory actions of carvacrol and 2-APB were indeed mediated via the activation of 

TRPV3. 

TRPV3-induced proinflammatory actions involve the NF-κB pathway 

Finally, we aimed at identifying the intracellular signaling pathway, which mediates the pro-

inflammatory action of TRPV3 activation. It is well known, that activation of the NF-κB 

pathway plays an important role in the regulation of inflammatory actions (Wullaert et al. 

2011); hence, we investigated the involvement of this mechanism. We found that, 30 min 

carvacrol treatment induced the phosphorylation (and therefore inactivation) of the inhibitory 

IκBα and phosphorylation (and therefore activation) of the p65 NF-κB isoform. Both 

mentioned effects was abrogated by the co-application of EDTA (Figure 4e).  

One of the hallmarks of NF-κB activation is the translocation of p65 to the nucleus of the cell. 

To support our western blot data we also investigated this process on NHEK cells (Figure 4 f-
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i). Compared to the control (Figure 4 f) 300 µM of carvacrol caused significant increase in  

nuclear staining, comparable to that caused by the TLR-3 agonist polyinosinic:polycytidylic 

acid (poly I:C), a known inducer of NF-κB translocation in keratinocytes (Takai et al. 2014). 

The full images the representative cells were cropped from, as well as the concurrent DAPI 

staining may be found in the supplementary material (Supplementary Figure 5).  

Our previous findings show that TRPV3 is a functionally active calcium-permeable cation 

channel in keratinocytes; therefore, since the removal of extracellular calcium with EDTA 

abrogated the NF-κB activation, it is likely that TRPV3 activation leads to the initiation of the 

aforementioned pathway. These findings collectively argued for the crucial involvement of 

the NF-κB signaling pathway in mediating the inflammatory actions by TRPV3 activation in 

human epidermal keratinocytes. 

Since the NF-κB pathway is known to promote cell survival in keratinocytes (Qin et al. 1999), 

and our results showed that TRPV3 activation lead to decreased cell proliferation and viability 

(Figure 3 a and b), we wished to investigate the role of NF-κB on these processes. To answer 

this question we tested whether the NF-κB inhibitor BAY11-7085 would have any effect on 

our previous findings. As seen in Supplementary Figure 6, the use of the inhibitor in 

combination with the TRPV3 activator carvacrol further decreased the viability of the cells. 

This seems to show that TRPV3 activation activates more than one signaling pathway, and 

that the NFKB activation partially counteracts the negative effect of carvacrol on the cells’ 

viability. 
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DISCUSSION 

Recent research has shown that various mutations of the TRPV3 gene are the underlying cause 

of both the phenotype of DS-Nh mice and for Olmsted syndrome, a serious cutaneous 

condition characterized by palmoplantar keratoderma, periorifacial hyperkeratosis, diffuse 

hypotrichosis and alopecia, and itch (Asakawa et al. 2006; Lin et al. 2012). Previous reports 

on TRPV3 have centered around observations in mice, where it has been described that: (i) 

the gain-of-function mutation of TRPV3 shows higher Ca2+ incorporation and NGF 

production as compared to DS mice without the mutation (Imura et al., 2007; Yoshioka et al., 

2009); (ii) 2-APB (an activator of TRPV3 we used in our current studies) activates 

keratinocytes from DS-Nh mice at lower concentrations than control keratinocytes; (iii) 

TRPV3 activation leads to TSLP secretion in DS-Nh mice using TRPV3-KO mice as control 

(Yamamoto-Kasai et al., 2013). TRPV3 expression has also been shown to be increased in 

keratinocytes of atopic dermatitis (hence most probably inflamed) lesions (Yamamoto-Kasai 

et al. 2013). In support of these findings we also identified TRPV3 expression in human 

epidermis, as well as on cultured primary human keratinocytes, both on the mRNA and 

protein levels (Figure 1). Our results further show that TRPV3 is functional on keratinocytes 

and acts as a calcium-permeable channel (Figure 2), similarly to results on other cells types 

(Borbíró et al. 2011; Lee et al. 2016; Morgan et al. 2013; Pires et al. 2015; Somogyi et al. 

2015), and in murine keratinocytes (Chung et al. 2004b; Huang et al. 2008; Mandadi et al. 

