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As drug development is extremely expensive, the identification of novel indications for in-market drugs is financially attrac-
tive. Multiple algorithms are used to support such drug repurposing, but highly reliable methods combining simulation of
intracellular networks and machine learning are currently not available. We developed an algorithm that simulates drug
effects on the flow of information through protein–protein interaction networks, and used support vector machine to iden-
tify potentially effective drugs in our model disease, psoriasis. Using this method, we screened about 1,500 marketed and
investigational substances, identified 51 drugs that were potentially effective, and selected three of them for experimental
confirmation. All drugs inhibited tumor necrosis factor alpha-induced nuclear factor kappa B activity in vitro, suggesting
they might be effective for treating psoriasis in humans. Additionally, these drugs significantly inhibited imiquimod-induced
ear thickening and inflammation in the mouse model of the disease. All results suggest high prediction performance for
the algorithm.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE
TOPIC?
� Several methods have been developed for drug repurposing,
although these are mainly based on drug–disease associations
and do not consider intracellular interactions. Additionally,
only a few of them use machine learning for data processing.
WHAT QUESTION DID THIS STUDY ADDRESS?
� If it is possible to create a reliable drug repurposing
algorithm with modeling intracellular protein–protein
networks.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� With the use of intracellular network modeling and machine
learning, it is possible to repurpose drugs with high reliability.
Additionally, new interesting drug candidates and drug targets
were identified in our study for the treatment of psoriasis.
HOW THIS MIGHT CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE
� With the increasing cost of drug development, drug repur-
posing is becoming a promising alternative. Our algorithm has
the potential to significantly decrease the time and cost of drug
candidate selection for a new indication.

Drug development is a long and extremely expensive process.1

The use of marketed drugs for new indications, referred to as
drug repurposing, can significantly decrease expenses.1 Algorithms
used for drug repurposing analyze several kinds of information
either individually or in combination, including gene expression
data, chemical properties of substances, drug target data, and
static properties of intracellular networks.2,3 Networks are reliable
frameworks for the simulation of biological processes. Simulation
of information flow through networks has already been used in
drug discovery, but has yet to be used in the field of drug repur-
posing.4–6 We assumed that the use of such simulated dynamic
data could potentially improve repurposing algorithms. As large
datasets are generated during the simulation process, optimized
dataset processing could also improve prediction performance.
Machine learning, which is already widely used in drug develop-
ment, is a clear choice for these optimization objectives. Different

learning methods are available for predicting drug toxicity, poten-
tial inhibitors or activators of a given protein in compound
libraries, pharmacokinetics, side effects, and drug interactions.7–10

Support vector machine (SVM), one of the most widely used
learning algorithms, classifies samples based on a model con-
structed from a training dataset. The model is used to differenti-
ate between two groups of observations (two-class SVM) or to
identify observations similar to training data (one-class SVM).11

We expected that the combination of network flow simulation
and drug classification with SVM can be very effective in drug
repurposing.
In our study we constructed intracellular protein–protein

interaction networks, simulated information flow within these
networks using a novel algorithm, and used SVM to identify
potentially effective drugs in psoriasis. We also determined the in
vitro and in vivo efficacy of identified drug candidates.
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RESULTS
Network construction and flow simulation
A directed protein-protein interaction (PPI) network was con-
structed from known interactions (activation or inhibition)
between human proteins. A weighted adjacency matrix was gen-
erated and was used for the stepwise calculation of protein activ-
ity values. As basal activity values were added to the actual
activity of all nodes before each step, the total activity of the sys-
tem increased from step to step when all interactions in the net-
work were activating. Because there were sufficient inhibiting
interactions in the constructed network, equilibrium (defined as
a change of <1% in the total activity of the system between two
subsequent steps) was achieved.

Initially, the algorithm was executed using unit basal activity of
all nodes until equilibrium was achieved. Using data from our
recent microarray meta-analysis,12 basal activity values at equilib-
rium were then adjusted to reflect conditions in psoriatic lesional
skin: basal activities of protein-coding genes found to be upregu-
lated in lesional skin samples were doubled and the activity of
protein-coding genes found to be downregulated were halved.
Simulation was executed with the new basal activity values until a
new equilibrium was achieved.

