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Cigarette smoke-triggered inflammatory cascades and consequent tissue damage are the main causes of
chronic obstructive pulmonary disease (COPD). There is no effective therapy and the key mediators of
COPD are not identified due to the lack of translational animal models with complex characterization.
This integrative chronic study investigated cardiopulmonary pathophysiological alterations and mech-
anisms with functional, morphological and biochemical techniques in a 6-month-long cigarette smoke
exposure mouse model. Some respiratory alterations characteristic of emphysema (decreased airway
resistance: Rl; end-expiratory work and pause: EEW, EEP; expiration time: Te; increased tidal mid-
expiratory flow: EF50) were detected in anaesthetized C57BL/6 mice, unrestrained plethysmography
did not show changes. Typical histopathological signs were peribronchial/perivascular (PB/PV) edema at
month 1, neutrophil/macrophage infiltration at month 2, interstitial leukocyte accumulation at months 3
e4, and emphysema/atelectasis at months 5e6 quantified by mean linear intercept measurement.
Emphysema was proven by micro-CT quantification. Leukocyte number in the bronchoalveolar lavage at
month 2 and lung matrix metalloproteinases-2 and 9 (MMP-2/MMP-9) activities in months 5e6
significantly increased. Smoking triggered complex cytokine profile change in the lung with one char-
acteristic inflammatory peak of C5a, interleukin-1a and its receptor antagonist (IL-1a, IL-1ra), monokine
induced by gamma interferon (MIG), macrophage colony-stimulating factor (M-CSF), tissue inhibitor of
matrix metalloproteinase-1 (TIMP-1) at months 2e3, and another peak of interferon-g (IFN-g), IL-4, 7, 13,
17, 27 related to tissue destruction. Transient systolic and diastolic ventricular dysfunction developed
after 1e2 months shown by significantly decreased ejection fraction (EF%) and deceleration time,
respectively. These parameters together with the tricuspid annular plane systolic excursion (TAPSE)
decreased again after 5e6 months. Soluble intercellular adhesion molecule-1 (sICAM-1) significantly
increased in the heart homogenates at month 6, while other inflammatory cytokines were undetectable.
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List of abbreviations

BALF bronchoalveolar lavage fluid
BLC B-lymphocyte chemoattractan
COPD chronic obstructive pulmonary
EEP end-expiratory pause
EEW end-expiratory work
EF% ejection fraction
EF50 tidal mid-expiratory flow
f frequency
IL-1a interleukin-1 alpha
IL-1ra interleukin-1 receptor antagon
IL-16 interleukin-16
I-TAC interferon-inducible T-cell che
KC keratinocyte chemoattractant
LAA/TLV low attenuation area/total lung
Lm mean linear intercept (chord)
LV left ventricular
MCP-1 monocyte chemoattractant pro
M-CSF macrophage colony-stimulatin
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This is the first study demonstrating smoking duration-dependent, complex cardiopulmonary alterations
characteristic to COPD, in which inflammatory cytokine cascades and MMP-2/9 might be responsible for
pulmonary destruction and sICAM-1 for heart dysfunction.

© 2017 Elsevier Ltd. All rights reserved.
t
disease

ist

moattractant

volume ratio
length

tein-1 (JE)
g factor

MIG monokine induced by gamma interferon
MMP matrix metalloproteinase
MV minute ventilation
PB/PV peribronchial/perivascular
PEF peak expiratory flow
PIF peak inspiratory flow
RANTES regulated on activation normal T cell expressed and

secreted
Rl airway resistance
RT relaxation time
SDF-1 stromal cell-derived factor 1
sICAM-1 soluble intercellular adhesion molecule-1
TAPSE tricuspid annular plane systolic excursion
Te expiratory time
Ti inspiratory time
TIMP-1 tissue inhibitor of metalloproteinase-1
TNF-a tumor necrosis factor-alpha
TREM-1 triggering receptor expressed on myeloid cells-1
TV tidal volume
WBP whole-body plethysmography
1. Introduction