2009). Since the calcium increase was abrogated in the absence of extracellular calcium, it is 

likely that TRPV3 acts as a membrane channel. Of great importance this is the first report in 

the literature that shows that TRPV3 natively expressed on primary human epidermal 

keratinocytes is a functionally active membrane channel. Activation of the channel with 

carvacrol or 2-APB elicited not only an increase in intracellular calcium as stated above, but 

also decreased the viability and proliferation of the cells, through the induction of apoptosis. 
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Although both activators used are considered non-selective - carvacrol has been shown to 

activate TRPA1 (Xu et al. 2006) while 2-APB activates TRPV1 and TRPV2 (Colton and Zhu 

2007) - RNAi-mediated knockdown of TRPV3 significantly blocked all observed effects 

which suggests they were all (at least dominantly) TRPV3-dependent. Collectively these data 

coincide well with previous results on human hair follicles (Borbíró et al. 2011), where 

TRPV3 has been shown to induce apoptosis and catagen regression, and similar effects 

described by us on outer root sheath keratinocytes.  

TRPV3 agonists also induced production and release of pro-inflammatory mediators from 

keratinocytes (Figure 4a-d). Inflammatory mediator production by keratinocytes is well-

documented (Gröne 2002; Karsak et al. 2007; Oláh et al. 2016), and links the epidermis to the 

generally immunologically more active dermal compartment.  

The role of epidermal TRPV3 in intercellular communication has been demonstrated in 

murine skin (Mandadi et al. 2009), where an increase in temperature resulted in ATP release 

from keratinocytes and subsequent activation of nerve endings. Our results expand the 

downstream targets of epidermal TRPV3 to immune cells, and hint at one of the possible 

mechanisms by which gain-of-function TRPV3 mutations may lead to skin lesions and 

pruritus, both of which are characteristics found in DS-Nh mice and patients suffering from 

Olmsted syndrome (Agarwala et al. 2016; Asakawa et al. 2006; Duchatelet et al. 2014; Lai-

Cheong et al. 2012; Lin et al. 2012; Yoshioka et al. 2009). Recent research has also shown 

increased epidermal TRPV3 expression in atopic dermatitis (Yamamoto-Kasai et al. 2013) 

and patients suffering post-burn pruritus (Yang et al. 2015). The induction of pro-

inflammatory mediator production was dependent on NF-κB activation and translocation, 

which has been shown to be pivotal in several pro-inflammatory pathways on keratinocytes, 

for example in hypertrophic scar tissue through TRPC3 activation (Ishise et al. 2015), in UVB 
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induced inflammation (Ali et al. 2016; Ali and Sultana 2012), and TGFβ1 signaling (Tobar et 

al. 2010).  

Although the clinical symptoms and murine phenotype associated with TRPV3 gain-of-

function mutations unequivocally argue that the channel plays a central role in cutaneous 

homeostasis, there is currently no study investigating the human channel on the molecular 

level. This is the specific lack our results address. Collectively, our data shows for the first 

time that TRPV3 is functionally expressed on human epidermal keratinocytes and their 

activation decreases cell viability and induces pro-inflammatory mediator production through 

NF-κB. Moreover, our exciting data invite further (both pre-clinical and clinical) studies to 

uncover the therapeutic potential of TRPV3-targeting pharmacological tools (most preferably 

which induce the inhibition and/or down-regulation of the ion channel) in the management of 

inflammatory skin conditions such as e.g. atopic dermatitis or other dermatitis types induced 

by allergens, irritants or other stimuli.  

MATERIALS AND METHODS 

Materials 

Carvacrol and 2-aminoethoxydiphenyl borate (2-APB) were purchased from Sigma-Aldrich 

(St Louis, MO). Both were dissolved into dimethyl sulfoxide, also from Sigma-Aldrich. 

Vehicle control contained only the solvent at the same ratio as the treated group (1:1000). 

Cell culturing 

Human skin samples were obtained following written informed consent from healthy 

individuals undergoing dermatosurgery, adhering to Helsinki guidelines, and after obtaining 

Institutional Research Ethics Committee’s and Government Office for Hajdú-Bihar County’s 

permission (protocol No.: DE OEC RKEB/IKEB 3721-2012; document No). A detailed 
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description of culturing conditions may be found in the supplementary Materials and 

Methods. All experiments were performed on at least three independent donors.  

Immunohistochemistry 

Paraffin-embedded sections (5 µm), after antigen retrieval (in citrate-buffer, pH 6.0, at 750 W 

in microwave oven for 10 min), were first incubated with primary goat antibody against 

human TRPV3 (cat. No.-: NBP1-46342 Novus Biologicals LLC, Littleton, CO, USA). After 

staining with the primary antibodies, sections were incubated with biotinylated anti-goat IgG 

(1:200) (Bio-Rad, Hercules, CA, USA) for TRPV3. Immunoreactions were visualized using 

DAB reagent (DAKO, Golstrup, Denmark) and the sections were counterstained by 

hematoxylin (Sigma-Aldrich). For negative controls of the labeling procedure, primary 

antibodies were omitted. 