Simulation of drug effects and prediction of drug efficacy
Drug effects were simulated with different hypothetical drug effi-
ciency values (ed in Eqs. 2 and 3). We also simulated drug effects

Figure 1 Method for predictive repurposing of drugs for a given indication. Network information flow is simulated in intracellular networks and drug-
specific spreading matrices (i.e., matrices containing protein activity values for different steps) are generated. SVM is trained with protein activity data for
drugs already used for the given indication. SVM models are used to predict effective drugs. False-positive results are eliminated by multiple simulation
and model construction steps. Drugs that are predicted to be effective in most high-accuracy SVM models are considered potentially effective. [Color fig-
ure can be viewed at cpt-journal.com]
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by changing the basal activity of target nodes only, without
changing the flow capacity of the corresponding interactions. For
each drug, basal activity values of target nodes and flow capacity
of the corresponding interactions were applied to the equilibrium
values achieved for psoriatic skin conditions and drug effects
were simulated until equilibrium was achieved. Drug- and
efficiency-specific spreading matrices were obtained for all 1,440
drugs simulated (Figure 1). SVM training was performed with
actual node activity values at equilibrium for 18 drugs indicated
in the treatment of psoriasis (Supplementary Table 1). Training
was performed with and without dimension reduction of data
and with different kernels (Table 1). Only models with higher
than 50% mean cross-validation accuracy were used for effective
drug prediction. To avoid false-positive results, drugs predicted to
be effective with all reliable models were considered.
Fifty-one drugs were predicted to be effective by all high-

accuracy models (Table 2). Based on drug actions, the five most
prevalent drug groups were gamma-aminobutyric acid (GABA)
receptor activators (barbiturates), sympathomimetic drugs, vita-
min D receptor (VDR) agonists, GnRH-receptor agonists, and
PPARG agonists. Barbiturates are yet not associated with psoria-
sis, but immunomodulatory effects of these substances have been
suggested.13 Epinephrine is presumed to have a role in psoriasis

pathogenesis, and, thus, the modulation of adrenergic signaling
may have disease-modifying effects.14,15 As expected, VDR ago-
nists, which are first-line therapeutic options for psoriasis, were
predicted to be effective.16 GnRH is not yet associated with psoria-
sis and the role of GnRH signaling has not yet been investigated
for this disease. Although PPARG agonist thiazolidinediones have
not yet been indicated for the treatment of psoriasis, several clinical
studies prove beneficial disease-modifying effects of these drugs.17

We chose three drugs that previously have not been directly associ-
ated with psoriasis and for which no in vitro and/or in vivo data
are available regarding their disease-modifying effects to confirm
our prediction results: the barbiturate hexobarbital sodium, the
b2-adrenergic agonist salbutamol hemisulphate, and the GnRH-
receptor agonist leuprolide acetate (LPA).

In vitro confirmation of potentially effective drugs
To select the ideal in vitro setup for the examination of drug
actions, we carried out analysis of the model PPI network to
identify the most relevant psoriasis-associated cytokines and path-
ways, which are related to the action of predicted drugs. We cal-
culated the betweenness node centrality value of proteins in the
model PPI network and in a mixed network containing both pro-
tein–protein interactions and interactions between predicted

Table 1 Properties for the training of SVM

Drug efficacy Dimension reduction Kernel Gamma l Degree Accuracy Used for prediction