Chronic obstructive pulmonary disease (COPD) is a major global
health problem that in 2020 is projected to rank fifth worldwide in
terms of economic and social burden of disease and third in terms
of mortality. According to the most recent definition and descrip-
tion of the Global Initiative for Chronic Obstructive Lung Disease
(GOLD 2017) from the Global Strategy for the Diagnosis, Manage-
ment and Prevention of COPD, it is characterized by persistent
respiratory functions and airflow limitation. It is usually progres-
sive and associated with an enhanced chronic inflammatory
response in the airways and the lung due to airway and/or alveolar
abnormalities usually caused by noxious particles or gases. Exac-
erbations and comorbidities contribute to the overall severity
(Vestbo et al., 2013). Functional respiratory disorders result from
chronic obstructive bronchiolitis narrowing the small airways and
emphysema due to lung parenchymal destruction. COPD adversely
affects both the structure and function of the right ventricle due to
pulmonary arterial hypertension, the phenomena known as cor
pulmonale. It is known that chronic hypoxia leads to pulmonary
arteriolar constriction that represents an increased afterload for the
right ventricle. In addition chronic hypoxia may induce functional
contractile impairment of the left ventricle as well. Therefore, the
potential effect of carbon-monoxide, an important toxic compound
of cigarette smoke should also be emphasized, which may greatly
contribute to the development of hypoxic conditions and related
diseases. Cigarette smoking is the most common cause of COPD
accounting for approximately 95% of cases in developed countries
besides other predisposing factors, such as air pollutants and
occupational exposure (Salvi and Barnes, 2009).

There is no curative treatment, the available therapy is restricted
y, �A., et al., Integrative cha
ental Pollution (2017), http://
to corticosteroids, adrenergic b2 receptor agonists and acetylcho-
line muscarinic receptor antagonists that can only slow down the
progression and alleviate the symptoms (Vestbo et al., 2013).
However, these have limited effect in a relatively small patient
population (Restrepo, 2015). Therefore, there is an urgent need to
find novel therapeutic targets in COPD. Due to the extensive in-
terest in this area of research, our knowledge of the underlying
mechanisms has remarkably expanded. Cigarette smoke and other
airway irritants induce an abnormal inflammatory response
involving CD8þ lymphocytes, neutrophils and macrophages. These
immune cells release chemotactic factors, colony stimulating fac-
tors and proinflammatory cytokines, thus sustain and enhance
inflammation and immune cell recruitment. Furthermore, pro-
teases like neutrophil elastase, cathepsins and matrix metal-
loproteinases (MMPs) are responsible for elastin destruction
resulting in emphysema formation (Barnes et al., 2003; Yao et al.,
2013). However, the complex pathophysiological mechanism, the
inflammatory cascades and the role of the immune cells, sensory
nerves and neuro-immune interactions, as well as the key media-
tors need to be determined to identify potential novel therapeutic
targets (Canning and Spina, 2009).

Besides human studies to analyse tissue samples, translational
animal models are particularly important to define the patho-
physiological processes underlying the molecular pathways. Many
species like rodents, sheep, dogs, guinea pigs, and monkeys have
been investigated for modeling COPD (Helyes and Hajna, 2012;
Leberl et al., 2013; Wright and Churg, 2008), but considering the
possibilities of genetic engineering, easier handling and less com-
pound requirement, mouse models seem to be most suitable and
promising to elucidate the pathophysiological pathways and the
complexity of the mechanisms (Martorana et al., 2006; Mercer
racterization of chronic cigarette smoke-induced cardiopulmonary
dx.doi.org/10.1016/j.envpol.2017.04.098
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et al., 2015; Vlahos et al., 2006).
Several studies focus on the protease-antiprotease imbalance