Immunocytochemistry 

Cells were fixed in acetone, permeabilized by 0.1 % Triton X-100 (Sigma-Aldrich), and then 

incubated with primary antibodies against TRPV3 or p65 (1:200 and 1: 50 dilution, 

respectively Novus Biologicals). For fluorescence staining, slides were then incubated with 

FITC-conjugated secondary antibodies (dilution 1:1000) (Dobrosi et al. 2008; Tóth et al. 

2009). Nuclear counterstaining was performed using 4’-6-diamidino-2-phenylindole (DAPI) 

in both protocols. Images were captured with a OLYMPUS Xcellence RT fluorescent 

microscope (Olympus, Tokyo, Japan).  

Western blotting 

Details of Western blotting may be found in the Supplementary Materials and Methods 

section. 

RNA isolation, reverse transcription, quantitative “real-time” PCR (Q-PCR) 
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Q-PCR was performed on a Stratagene Mx3005P QPCR System (Agilent Technologies) by 

using the 5′ nuclease assay. Total RNA was isolated using TRIzol (Life Technologies) 

according to the manufacturer’s protocol, and the isolated RNA was quality-checked by 

Nanodrop-1000 Spectrophotometer (NanoDrop/Thermo Scientific). 1 µg of total RNA were 

then reverse-transcribed into cDNA by using the High Capacity cDNA Reverse Transcription 

Kit (Applied Biosystems) according to the manufacturer’s protocol. PCR amplification was 

performed by using the TaqMan primers and probes (assay ID-s: Hs00376854_m1 for 

TRPV3, Hs00985639_m1 for IL-6, Hs00174103_m1 for IL-8, Hs00174092_m1 for IL-1α, 

Hs00174128_m1 for TNFα) using the TaqMan universal PCR master mix protocol (Applied 

Biosystems). As internal controls, transcripts of glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH), peptidyl-prolyl isomerase A (cyclophilin A; PPIA), and actin beta (ACTB) were 

determined (assay ID-s: Hs99999905_m1, Hs99999904_m1, and Hs99999903_m1, 

respectively). The amount of the transcripts was normalized to those of the relevant 

housekeeping gene using the ∆CT method. 

Patch-clamp experiments 

Details of patch clamp protocols and composition of solutions used can be found in the 

Supplementary Materials and Methods.  

Fluorimetric FLIPR Ca
2+

-imaging 

Ca2+-imaging was performed according to our previously optimized protocol. In brief, 

keratinocytes were seeded in 96-well black-well/clear-bottom plates (Greiner Bio-One) at a 

density of 10,000 cells per well. Cells were washed two times with 1% bovine serum albumin 

(Sigma-Aldrich) and 2.5 mM Probenecid (Sigma-Aldrich) containing Hank’s solution (136.8 

mM NaCl, 5.4 mM KCl, 0.34 mM Na2HPO4, 0.44 mM KH2PO4, 0.81 mM MgSO4, 1.26 mM 

CaCl2, 5.56 mM glucose, 4.17 mM NaHCO3, pH 7.2, all from Sigma-Aldrich). The cells were 
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then incubated with 1 µM Fluo-4 AM (Life Technologies) containing Hank’s solution (100 

µl/well) at 37°C for 30 min, and were then washed three times with Hank’s solution (100 

µl/well). The plates were then placed in a FLIPR (Molecular Devices), and changes in [Ca2+]ic 

(reflected by changes fluorescence; excitation: 490 nm; emission: 520 nm) induced by various 

concentrations of the compounds were recorded in each well. Experiments were performed in 

quadruplicates and the averaged data (as well as SEM) were used in the calculations. 

Determination of cellular viability 

Cells were plated in 96-well plates (10,000 cells per well density) in quadruplicates and the 

number of viable cells was determined by measuring the conversion of the tetrazolium salt 

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; Sigma-Aldrich) to 

formazan by mitochondrial dehydrogenases.  

Determination of cellular proliferation 

The degree of cellular growth (reflecting number of viable cells) was determined by 

measuring the DNA content of cells using CyQUANT Cell Proliferation Assay Kit 

(Invitrogen). Keratinocytes (10,000 cells per well) were cultured in 96-well black-well/clear-

bottom plates (Greiner Bio-One) in quadruplicates and were treated with various 

concentrations of TRPV3 agonists. Supernatants were then removed by blotting on paper 

towels, and the plates were subsequently frozen at -70°C. The plates were then thawed at 

room temperature, and 200 µl of CyQUANT dye/cell lysis buffer mixture was added to each 

well. After 5 minutes of incubation, fluorescence was measured at 490 nm excitation and 520 

nm emission wavelengths using FLIPR (Molecular Devices). 