100% (only node) No Linear NA 12.1 NA 85.7143 Yes

100% (only node) No Polynomial 3 –18.1 3 64.28575 Yes

100% (only node) Yes Linear NA –8.1 NA 64.28575 Yes

100% (only node) Yes Polynomial –1 –18.1 3 57.1429 Yes

100% (only node) Yes Polynomial –15 –0.1 10 35.7143 No

100% No Linear NA –12.1 NA 85.7143 Yes

100% No Polynomial –1 –18.1 3 71.4286 Yes

100% Yes Linear NA –8.1 NA 71.4286 Yes

100% Yes Polynomial 3 –16.1 3 71.4286 Yes

100% Yes Polynomial –1 –20.1 10 42.85715 No

50% No Linear NA –10.1 NA 85.7143 Yes

50% No Polynomial –1 –18.1 3 64.28575 Yes

50% Yes Linear NA –14.1 NA 71.4286 Yes

50% Yes Polynomial 3 –10.1 3 71.4286 Yes

50% Yes Polynomial –1 –20.1 10 50 No

20% No Linear NA –18.1 NA 85.7143 Yes

20% No Polynomial –1 –20.1 3 64.28575 Yes

20% Yes Linear NA –12.1 NA 71.4286 Yes

20% Yes Polynomial 3 –18.1 3 64.28575 Yes

20% Yes Polynomial –15 –0.1 10 57.14285 Yes

Different drug efficacies were simulated. Training of SVM was carried out with dimension-reduced data as well and different kernel types. Third and tenth degree polynomials were
used for polynomial kernels. Gamma and l parameters were assessed by parameter optimization (gamma is not applicable for linear kernel). Models with the highest accuracy
generated during parameter optimization (at least 50%) were used for prediction.
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drugs and their targets. Betweenness is the number of shortest
paths crossing through a given node in the network. We assumed
that most relevant nodes related to drug action are the ones that
betweenness centrality increased the most in the mixed network
compared to the model PPI network. Tumor necrosis factor

alpha (TNF) was the top-ranked cytokine and nuclear factor
kappa B (NFjB) was above the 98th percentile in the results
(Supplementary Table 2). This cytokine and activated signaling
pathway plays an essential role in the pathogenesis of psoriasis.
Additionally, most drugs indicated for the treatment of psoriasis

Table 2 Potentially effective drugs for the treatment of psoriasis

Classification Count Drugs

GABA(A) activator (theoretical data) 17

N05CA Barbiturates, plain 11 Amobarbital, Aprobarbital, Barbital, Barbituric acid derivative,
Butabarbital, Heptabarbital, Hexobarbital, Pentobarbital, Seco-
barbital, Talbutal, Thiopental

N03AA Barbiturates and derivatives 4 Metharbital, Methylphenobarbital, Phenobarbital, Primidone

Nonclassified 2 Butalbital, Butethal

Symphatomimetic (theoretical data) 15

R03AC Selective beta-2-adrenoreceptor agonists 6 Indacaterol, Pirbuterol, Procaterol, Salbutamol, Salmeterol,
Terbutaline

R03CC Selective beta-2-adrenoreceptor agonists 3 Bambuterol, Fenoterol, Formoterol

C01CA Adrenergic and dopaminergic agents 1 Arbutamine

R03AB Nonselective beta-adrenoreceptor agonists 1 Orciprenaline

R03CA Alpha- and beta-adrenoreceptor agonists 1 Ephedra

R03CB Nonselective beta-adrenoreceptor agonists 1 Isoproterenol

G02CA Sympathomimetics, labor repressants 1 Ritodrine

S01EA Sympathomimetics in glaucoma therapy 1 Dipivefrin

Nonclassified 1 Arformoterol

VDR agonist (studies available) 6

A11CC Vitamin D and analogues 5 Alfacalcidol, Calcidiol, Cholecalciferol, Dihydrotachysterol,
Ergocalciferol