and use only short-lastingmodels of various types of elastases, such
as pancreatic elastase, neutrophil elastase, proteinase-3 (Beeh et al.,
2003; Shapiro et al., 2003; Sinden et al., 2015; Yao et al., 2013), or
lipopolysaccharides and inorganic dusts to investigate their role in
the development of emphysema. These models have been proved
to be useful, however, they focus only on one factor that is an in-
termediate player of the pathophysiological cascade. Meanwhile,
cigarette smoke, which is the most common initial triggering
stimulus in the human disease, switches on a variety of other
pathways and mechanisms that are upstream mediators (Shapiro
et al., 2003). In order to investigate the whole complexity of the
chronic persistent inflammatory process, the only authentic
translational model for COPD is the chronic cigarette smoke
exposure (Fricker et al., 2014; Luo et al., 2017). This model has been
used by several groups so far, but their broad conclusive potential is
limited by the facts that they 1) applied different protocols,
experimental paradigms, exposure durations and intensities, 2) did
not have a longitudinal self-control follow-up design, 3) did not aim
to use an integrative methodological approach to investigate the
complexity of the disease, only focused on certain specific param-
eters, 4) used different strains, and 5) did not take the common
cardiovascular comorbidities into consideration. It is important to
note that genetic variance, sex and different cigarette types have a
great influence on the outcome of chronic cigarette smoke expo-
sure (Bartalesi et al., 2005; Phillips et al., 2016, 2015; Tam et al.,
2015). Since C57Bl/6 mice are the most widely used one for ge-
netic manipulations, and it is very sensitive to cigarette smoke
(Martorana et al., 2006) it would be the most important to set up,
characterize and optimize a model in this strain. Therefore, we
aimed to establish a translational mouse model for complex func-
tional, morphological, immunological and biochemical investiga-
tion of chronic cardiopulmonary pathophysiological changes
characteristic to COPD. This helps to analyse the mechanisms in
different stages of the disease, and identify key targets for phar-
macological research.

2. Materials and methods

For detailed description of materials, methods and statistics
please see the online supplementary material.

2.1. Animals

Experiments were performed on 8-week-old male C57BL/6 mice
to avoid potential variations related to the estrus cycle-induced
hormonal changes (Yoshizaki et al., 2017) weighing 20e25 g at the
beginning of the study; each group consisted of 6 mice. Animals
were bred and kept in the Laboratory Animal House of the Depart-
ment of Pharmacology and Pharmacotherapy, University of P�ecs, at
24e25 �C, provided with standard chow and water ad libitum,
maintained under 12 h light-dark cycle. All procedures were carried
out according to the 40/2013 (II.14.) Government Regulation on
Animal Protection and Consideration Decree of Scientific Procedures
of Animal Experiments and Directive 2010/63/EU of the European
Parliament. Theywere approved by the Ethics Committee on Animal
Research of University of P�ecs according to the Ethical Codex of
Animal Experiments (licence No.: BA02/2000-5/2011).

2.2. Experimental protocol and investigational techniques

Animals were exposed to cigarette smoke (3R4F Kentucky
Research Cigarette; University of Kentucky, USA) in a two-port TE-2
whole-body smoke exposure chamber (Teague Enterprise, USA)
Please cite this article in press as: Kem�eny, �A., et al., Integrative cha
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twice daily, 10 times/week for 6 months. Two cigarettes were
smoked at a time for 10 min with a puff duration of 2 s and a puff
frequency of 1/min/cigarette, mice were exposed to smoke for
30 min followed by a ventilation period of 30 min during which
smoke was driven from the chamber. The total particulate matter
(TPM 154.97 ± 5.18 mg/m3), nicotine (9.86 ± 0.33 mg/m3) and
carbon-monoxide (147.57 ± 4.93 ppm) concentrations were
determined every week. Age-matched non-smoking mice kept
under the same circumstances served as controls. The precise
composition of the mainstream smoke is well established and
described in detail (Roemer et al., 2012).

Before the treatment period and at the end of each month, body
weight was measured (see Suppl. Fig. E2) and 6 smoking and 6
intact animals were sacrificed after ketamine and xylazine anes-
thesia. Lungs and hearts were excised and rinsed with cold
phosphate-buffered saline. Lungs were dissected into 3 pieces: 2
pieces were snap frozen and one part was placed in 6% formalde-
hyde solution.

At the end of the 6th month blood samples were collected and
restrained whole body plethysmography was performed by inva-
sive methodology. Some functional parameters (airway resistance
(Rl), end-expiratory work (EEW), tidal mid-expiratory flow (EF50),
end-expiratory pause (EEP), expiratory time (Te) and inspiratory
time (Ti)) were measured by restrained whole-body plethysmog-
raphy (PLY4111, Buxco Europe Ltd., Winchester, UK) in anaes-
thetized, tracheotomized and ventilated mice.

Airway responsiveness was determined at the end of each
month by unrestrained whole-body plethysmography (WBP) with
Buxco instrument (PLY3211, Buxco Europe Ltd., Winchester, UK) in
conscious, spontaneously breathing animals. Breathing function
parameters (relaxation time: RT, frequency: f, tidal volume: TV,
minute ventilation: MV, inspiratory time: Ti, expiratory time: Te,
peak inspiratory and expiratory flows: PIF, PEF) were calculated by
the Buxco software (Elekes et al., 2008).