RNA interference 
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Cells were transfected at ≈70% confluence with specific Stealth RNAi oligonucleotides (40 

nM, Invitrogen) against TRPV3 channels (ID-s: HSS136315, HSS136316, and HSS175965), 

using Lipofectamine 2000 Transfection Reagent (Invitrogen). For controls, RNAi Negative 

Control Duplexes (scrambled RNAi; Invitrogen) were employed. The 3 sequences supplied 

by the manufacturer were applied separately. The efficacy of RNAi-driven ‘‘knockdown’’ 

was evaluated after transfection by Western blotting as described previously above. Optical 

density was normalized to β-actin (antibody from Sigma-Aldrich, applied in 1:1000 dilution) 

and expressed relative to cells transfected with scrambled RNAi. In each case, the most 

effective RNAi oligonucleotide was selected and then used in subsequent functional 

experiments. 

Determination of cytokine release (ELISA) 

Samples of media were collected from keratinocyte cells exposed to different treatment. The 

supernatants were analyzed for human cytokines using commercially available ELISA kits 

(IL-6 and IL-8, BD Biosciences) according to the manufacturer’s protocols. In brief, plates 

were coated with Capture Antibody diluted in Coating Buffer (0.1 M Sodium Carbonate, pH 

9.5 with 10 N NaOH; Sigma-Aldrich) and incubated overnight at 4°C. Plates were incubated 

with Assay Diluent [10% fetal bovine serum, Life Technologies in Phosphate-Buffered Saline 

(PBS: 80.0g NaCl, 11.6g Na2HPO4, 2.0g KH2PO4, 2.0g KCL, dH2O to 10 L, all from Sigma-

Aldrich) pH 7.0] at room temperature (RT) for 1 hour, while standard and sample dilutions 

were prepared in Assay Diluent. Standard and samples were added into appropriate wells and 

incubated for 2 hrs at RT. After 2 hours, Working Detector (Detection Antibody + SAv-HRP 

reagent) was added to each well, and incubated 1 hour at RT. After every each steps, plates 

were washed with Wash Buffer (0.05% Tween-20, Sigma-Aldrich in PBS). After washing, 

Substrate Solution [Tetramethylbenzidine (TMB), Sigma-Aldrich; and Hydrogen Peroxide in 

citrate-buffer, pH 5.0] was added to each well for 30 minutes in the dark, followed by Stop 
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Solution (2 N H2SO4). Absorbance was read at 450 nm or 405 nm within 30 minutes of 

stopping reaction. The amount of cytokines in pg/ml was calculated from standard curve. The 

experiments were repeated 3 times using different medium solutions. 
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FIGURE LEGENDS 

Figure 1. Transient receptor potential vanilloid-3 (TRPV3) is expressed in the epidermis of 

human skin and on cultured human epidermal keratinocytes (NHEK) 

(a) TRPV3-specific immunoreactivity (IR), as revealed by EnVision technique, on human 

skin in situ. (b) Negative control of panel (a). (c) Immunofluorescence identification (FITC 

labeling, green fluorescence) of TRPV3 on primary cultures of NHEK keratinocytes. Nuclei 

were counterstained with 4’-6-diamidino-2-phenylindole (DAPI, blue fluorescence). (d) 

Negative control of panel (c). Scale bars mark (a-b) 100 µm and (c-d) 10 µm. (e) Western 

blot analysis. TRPV3 protein expression was determined on cell lysates of NHEK harvested 

at various confluences. PC2, 2 days at post-confluence. Equal loading was assessed by 

determining expression of β-actin. (f) Quantitative “real-time” PCR (Q-PCR) analysis of 

TRPV3 mRNA transcripts on human skin tissue and cell lysates of NHEK keratinocytes 

harvested at various confluences. PC2, 2 days at post-confluence. Data are expressed as mean 

± SEM of three independent determinations. Three additional experiments yielded similar 

results. 

Figure 2. Transient receptor potential vanilloid-3 (TRPV3) is expressed as a Ca2+-permeable 

ion channel on normal human epidermal keratinocytes (NHEK) 

(a) Representative I-V curves recorded with a patch-clamp ramp protocol shown in the insets. 