H05B Anti-parathyroid agents 1 Paricalcitol

GnRH Agonist (not investigated) 4

H01CA Gonadotropin-releasing hormones 2 Gonadorelin, Nafarelin

L02AE Gonadotropin releasing hormone analogues 2 Goserelin, Leuprolide

PPARG agonist (studies available) 2

A10BG Thiazolidinediones 2 Pioglitazone, Rosiglitazone

Adenosine receptor agonist (clinical trials) 1

C01E Other cardiac preparations 1 Regadenoson

COX inhibitor (controversial) 1

M01A Anti inflammatory and antirheumatic products, nonsteroids 1 Ibuprofen

Potassium channel opener (not investigated) 1

C02D Arteriolar smooth muscle, agents acting on 1 Minoxidil

Dopaminergic agonist (pilot study) 1

C01CA Adrenergic and dopaminergic agents 1 Dobutamine

Nonproteinogenic amino acid (not investigated) 1 Canaline

Nonsaccharide sweetener (not investigated) 1 Aspartame

Drugs were classified based on their action and association of the drug class with psoriasis is indicated in parentheses. Subclassification was based on the Anatomical
Therapeutic Chemical (ATC) Classification System.
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alter NFjB activity and the examination of this pathway is the
focus of drug discovery for the disease.18–21 Thus, the effect of
different drug concentrations on TNF-induced NFjB activity
was measured in our experiments using a dual-luciferase reporter
assay. As hyperproliferation of keratinocytes is one of the most
important hallmarks in psoriasis, the TNF-induced NFjB activ-
ity was measured in a keratinocyte cell line.22 A plasmid contain-
ing NFjB promoter-controlled firefly luciferase gene and a

plasmid containing a renilla luciferase gene were both transfected
into HPV-keratinocyte cells. Cells were treated with three differ-
ent concentrations of hexobarbital-sodium and salbutamol-
hemisulphate 24 h after transfection, and 10 ng/ml human
recombinant TNF was added to the cultures 1 h after treatment.
Relative luminescence, which is proportional to NFjB induction,
was measured 17 h after TNF treatment. This experimental setup
produced inconsistent results for leuprolide-acetate, which may

Figure 2 All drugs predicted for efficacy in psoriasis significantly inhibited the TNF-dependent induction of NFjB in HPV-keratinocytes. Data are pre-
sented as means 6 SD. *P < 0.001 vs. control group; **P < 0.001 vs. 10 ng/ml TNF group; ***P < 0.01 vs. 10 ng/ml TNF group; n 5 9. HXB, hexobar-
bital sodium; SBT, salbutamol-hemisulphate; LPA, leuprolide-acetate. [Color figure can be viewed at cpt-journal.com]
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be explained by the finding that GnRH effects are mediated by
the long-term pulsatile release of the hormone.23 Thus, three dif-
ferent concentrations of leuprolide-acetate were used for 72 h,
replacing the drug-containing media every 24 h. We added 10
ng/ml human recombinant TNF after 72 h and measured lumi-
nescence 17 h later.
TNF-induced NFjB activity was suppressed by all the tested

drugs, where inhibition was dose-dependent for hexobarbital-
sodium and leuprolide-acetate (Figure 2). To further examine
whether suppression of the NFjB activity results in modulation
of the pathway, we carried out quantitative real-time polymerase
chain reaction (qRT PCR) for the NFjB target gene interleukin
(IL)-1b. All tested drugs inhibited the upregulation of IL-1b after
TNF treatment (Supplementary Figure 1). Our results sug-
gested potential disease-modifying effects of these drugs in vitro.
Considering the role of keratinocytes in psoriasis, we next

examined the effects of these drugs on lesion formation in a
mouse model of psoriasis.

In vivo confirmation of predicted drugs
We carried out in vivo confirmation of potentially effective drugs.
Imiquimod-induced skin inflammation in mice is a conventional
model of psoriasiform dermatitis.10 We treated mice for 6 days with
imiquimod (positive control), imiquimod and gels containing drugs,
or imiquimod and gel vehicle alone (negative control). Ear thickness,
which is indicative of edema, cellular infiltration, and hyperprolifera-
tion of the epidermis, all of which are characteristic of psoriasis, was
measured each day. All three drugs significantly reduced ear thicken-
ing (Figures 3, 4a): whereas ear thickness increased 80–90% in mice
treated with imiquimod and imiquimod 1 vehicle compared to
untreated mice, it increased only 20–30% in drug-treated mice. His-
tological examination of ear specimens was performed after 6 days