Pulmonary structural changes were imaged by a Skyscan 1176
high resolution microtomograph (Skyscan, Kontich, Belgium) at the
end of each month. Emphysema was calculated by the ratio of LAA
(low-attenuation area) and total lung volume (TLV) (Kobayashi
et al., 2013).

Excised lung tissue samples were formalin-fixed (6%) and
embedded in paraffin, 5 mm sections were cut and stained with
haematoxylin-eosin for further histological analysis. Emphysema
was quantified by measuring the mean linear intercept (chord; Lm)
length (Knudsen et al., 2010) using CaseViewer software (3DHIS-
TECH Ltd., Hungary) (n ¼ 80e100 chords in 400.000 mm2 area per
animal). Histolopathological analysis was performed by a pathol-
ogist in a blind manner in order to evaluate perivascular/peri-
bronchial edema, acute and chronic inflammation, interstitial acute
and chronic inflammation, epithelial damage and goblet cells on a
semiquantitative scale ranging from 0 to 3.

Total cell count and the ratio of lymphocytes, monocytes and
granulocytes of the bronchoalveolar lavage fluids were analysed
with CyFlow Space flow cytometer (Partec, Germany) at the end of
each month (Ma et al., 2001).

Pulmonary MMP-2 and MMP-9 activities from lung samples
were measured by gelatin zymography. Gelatinolytic activities of
MMPs were examined as previously described (Kupai et al., 2010).
Band intensities were quantified and expressed as the ratio to the
internal standard.

Forty inflammatory cytokines from lung and heart homogenates
as well as serum samples were determined simultaneously with
Mouse Cytokine Array Panel A (R&D Systems). To eliminate the
interassay variability all data were re-calculated with the same
control-spot densities (Szitter et al., 2014). Cytokine heat map was
generated by Matrix2png 1.2.1 online freeware (Pavlidis and Noble,
racterization of chronic cigarette smoke-induced cardiopulmonary
dx.doi.org/10.1016/j.envpol.2017.04.098
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2003).
Transthoracic echocardiography was performed by a VEVO 770

high-resolution ultrasound imaging system (VisualSonics Vevo
770® High-Resolution Imaging System, Toronto, Canada) equipped
with a mouse cardiac transducer (30 MHz), and ejection fraction
(EF%), tricuspid annular plane systolic excursion (TAPSE) and
deceleration time were determined at the end of each month
(Respress and Wehrens, 2010).

3. Results

3.1. Chronic cigarette smoke exposure impairs respiratory functions

Pulmonary functions were determined at the end of eachmonth
in conscious mice by unrestrainedwhole-body plethysmography in
a self-controlled manner. None of the parameters determined by
this technique (RT, f, TV, MV, Ti, Te, PIF, PEF) were different between
the smoking and non-smoking groups at any time-points during
the 6-month-period (see Suppl. Fig. E1). This is in complete
agreement with the findings of Vanoirbeek and colleagues, who
demonstrated that the non-invasive method is irrelevant and not
appropriate to determine functional alterations in mouse disease
models, especially in emphysema (Vanoirbeek et al., 2010). At the
end of the sixth month, restrained whole-body plethysmography
was performed in tracheotomized, anaesthetized and mechanically
ventilated mice. Significant decrease of Rl, EEW, EEP, Te, as well as
increase of EF50 and Ti/(Ti þ Te) ratio were observed, whereas
dynamic compliance did not change in response to chronic smoke
exposure as compared to the non-smoking group (Fig. 1).

3.2. Cigarette smoke induces emphysema formation shown by
in vivo micro-CT

Dynamic structural changes of the lung were investigated by
in vivomicro-CT during the 6-months smoking period. Emphysema
formation, as the most important sign of tissue destruction, was
clearly observed on the reconstructed 3D images (Fig. 2A). Ac-
cording to our morphometric analysis the low attenuation area/
total lung volume ratio (LAA/TLV%), a quantitative indicator showed
significant increase by the end of the 5th month that was further
increased by the end of the 6th month (Fig. 2B).