(b) A usual time course of a single experiment showing 100 µM carvacrol-induced current 

values measured at – 90 mV (open red symbols), at – 40 mV (open green symbols), at + 40 

mV (open blue symbols), and at + 90 mV (filled red symbols). (c) Statistical analysis of 

normalized currents to cell membrane capacitance (mean ± SEM, n=6) measured at - 40 mV 

(left side downward), + 40 mV (left side upward), - 90 mV (right side downward), and + 90 

mV (right side upward) in different conditions. (d, e) Representative fluorimetric Ca2+-
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imaging data recorded on fluo-4-loaded NHEK keratinocytes. The arrow indicates the 

application of TRPV3 agonists carvacrol or 2-aminoethoxydiphenyl borate (2-APB) in 

different concentrations in solutions containing normal (1.8 mM) [Ca2+]. (f) Statistical 

analysis of maximal amplitudes of Ca2+-elevations induced by the TRPV3 agonists in normal 

(1.8 mM) or low (0.02 mM) [Ca2+] solutions. In all cases, mean ± SEM of multiple 

determinations (n > 3) is presented. For statistical analysis, # marks significant (P < 0.05) 

differences compared to the control, whereas * marks significant (P < 0.05) differences 

compared with the maximal TRPV3 activator-induced Ca2+-elevations recorded in normal 

[Ca2+] solution. 

Figure 3. Activation of transient receptor potential vanilloid-3 (TRPV3) on normal human 

epidermal keratinocytes (NHEK) decreases viability and inhibits proliferation 

NHEK keratinocytes were treated with various concentrations of TRPV3 activators for 24 

hours. (a) Determination of cell viability by colorimetric MTT (3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyl tetrazolium bromide) cell viability assay. (b) Determination of proliferation by 

fluorimetric CyQuant assay. Data (mean ± SEM) are expressed as a percentage of the mean 

value (defined as 100%) of the scrambled RNAi-non-treated group. For statistical analysis, * 

marks significant (P<0.05) differences compared with the scrambled RNAi-non-treated group, 

whereas # marks significant (P<0.05) differences compared with the equimolar TRPV3 

activator (carvacrol or 2-APB) stimulated scrambled RNAi-treated group. Two additional 

experiments yielded similar results. 2-APB, 2-aminoethoxydiphenyl borate. 

Figure 4. Activation of transient receptor potential vanilloid-3 (TRPV3) induces 

proinflammatory cytokine release on normal human epidermal keratinocytes (NHEK) 

(a, b) Quantitative “real-time” PCR (Q-PCR) analysis of proinflammatory cytokines (IL-1α, 

IL-6, IL-8, TNFα) after treating NHEK cells with TRPV3 activators 300 µM carvacrol or 30 
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µM 2-aminoethoxydiphenyl borate (2-APB) for 3 hours. Data (mean ± SEM) are normalized 

to the scrambled RNAi-non-treated group regarded as 1. (c, d) Determination of the released 

cytokine concentration following 6-hr and 12-hr treatments of NHEKs with 300 µM 

carvacrol. Data are presented as mean ± SEM of three independent determinations. One 

additional experiment yielded similar results. For statistical analysis, * marks significant 

(P<0.05) differences compared with the scrambled RNAi-non-treated group, whereas # marks 

significant (P<0.05) differences compared with the TRPV3 activator stimulated scrambled 

RNAi-treated group. Two additional experiments yielded similar results. (e) Western blot 

analysis of lysates of NHEK cells treated with the TRPV3 activator 300 µM carvacrol, 60 µM 

of the calcium chelator EDTA, or their combinations for 30 minutes. Numbers on the OD row 

indicate the optical density of the P-IκBα and P-P65 bands normalized to the corresponding β-

actin signals. (f-i) immunofluorescent labelling of p65 in NHEK cells to show translocation of 

the protein to the nuclei. Cells were treated with 300 µM carvacrol, 60 µM EDTA, the 

combination of the two or 20 µg/ml of polyinosinic:polycytidylic acid (poly I:C), a TLR3 

activator used as a positive control for 30 minutes. Scale bars = 5 µm  
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Transient receptor potential vanilloid-3 (TRPV3) is expressed in the epidermis of human skin and on cultured 
human epidermal keratinocytes (NHEK)  

(a) TRPV3-specific immunoreactivity (IR), as revealed by EnVision technique, on human skin in situ. (b) 

Negative control of panel (a). (c) Immunofluorescence identification (FITC labeling, green fluorescence) of 
TRPV3 on primary cultures of NHEK keratinocytes. Nuclei were counterstained with 4’-6-diamidino-2-

phenylindole (DAPI, blue fluorescence). (d) Negative control of panel (c). Scale bars mark (a-b) 100 µm and 
(c-d) 10 µm. (e) Western blot analysis. TRPV3 protein expression was determined on cell lysates of NHEK 

harvested at various confluences. PC2, 2 days at post-confluence. Equal loading was assessed by 
determining expression of β-actin. (f) Quantitative “real-time” PCR (Q-PCR) analysis of TRPV3 mRNA 

transcripts on human skin tissue and cell lysates of NHEK keratinocytes harvested at various confluences. 
PC2, 2 days at post-confluence. Data are expressed as mean ± SEM of three independent determinations. 

