Increasing the robustness of CNN acoustic models using autoregressive moving average spectrogram features and channel dropout

Kovács, György, Tóth, László, Van Compernolle, Dirk, Ganapathy, Sriram: Increasing the robustness of CNN acoustic models using autoregressive moving average spectrogram features and channel dropout.
PATTERN RECOGNITION LETTERS, 100. pp. 44-50. ISSN 0167-8655 (2017)

[img] Text
Channel_Dropout_Draft.pdf - Accepted Version
Restricted access: Registered users only

Download (239kB)
Item Type: Article
Journal or Publication Title: PATTERN RECOGNITION LETTERS
Date: 2017
Volume: 100
Page Range: pp. 44-50
ISSN: 0167-8655
Faculty: Faculty of Science and Informatics
Institution: Szegedi Tudományegyetem
MTMT id: 3279835
DOI id: https://doi.org/10.1016/j.patrec.2017.09.023
Date Deposited: 2018. Feb. 14. 10:29
Last Modified: 2020. Mar. 03. 13:57
URI: http://publicatio.bibl.u-szeged.hu/id/eprint/12962
Web of Science® Times Cited: 11 View citing articles in Web of Science®

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year