3.3. Smoke exposure induces characteristic histopathological
alterations in the lung

As compared to the intact, normal lung structure of a 3-month-
old mouse (Fig. 3A), one month of cigarette smoke exposure
induced a minimal peribronchial and moderate perivascular edema
formation, and slightly increased numbers of granulocytes and
macrophages in the lung parenchyma (Fig. 3B). After 2 months of
smoking, there was an extensive perivascular and peribronchial
edema with a large number of granulocytes, macrophages and
lymphocytes infiltrating these regions. Inflammation was charac-
teristic both in the interstitial and peribronchial areas, in addition
the bronchiolar epithelial cell layer became irregular, the bronchi-
olar and alveolar epithelium showed signs of damage, and the
number of interepithelial mucus-producing cells was increased
(Fig. 3C and D). Interestingly, this massive inflammatory reaction
showed a decreasing tendency from the 3-month-timepoint, the
peribronchial edema was still present, but less extensive, the
number of immune cells was reduced and were mostly lympho-
cytes, whichmoved from the peribronchial spaces to the interstitial
regions. Meanwhile, the bronchiolar epithelium destruction was
remarkably greater (Fig. 3E). At the 4-month-smoke exposure, the
irregularity and damage of the bronchial epithelium was further
Please cite this article in press as: Kem�eny, �A., et al., Integrative cha
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aggravated. Tissue destruction became more severe, mild emphy-
sema (enlargement of airspaces throughout the parenchyma) and
atelectasis developed particularly on the peripheral regions. How-
ever, mild edema was limited to the perivascular spaces and the
number of inflammatory cells remarkably decreased (Fig. 3F). After
5e6 months of smoking emphysema dominated the histological
picture, first mainly in the peripheral areas, then also in the central
parts of the lung. Inflammatory reaction at this stage was minimal,
only few macrophages and lymphocytes could be noticed in the
remaining parenchyma, while irregularity of the bronchial
epithelium and hyperplasia of the mucus producing cells could be
observed (Fig. 3G and H). The semiquantitative histopathological
scoring results throughout the 6-month study are shown in Fig. 4.
Remarkable alveolar space enlargement (Lm) was observed already
after 1 month of smoke exposure in comparison with the non-
smoking group (Fig. 2C). This parameter mainly characteristic to
emphysema progressively increased, by the end of the 5th month
the distal air space was significantly expanded in smoking mice as
compared to the Lm after the 1st month parallelly to our micro-CT
findings.

3.4. Inflammatory cell profile analysis of the bronchoalveolar
lavage fluid (BALF)

Flow cytometric analysis revealed no difference between the
granulocyte, macrophage and lymphocyte numbers of the BALF
samples obtained from smoke-exposed and intact mice at the end
of the first month. In contrast, 2 months of smoke exposure induced
an enormous increase in the number of all these cells in the BALF,
which gradually decreased afterwards. The total number and the
composition of BALF cells did not differ from the values of the non-
smoker mice from the 3rd month. A tendency of increase in gran-
ulo- and lymphocyte numbers was observed in the smoking group
at the end of the 3rd month, but it did not reach statistical signif-
icance (Fig. 5).

3.5. Chronic tobacco smoke increases MMP-2 and MMP-9 activities
in the lung

Gelatin zymography showed a significant increase in pulmonary
activity for MMP-2 as well as for MMP-9 in the lung samples of
mice subjected to 6-month cigarette smoke exposure as compared
either to 1-month smokers or to non-smoker age-matched control
mice (Fig. 6).

3.6. Cytokine expressions in the lung, serum and heart

Among the 40 investigated inflammatory cytokines and che-
mokines 26 proteins were detectable in lung homogenates
throughout the 6-month experiment. At the end of the first month,
interleukin-1b (IL-1b), IL-10 and monocyte chemoattractant
protein-5 (MCP-5) increased significantly, but none of them were
detectable later. The triggering receptor expressed on myeloid
cells-1 (TREM-1) showed a peak expression at this time-point. The
C5a complement component, interleukin-1 receptor antagonist (IL-
1ra) produced by several immune cells and epithelial cells,
interleukin-16 (IL-16), interferon-gamma inducible protein-10 (IP-
10), keratinocyte chemoattractant (KC), macrophage colony-
stimulating factor (M-CSF), monocyte chemoattractant protein-1
(MCP-1 or JE), monokine induced by gamma interferon (MIG),
regulated on activation, normal T cell expressed and secreted
(RANTES), and tissue inhibitor of metalloproteinase-1 (TIMP-1)
cytokines and chemokines reached their maximum expression at
the 2nd month. Meanwhile, the concentration of the soluble
intercellular adhesion molecule-1 (sICAM-1) was high in the intact
racterization of chronic cigarette smoke-induced cardiopulmonary
dx.doi.org/10.1016/j.envpol.2017.04.098