Three additional experiments yielded similar results.  
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Transient receptor potential vanilloid-3 (TRPV3) is expressed as a Ca2+-permeable ion channel on normal 
human epidermal keratinocytes (NHEK)  

(a) Representative I-V curves recorded with a patch-clamp ramp protocol shown in the insets. (b) A usual 

time course of a single experiment showing 100 µM carvacrol-induced current values measured at – 90 mV 
(open red symbols), at – 40 mV (open green symbols), at + 40 mV (open blue symbols), and at + 90 mV 
(filled red symbols). (c) Statistical analysis of normalized currents to cell membrane capacitance (mean ± 
SEM, n=6) measured at - 40 mV (left side downward), + 40 mV (left side upward), - 90 mV (right side 
downward), and + 90 mV (right side upward) in different conditions. (d, e) Representative fluorimetric 

Ca2+-imaging data recorded on fluo-4-loaded NHEK keratinocytes. The arrow indicates the application of 
TRPV3 agonists carvacrol or 2-aminoethoxydiphenyl borate (2-APB) in different concentrations in solutions 

containing normal (1.8 mM) [Ca2+]. (f) Statistical analysis of maximal amplitudes of Ca2+-elevations 
induced by the TRPV3 agonists in normal (1.8 mM) or low (0.02 mM) [Ca2+] solutions. In all cases, mean ± 
SEM of multiple determinations (n > 3) is presented. For statistical analysis, # marks significant (P < 0.05) 
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differences compared to the control, whereas * marks significant (P < 0.05) differences compared with the 
maximal TRPV3 activator-induced Ca2+-elevations recorded in normal [Ca2+] solution.  
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Activation of transient receptor potential vanilloid-3 (TRPV3) on normal human epidermal keratinocytes 
(NHEK) decreases viability and inhibits proliferation  

NHEK keratinocytes were treated with various concentrations of TRPV3 activators for 24 hours. (a) 
Determination of cell viability by colorimetric MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium 

bromide) cell viability assay. (b) Determination of proliferation by fluorimetric CyQuant assay. Data (mean ± 
SEM) are expressed as a percentage of the mean value (defined as 100%) of the scrambled RNAi-non-

treated group. For statistical analysis, * marks significant (P<0.05) differences compared with the scrambled 
RNAi-non-treated group, whereas # marks significant (P<0.05) differences compared with the equimolar 

TRPV3 activator (carvacrol or 2-APB) stimulated scrambled RNAi-treated group. Two additional experiments 
yielded similar results. 2-APB, 2-aminoethoxydiphenyl borate.  

 
 

111x93mm (300 x 300 DPI)  

 

 

Page 73 of 82



  

 

 

Activation of transient receptor potential vanilloid-3 (TRPV3) induces proinflammatory cytokine release on 
normal human epidermal keratinocytes (NHEK)  

(a, b) Quantitative “real-time” PCR (Q-PCR) analysis of proinflammatory cytokines (IL-1α, IL-6, IL-8, TNFα) 

after treating NHEK cells with TRPV3 activators 300 µM carvacrol or 30 µM 2-aminoethoxydiphenyl borate 
(2-APB) for 3 hours. Data (mean ± SEM) are normalized to the scrambled RNAi-non-treated group regarded 

as 1. (c, d) Determination of the released cytokine concentration following 6-hr and 12-hr treatments of 
NHEKs with 300 µM carvacrol. Data are presented as mean ± SEM of three independent determinations. 
One additional experiment yielded similar results. For statistical analysis, * marks significant (P<0.05) 

differences compared with the scrambled RNAi-non-treated group, whereas # marks significant (P<0.05) 
differences compared with the TRPV3 activator stimulated scrambled RNAi-treated group. Two additional 
experiments yielded similar results. (e) Western blot analysis of lysates of NHEK cells treated with the 
TRPV3 activator 300 µM carvacrol, 60 µM of the calcium chelator EDTA, or their combinations for 30 

minutes. Numbers on the OD row indicate the optical density of the P-IκBα and P-P65 bands normalized to 
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the corresponding β-actin signals. (f-i) immunofluorescent labelling of p65 in NHEK cells to show 
translocation of the protein to the nuclei. Cells were treated with 300 µM carvacrol, 60 µM EDTA, the 

combination of the two or 20 µg/ml of polyinosinic:polycytidylic acid (poly I:C), a TLR3 activator used as a 
positive control for 30 minutes. Scale bars = 5 µm  
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SUPPLEMENTARY MATERIAL 