Figure 3 All predicted drugs significantly inhibited imiquimod-induced ear thickening in mice. (a) Ear thickness (lm). (b) Relative ear thickness. All mea-
sured values are normalized to the mean ear thickness for the group on day 0. Data are presented as means 6 SD. *P < 0.05 vs. measurements for mice
treated with imiquimod or imiquimod 1 vehicle; n � 10. IMQ, imiquimod; HXB, hexobarbital sodium; SBT, salbutamol-hemisulphate; LPA, leuprolide-acetate.
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of treatment. As keratinocyte hyperproliferation is characteristic for
psoriasis, we measured epidermal thickness of all ear specimens at
multiple loci, and found that ear thickness was significantly lower in
drug-treated mice compared to positive and negative control mice
(Figure 4b). We also assessed cellular infiltration in the dermis com-
putationally. Cellular infiltration is caused by skin homing of T-
lymphocytes and extravasation of neutrophil granulocytes induced
by inflammatory cytokines.16 We found that all drugs significantly
decreased cellular infiltration by Day 6 compared to positive and
negative control treatment (Figure 4c).

DISCUSSION
Analysis and modeling of intracellular networks are popular
methods in drug discovery, and our results suggest that these
methods, in combination with machine learning, are powerful
tools for drug repositioning as well. We developed a promising
algorithm to simulate drug effects on protein–protein interaction
networks. We selected psoriasis to test our method, as this com-
mon disease currently has multiple treatment options. We gener-
ated multiple high-accuracy models with SVM for drug efficacy
and used these models to predict potential disease-modifying

Figure 4 Histological examination of ear specimens after 6 days of treatment. (a) Characteristic microscopic pictures from each treatment group,
(b) thickness of the ear epidermis, and (c) average cell count. All three datasets indicated that the drugs significantly decreased the thickening of epider-
mis and cellular infiltration. Data are presented as mean 6 SD; *P < 0.05; n � 10. IMQ, imiquimod; HXB, hexobarbital sodium; SBT, salbutamol-
hemisulphate; LPA, leuprolide-acetate.
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substances. To avoid false-positive results, we applied stringent
selection criteria to the prediction results.
To validate the algorithm we selected three drugs with potential

antipsoriatic activity. Barbiturates activate the GABA receptors and
are used as sedatives and anticonvulsants. Historically, skin symptoms
of barbiturate poisoning already suggested an association of these sub-
stances with the skin.24 GABA type “A” receptors were identified in
the epidermis of mice and activation of this receptor prevented epi-
dermal hyperplasia.25 The effect of GABA signaling on immune
functions has already been investigated. Thiopental was reported to
inhibit the activity of IjB kinase and, thus, NFjB in Jurkat T-
lymphocytes. However, this effect was attributed to the thio-group
and was suggested to be specific for this substance.26 Our prediction
and experimental validation suggested a positive effect of hexobarbital
on psoriasiform skin inflammation. We assume that the inhibition
of NFjB may be mediated by the increased intracellular calcium level
caused by GABA receptor activation, as calcium is already reported
to inhibit the NFjB pathway in some cell types.27

Salbutamol is a b2 adrenergic receptor agonist indicated for the
treatment of bronchospasm inter alia.28 The presence of such
receptors on the membrane of keratinocytes has already been dem-
onstrated.29 The polymorphism of such receptors is associated
with susceptibility to psoriasis, which suggests a potential effect of
its modulation on disease activity.30 The b2 adrenergic signaling
pathway is associated with several immune-related functions and
with the modulation of NFjB. However, the mode of action and
whether pro- or antiinflammatory mediators are secreted are highly
dependent on cell type. The alteration of the NFjB pathway by
beta adrenergic signaling is reported to be expressed through several
mechanisms, like the modulation of NFjB subunits or interaction
between membrane receptors of the two signaling pathways.28 Our
results indicated salbutamol-mediated NFkappaB inhibition
in vitro and its antipsoriatic effect in vivo.
Leuprolide acetate activates the GnRH receptor and is indicated

for the treatment of prostate cancer and endometriosis, among
others.31 The presence of the GnRH receptor in human keratino-
cytes has not been reported yet, but immunohistochemical studies
of canine skin reported its presence in the epidermis.32 Several
reports are available about the effects of GnRH on the immune
system. Modulation of NFjB was also reported by GnRH in a
macrophage cell line.33 In that study, GnRH treatment resulted in
NFjB inhibition, which may be caused by increased intracellular
calcium levels. Although a case report described precipitation of
psoriasiform eruptions during LPA therapy, our results suggest a
potentially beneficial effect of this substance on psoriasis.34