Fig. 1. Respiratory functions. Restrained whole-body plethysmography (WBP) parameters at the end of the 6th month. Panel A shows the airway resistance (Rl), B: end expiratory
work (EEW), C: end expiratory pause (EEP), D: tidal mid-expiratory flow (EF50), E: time of expiration (Te) and F: time of inspiration (Ti) and Te ratio at the end of the 6th month.
N ¼ 5 per group (Student's t-test for unpaired comparison, *p < 0.05; **p < 0.005; vs. the intact, non-smoking group).
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Fig. 2. Evaluation of emphysema by micro-CT measurement and histological assess-
ment of mean linear intercept (chord) length. Structural changes of the lungs were
imaged by breath-gated tomography on a Skyscan 1176 high resolution microtomo-
graph. Panel A: representative 3D pictures of mouse lung before the treatment (0) and
after 2-, 4- and 6-month smoking period. Light green and yellow areas represent the
air-filled spaces. Panel B shows the calculated percentage of emphysema by the ratio of
low-attenuation area (LAA) and total lung volume (TLV). N ¼ 6 per group (two-way
ANOVA followed by Bonferroni's post-test, *p < 0.05; **p < 0.005 vs. the intact, non-
smoking group). Panel C: mean linear intercept length (Lm) measured on formalin
fixed lung sections at the end of each month. N ¼ 80e100 per group (two-way ANOVA
followed by Bonferroni's post-test, **p < 0.005; ****p < 0.0001 vs. the intact, non-
smoking group; ##p < 0.005; ####p < 0.0001 vs 1 month of smoking).
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lung homogenate, and remained at a similarly high level during the
whole 6-month smoking period (Fig. 7A and B). In the serum of
non-smoking mice B-lymphocyte chemoattractant (BLC), stromal
cell-derived factor 1 (SDF-1), C5a, interleukin-1 alpha (IL-1a), IL-
1ra, IL-16, JE, M-CSF, TIMP-1, TNF-a, and TREM-1 were detectable.
The first two were not present in the intact lung, and they
decreased by the end of the 6-month smoking period similarly to
IL-16. KC remarkably, JE slightly increased by this time point, while
the expression of the other cytokines remained unchanged in the
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serum (Fig. 7C). In contrast, in the heart homogenates only
granulocyte-monocyte colony-stimulating factor (GM-CSF) and
sICAM-1 were detectable at relatively low levels, and sICAM-1
showed an approximately 2-fold elevation at the end of the 6th
month of smoke exposure as compared to the time-matched intact
heart samples (Fig. 7D).

3.7. Chronic tobacco smoke deteriorates cardiac function

Non-invasive echocardiographic evaluation and quantification
were performed at the end of each month in a self-controlled
manner during the 6-month experimental period. Heart rate did
not differ significantly during anesthesia among the groups (data
not shown). At the beginning of the study echocardiographic pa-
rameters of the two groups were not significantly different from
each other (Fig. 8). Moreover, there were no significant intergroup
differences in the case of left ventricular (LV) wall thicknesses
(septum, posterior wall) and LV end-diastolic volume during the
treatment period (data not shown). The results of the non-smoking
intact animals did not change significantly during the 6 months of
the experiment. In contrast, there were moderate, but significant
pathophysiological functional alterations in mice exposed to
chronic tobacco smoke transiently at 1e2 month, and also by the
end of the study.

Echocardiography revealed that left ventricular ejection fraction
(EF%) significantly decreased at the end of the first month, and then
from the 5th month of smoke exposure as compared to the age-
matched non-smoking controls (Fig. 8A and B). The diastolic LV
function (deceleration time) deteriorated markedly from the 2nd
month in the smoking group (Fig. 8C). TAPSE, which is a parameter
of the systolic right ventricular function also significantly decreased
after 4e6 months of chronic tobacco smoke exposure compared to
non-smoking mice of the same age (Fig. 8D).