Supplementary Materials and Methods 

Cell culturing 

Epidermal sheets were cut into 3-5 mm
2
 squares; keratinocytes were isolated after overnight dermo-

epidermal separation in 2.4 U ml
-1

 dispase (Sigma-Aldrich) by short trypsin (0.05%, Sigma-Aldrich) 

digestion. Trypsin was deactivated by addition of 5x volume of DMEM supplemented with 10% FBS and 

penicillin/streptomycin (all from Life Technologies, Carlsbad, CA). Cells were cultured for the first two 

days in DMEM/HAM F12 medium (mixed in a 3:1 ratio) supplemented with insulin, hydrocortisone, 

adenine, T3, cholera toxin, EGF, ascorbyl-2-phosphate, penicillin G (all from Sigma-Aldrich), gentamycin 

(Life Technologies) and Fetal Clone II serum equivalent (Hyclone, South Logan, UT, USA) to make sure 

the cells attach. Once cells have attached (3-5 days, depending on the donor) the cells are cultured in EpiLife 

serum-free media supplemented with Human Keratinocyte Growth Supplement (all from Life 

Technologies). Medium was changed every other day and cells are passaged at ≈80% confluence. 

Western blotting 

Cells were harvested and homogenized in detergent mixture (50mM TRIS HCl, 150 mM NaCl, 1% Triton 

X-100, 1% Igepal CA 630, 0.5% sodium deoxicholate; Sigma-Aldrich), containing protease inhibitor 

cocktail (1:100; Sigma-Aldrich). After sonication the protein content of the resulting samples was 

determined by a modified BCA protein assay (Pierce). Protein samples (1 µg/well) were subjected to SDS-

PAGE (10% Mini Protean TGX gels, BioRad), and transferred to nitrocellulose membranes, by using Trans-

Blot® Turbo™ Nitrocellulose Transfer Packs and Trans Blot Turbo System (both from BioRad). 

Membranes were probed with the corresponding primary antibodies against human TRPV3 (1:500 dilution, 

NOVUS Biologicals), IĸBα, p65 in 5% milk containing PBS) overnight at 4°C. As a secondary antibody 

horseradish peroxidase-conjugated goat-anti-rabbit or mouse IgG antibodies were used (1:1000, Bio-Rad) 

and the immunoreactive bands were visualized by a SuperSignal West Pico Chemiluminescent Substrate-

Enhanced Chemiluminescence kit (Pierce, Rockford, IL, United States) using LAS-3000 Intelligent Dark 
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Box (Fuji, Tokyo, Japan) Gel Logic 1500 Imaging System (Kodak, Tokyo, Japan). To assess equal loading, 

the membranes were re-probed by using rabbit-anti-β-actin antibodies (1:1000, Actin – A2668 (Sigma)). 

Densitometric analysis was performed by using ImageJ image analysis software (NIH, Bethesda, MA). 

Patch-clamp experiments 

Electrophysiological measurements were carried out on keratinocytes cultured in EpiLife serum-free media 

supplemented with Human Keratinocyte Growth Supplement (Life Technologies) on coverslips having 1 cm 

diameter. These coverslips (covered with NHEKs) were placed into a perfusion chamber mounted on a stage 

of an inverted microscope where the cells were continuously superfused with Tyrode’s solution containing 

(in mM) NaCl 144, KCl 5.6, CaCl2 2.5, MgCl2 1.2, HEPES 5, glucose 10, at pH 7.4. The osmolarity of the 

solutions was carefully adjusted with a vapor pressure osmometer (Vapro 5520, Wescor Inc.). All 

experiments were performed at room temperature. Borosilicate glass pipettes were fabricated with a laser 

puller (Model P-2000, Sutter Instrument Company) having resistance of 2–4 MΩ after filling with pipette 

solution including (in mM) K-aspartate 100, KCl 45, MgCl2 1, HEPES 5, EGTA 10, K-ATP 3 at pH 7.2. 

TRPV3 currents were recorded with a Multiclamp-700B intracellular amplifier (Axon Instruments, 

Molecular Devices) using the whole cell configuration of the patch clamp technique. After establishing high 

(>1 GW) resistance seal by gentle suction, the cell membrane beneath the tip of the electrode was disrupted 

by further suction and/or by applying 1.5 V electrical pulses for 1 ms. Ion currents were normalized to cell 

capacitance, determined in each cell using short hyperpolarizing pulses from 10 mV to 20 mV. Outputs from 

the amplifier were digitized at 10 kHz using a Digidata-1440A A/D converter (Axon Instruments) under 

software control (pClamp 10.3, Axon Instruments). The series resistance was typically 6-10 MΩ  and left 

uncompensated. Experiments were discarded when the series resistance was high or increased during the 

measurement or the amplitude of the current was unstable during the untreated control traces. Carvacrol 

(Sigma-Aldrich) was applied to the superfusate from a 1 M stock solution in dimethyl sulfoxide (DMSO, 

Sigma-Aldrich) reaching a final concentration of 100 µM. The final concentration of DMSO was 0.1% since 

it has no effects on membrane currents. All values presented are arithmetic means ± SEM. 