Although additional clinical evaluation is needed to prove the effi-
cacy of these drugs on psoriasis in humans, the security assessment
for these substances has been completed in previous clinical studies,
potentially reducing the costs of repurposing these drugs for psoria-
sis. Our models were constructed using simulation results for drugs
that are already used in the treatment of psoriasis. Although we
obtained promising results in psoriasis, in the case of rare diseases or
diseases with fewer treatment options we would expect our method
to produce models with lower reliability. Our in vitro and in vivo
results suggested that the selected drugs would be effective in treating
psoriasis, but our method did not predict the level of drug efficacy.
Since the prediction is based on protein–protein interactions, the

use of the method is limited to drugs that mediate protein activities.
Future testing and optimization of our method should include other
diseases and drugs to determine its general applicability.

MATERIALS AND METHODS
Network flow simulation
We developed an algorithm in R (Vienna, Austria) that calculates step-
wise activity of nodes in a network. One step in the flow is the diffusion
of all actual activity from one node (source) to downstream connected
nodes (targets). The model uses a weighted adjacency matrix that is gen-
erated from the edge list format of networks. All nodes have a basal
activity added to its actual activity before the next step. In a step, the
activity flows from the source node “a” to the target node “b”, as follows:

Ia;b5
wa;bma;bðxa1caÞPn

i51 wa;i
(1)

where wa,b 5 the weight of the interaction (positive real number), ma,b 5
action of node “a” on “b” (m 5 1 in case of activation, m 5 –1 in case of
inhibition), xa 5 activity of the source node before actual step, c 5 basal
activity of source node, and n 5 number of interactions originating from
node “a”.

The algorithm creates a so-called spreading matrix, in which rows cor-
respond to nodes and columns correspond to actual activity values of
nodes at the beginning of a given step. The spreading matrix is created
using adjacency matrix and Eq. 1.

Machine learning and simulation of drug effects
Drug effects were simulated by changing the basal activity of drug target
proteins and/or the flow capacity through interactions belonging to the
target node. The effect of 1,440 in-market or experimental drugs was
simulated and drug-specific spreading matrices were generated. Effects of
a drug “d” on flow through interactions of target node “a” was calculated
with the following formulas:

Ia;b5edgd
wa;bma;bðxa1caedgdÞPn

i51 wa;i
(2)

If ;a5edgd
wf ;amf ;aðxf 1cf Þ
Pn

i51 wf ;i
(3)

where a 5 drug target, b 5 target node of node “a” f 5 node acting on
node “a” e 5 drug efficacy (real values between 0 and 1), g 5 mode of
drug action on target node (1 for activation; –1 for inhibition), w 5 the
weight of the interaction (positive real number), m 5 action type (m 5
1 for activation, m 5 –1 for inhibition), x 5 activity of the source node
before actual step, c 5 basal activity of source node, n 5 number of
interactions originating from source node.

The e1071 R library was used for machine learning. This package
offers an interface to the LIBSVM library.35,36 We selected one-class
SVM, which differentiates one particular class of observations from all
other observations (for example, effective drugs from all other drugs).
Feature scaling and parameter optimization was carried out before
SVM training. Parameter optimization was performed with 2-fold cross-
validation. Multiple SVM runs were carried out with linear, third, and
tenth degree polynomial kernels. All runs were repeated with dimension
reduction using principal component analysis in R. Dimensions were
reduced so that the loss of variance was less than 1%.

Online data sources
The list of protein–protein interactions was downloaded from the
STRING 9.0 database.37 Highly reliable (confidence score greater than
0.800) directed interactions available for Homo sapiens with known
action (i.e., activation or inhibition) were used for protein–protein
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interaction network construction. Drug–protein interaction data with
known mode of action (activation or inhibition) were downloaded from
Drugbank.31 Drugs indicated for the treatment of psoriasis were col-
lected from the US Food and Drug Administration (FDA) Drug Label
Database (https://rm2.scinet.fda.gov/druglabel#simsearch-0). KEGG
DRUG was used for the ATC classification of drugs.38

Cell culturing
The HPV-keratinocyte cell line (HPV-KER, established in our labora-
tory from normal human keratinocytes by Polyanka et al.) was cultured
in serum-free complete keratinocyte medium (KSFM, Gibco Laborato-
ries, Grand Island, NY) supplemented with 5 ng/ml recombinant epider-
mal growth factor, 50 lg/ml bovine pituitary extract, L-glutamine, and
antibiotic/antimycotic solution in a CO2 atmosphere at 378C. Experi-
ments were carried out with cells that had undergone at least two pas-
sages after thawing.

Dual luciferase reporter assay
HPV-keratinocytes (5 3 105) were plated in 12-well plates from flasks
containing cells at 70–80% confluence. Culturing media was refreshed
before transfection. Cells at 70% confluence were transfected with the
pGL4.75[hRluc/CMV] vector, which contains the hRluc reporter
gene regulated by a cytomegalovirus (CMV) immediate-early enhancer/
promoter, and the PathDetect NF-jB cis-Reporting plasmid (pNF-jB-
Luc, Agilent Technologies, Palo Alto, CA), which contains direct repeats
of the transcription recognition sequences for NF-jB, that drives tran-
scription of the luc2P luciferase reporter gene. The transfection mix con-
tained 25 ng/ml pGL4.75, 10 lg/ml pNF-jB-Luc, 3 V/V% Roche,
Basel, Switzerland, x-tremeGENE9 DNA transfection reagent in 100 ll
KSFM and was added to wells containing 500 ll media. Twenty-four
hours after transfection, media were removed and cells were first washed
with phosphate-buffered saline (PBS, Lonza, Basel, Switzerland) and
then were treated with drug candidates: hexobarbital-sodium (VEB Arz-
neimittelwerk, Dresden, Germany), salbutamol-hemisulphate (Sigma-
Aldrich, St. Louis, MO), and leuprolide-acetate (Sigma-Aldrich). Drugs
were dissolved in KSFM to three different concentrations. One hour
after treatment, 10 ng/ml TNF (R&D Biosystems, Minneapolis, MN)
was added to the media. For chronic leuprolide-acetate treatment, LPA-
containing media was used for 72 h and refreshed every 24 h. Ten ng/ml
TNF was added to the media after 72 h of treatment. Culturing media
was removed 17 h after TNF-treatment, cells were washed with PBS and
500 ll lysis buffer (100 ll of Promega, Madison, WI, Reporter 53 lysis
buffer in 400 ll of distilled water) was added to each well. Plates were
shaken for 15 min and the contents of each well were collected and cen-
trifuged at 10,000g for 30 sec. Supernatants were used for assay. All
experiments were carried out in three technical and three biological repli-
cates; each biological replicate was performed with new, freshly thawed
HPV-keratinocyte pools. Luminescence indicating firefly and renilla
luciferase activity was measured with a Thermo Scientific (Pittsburgh,
PA) Luminoskan Ascent Microplate Luminometer. All samples were
measured three times and average values were used for further calcula-
tion. Background values of plate wells were measured and subtracted
from sample values. Relative luciferase unit values for samples were calcu-
lated by dividing firefly relative luminescence unit values with renilla rel-
ative luminescence unit values. A Shapiro–Wilk normality test was used
to check whether measured values follow normal distribution. The iden-
tification of relevant pathways for in vitro experiments was carried out
with network analysis using the igraph “R” package.39

RNA isolation and qRT PCR
For RNA isolation, cells were suspended in 500 ll TRIzol reagent
(Sigma-Aldrich) and incubated for 10 min. Then 100 ll chloroform was
added and the samples were vortexed. The samples were centrifuged for
20 min at 10,000g and the upper aqueous phase was transferred to a
clean tube. The RNA was precipitated by adding 250 ll isopropanol
(Sigma-Aldrich). The samples were incubated for 10 min and then cen-
trifuged for 20 min at 10,000g. The supernatant was discarded and the