Determination of necrosis 
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Quantification of cellular necrosis was based on the evaluation of plasma membrane fragmentation that 

allows SYTOX Green dye (Life Technologies) to penetrate cells and bind to nucleic acids. Cells were 

seeded (density: 10000 cells/well) in 96-well black-well/clear-bottom plates (Greiner Bio One), and 

octuplicates were treated with carvacrol and 2-APB with or withour EDTA for 24 hours. After discarding 

supernatants, cells were incubated with 1 uM SYTOX green dye for 30 minutes followed by a PBS wash. 

The fluorescence emission of SYTOX Green dye was monitored by a Flexstation III
384

 fluorescent plate 

reader at 545 nm excitation and 590 nm emission wavelengths. 

Determination of apoptotis 

Apoptotic process was detected using MitoProbe DiIC1(5) Assay Kit (Life Technologies). The Dilc1(5) dye 

accumulates in the mitochondria dependent on the mitochondrial membrane potential, the decrease of which 

is an early sign of apoptosis. Cells were seeded (density: 10000 cells/well) in 96-well black-well/clear-

bottom plates, and quadriplicates were treated with carvacrol and 2-APB with or withour EDTA for 2 hours. 

After discarding supernatants, cells were incubated with Dilc1(5) solution for 30 minutes and the 

fluorescence of the dye was measured at 630 nm excitation and 670 nm emission wavelengths using a 

Flexstation III
384

 fluorescent plate reader 

Statistical analysis 

Data were analysed and graphs were plotted by Origin Pro Plus 6.0 (Microcal, Northampton, MA, USA), 

and Graphpad Prism software (Graphpad, San Diego, CA, USA) using ANOVA and P<0.05 values were 

regarded as significant differences. 
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Supplementary results 

  

Supplementary Figure 1.: Western blot analysis of RNAi-mediated knockdown of TRPV3 on NHEKs, and 

an image of a negative staining using the same antibody (the protein sample tested was of monocyte-derived 

immature dendritic cells Szöllösi et al., 2013). 

 

Supplementary Figure 2.: Representative fluorimetric Ca
2+

 recorded on fluo-4-loaded NHEKs. The arrow 

indicates the application of TRPV3 agonist carvacrol at 300 µM concentration. Statistical analysis of 

maximal amplitudes of Ca
2+

-elevations induced by the TRPV3 agonist carvacrolon control, scrambled RNA 

and TRPV3 specific RNA transfected cells. In all cases, mean ± SEM of multiple determinations (n > 3) is 

presented. Statistical significance is marked above relevant brackets between columns. 
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Supplementary Figure 3.: Activation of transient receptor potential vanilloid-3 (TRPV3) on normal human 

epidermal keratinocytes (NHEK) causes apoptosis: Evaluation of mitochondrial membrane potential using 

DilC(1)5 dye. Data (mean ± SEM) are expressed in relative fluorescence units (RFU). * marks significant 

(p<0.05) changes as compared to control, CCCP is a mitochondrial membrane potential disruptor used as a 

positive control. Two additional experiments yielded similar results. 2-APB, 2-aminoethoxydiphenyl borate.  

Supplementary Figure 4.: Activation of transient receptor potential vanilloid-3 (TRPV3) on normal human 

epidermal keratinocytes (NHEK) does not causes necrosis. Evaluation of cellular necrosis using Sytox 

Green dye. Data (mean ± SEM) are expressed in relative fluorescence units (RFU). Lysis buffer was used as 

a positive control for necrotic cell death. Two additional experiments yielded similar results.2-APB, 2-

aminoethoxydiphenyl borate. 
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Supplementary Figure 5.: TRPV3 activation causes translocation of p65 into the cell nuclei. Each image is 

juxtaposed with its nuclear counterstain (4’-6-diamidino-2-phenylindole [DAPI], blue fluorescence). 

A
5

5
0

n
m

-

+B
A
Y
11

-7
08

5
0.0

0.2

0.4

0.6

0.8
Control

Carvacrol 30 µM

Carvacrol  100 µM

Carvacrol  300 µM*

*,#

 

Supplementary Figure 6.: Inhibition of NF-κB in parallel with TRPV3 activation further decreases viability 

on normal human epidermal keratinocytes (NHEK): Data (mean ± SD) are expressed as a relative 

absorbance units. For statistical analysis, * marks significant (P<0.05) differences compared with the control 
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group, whereas # marks significant (P<0.05) differences compared with the equimolar TRPV3 activator 

stimulated, NF-κB treated group. Two additional experiments yielded similar results. 
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