RNA pellet was resuspended in 75% ethanol. After 15 min incubation,
the samples were centrifuged for 5 min at 10,000g. The ethanol was dis-
carded and the RNA pellet was dried at room temperature. The RNA
pellet was dissolved in 20 ll DEPC-treated water. cDNA was synthe-
sized from 0.5 lg RNA using RevertAid First Strand cDNA Synthesis
Kit (Thermo Scientific) following the manufacturer’s protocol. Abun-
dance of IL-1b and 18s RNA transcripts was quantified using custom
primer sets and the Universal Probe Library (Roche) with qPCRBIO
Probe Mix (PCR Biosystems, London, UK) reagent. Relative gene
expression was calculated by first normalizing data for the 18S ribosomal
RNA expression and then using the 2-DDCt method. In the case of lucif-
erase assay and qRT PCR results, analysis of variance (ANOVA) was
used for the comparison of group variances; a pairwise t-test with Bon-
ferroni correction was used to compare groups. Between-group difference
with corrected P < 0.05 was considered significant. The following primers
were used for qRT PCR: 18s 50: CGCTCCACCAACTAAGAACG; 18s
30: CTCAACACGGGAAACCTCAC; IL1b 50: AAAGCTTGGT
GATGTCTGGTC; IL1b 30: AAAGGACATGGAGAACACCACT.

Preparation of gel
Active pharmaceutical ingredient-free hydrogels were prepared with
1.56 wt% hydroxypropyl methylcellulose (METHOCEL E4M Premium,
Dow Chemical, Midland, MI) and distilled water. Hexobarbital sodium
(1.3 wt%), salbutamol hemisulfate (0.42 wt%), or leuprolide acetate
(0.38 wt%) was dissolved in the hydrogel formulation. The pH of the
final hydrogels were 6.0, except the hydrogel containing LPA, which was
adjusted to a pH of 5.2 by adding an aqueous citric acid solution (Hun-
garopharma, Hungary) to ensure the stability of the LPA.40

In vivo experiments
Experiments were carried out on 8–9-week-old male BALB/c mice
weighing 21–25 g. The animals were housed in plastic cages in a thermo-
neutral environment with a 12-h light-dark cycle and had access to stan-
dard laboratory chow and water ad libitum. All interventions were in
full accordance with the National Institutes of Health (NIH) guidelines
and protocols were approved by the Ethical Committee for the Protec-
tion of Animals in Scientific Research at the University of Szeged
(license number: I.74-3/2015.M�AB).

On the day of the experiment, initial thickness of both ears of all mice
was measured with a thickness gauge (“Oditest,” Kroeplin, Germany).
Ear thickness measurement was carried out on all subsequent days before
any treatment. All treatment groups were treated with 5% imiquimod
cream (Aldara–MEDA Pharma, Hungary) at 13:00 every day. All groups
except the positive control group were treated with drug or vehicle at
9:00 and 17:00 every day. After 6 days of treatment, mice were eutha-
nized with an overdose of ketamine (300 mg/kg) and histological sam-
ples were taken from both ears.

Histology
Ears of mice were fixed in a buffered solution of formaldehyde (4%) and
embedded in paraffin from which 3-lm-thick coated slides were prepared.
All slides were stained with hematoxylin and eosin. Microscopic images of
histological specimens were digitalized and visualized with Pannoramic
Viewer v. 1.15. (3DHISTECH). Epidermal thickness of all ear specimens
was measured 10 times in all field of views at 103 magnification by two
independent persons and the mean thickness was calculated for each ear
specimen. The number of cells in the dermis was calculated computation-
ally using the ImageJ software41 in all homogenous fields of view (i.e.,
excluding vessels, sebaceous glands, epidermal, subcutaneous structures, and
follicles) at 403 magnification for each ear specimen. Briefly, the areas to
analyze were converted to 8-bit color-depth images and the color was
changed to black and white based on a threshold. Subsequently, watershed
segmentation was carried out, and particles were analyzed with a size prop-
erty of 500 to infinity and circularity property 0 to 1. Mean cell count in a
field of view was calculated for each ear specimen.

Additional Supporting Information may be found in the online version of
this article.
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