4. Discussion

The present results provide the first experimental evidence in a
predictive chronic mouse model that cigarette smoke induces
characteristic pulmonary inflammation, emphysema and atelec-
tasis, as well as simultaneous development of left and right ven-
tricular dysfunction.We provedwith functional, morphological and
immunological techniques that these well-defined pathophysio-
logical alterations from the inflammatory reactions to the tissue
destruction are dependent on the duration of the smoke exposure
and COPD-like structural and functional changes develop only after
the fourth month.

Respiratory function determined by invasive WBP in anaes-
thetized, tracheotomized and mechanically ventilated mice
showed a significant decrease in airway resistance, interestingly
along with a decrease in the expiratory parameters, such as EF50
characteristic to bronchoconstriction, EEW, EEP and Te (Hoymann,
2007). Emphysema in humans is characterized by increase of
expiratory parameters, since in most cases at the stage when COPD
is diagnosed, it is associated with chronic bronchitis, thus smooth
muscle hypertrophy together with emphysema are present in pa-
tients (Caramori et al., 2014). The histopathological picture we
found in mice after 6 months of smoke exposure did not show any
inflammatory reaction with bronchial narrowing, only extensive
emphysema and atelectasis, which can explain these functional
differences compared to the human condition.

Inflammatory signs determined by the histopathological eval-
uation were clearly dependent on the duration of smoking. In the
first two months peribronchial/perivascular edema, neutrophil and
macrophage infiltration were characteristic, from the third and
fourth months macrophages and lymphocytes accumulated
racterization of chronic cigarette smoke-induced cardiopulmonary
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Fig. 3. Histopathological alterations in the lung. Representative histopathological pictures of the lung samples obtained before the treatment (A) and after 1 month (B), 2 months (C,
D), 3 months (E), 4 months (F), 5 months (G) and 6 months (H). HE staining, magnification: 200�, except panel D: 400�; b: bronchioles, v: vessels; a: alveoli, *: peribronchiolar
edema, black arrow: disruption of bronchi wall, double headed arrows: granulocyte accumulation, e: emphysema.

�A. Kem�eny et al. / Environmental Pollution xxx (2017) 1e14 7
predominantly in the interstitial areas, and epithelial irregularity
and hyperplasia developed. From the 5th month, the extent of in-
flammatory reaction decreased and tissue destruction dominated
as shown by remarkable development of emphysema and atelec-
tasis. Vascular endothelial proliferation, destructed bronchi with
desquamated epithelial cells, fibrosis and a loss of the alveolar
structurewere detected by the end of the 6-month experiment. The
histologically observed peak of peribronchial inflammation at 2
months of smoking was strongly supported by the drastically
elevated numbers of granulocytes, macrophages and lymphocytes
in the BALF. At later time-points cell counts in BALF were not
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changed, which is not surprising, since at this stage interstitial
localization of the inflammation (at month 3) and the destruction
of the bronchial epithelium (from month 4) were observed on
histology. The development of emphysema after 5e6 months of
smoke exposure was also clearly detected by micro-CT in complete
agreement with the histological picture. Therefore, one major
message of our study is that duration of smoking strongly de-
termines pathophysiological alterations that develop sequentially
in the lung as a cascade from different types of inflammatory
processes to tissue destruction. We described a transient inflam-
mation in contrast to a persistent process caused by chronic
racterization of chronic cigarette smoke-induced cardiopulmonary
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Fig. 4. Semiquantitative histopathological evaluation of lung sections. Box plots representing lesion extent on a range from 0 to 3 (mean ±minimal-maximal values) of perivascular/
peribronchial edema (PPE) (A), perivascular/peribronchial acute inflammation (PPAI) (B), interstitial acute inflammation (IAI) (C), perivascular/peribronchial chronic inflammation
(PPChI) (D), interstitial chronic inflammation (IChI) (E), epithelial damage (ED) (F) and goblet cells (GC) (G) at the end of each month. N ¼ 6 per group (Kruskal-Wallis followed by
Dunn's multiple comparison test to observe intragroup differences by time #p < 0.05, ##p < 0.005, ###p < 0.0005 vs. same group; Mann Whitney test to analyse intergroup
differences at given time points *p < 0.05, **p < 0.005 smoking vs. intact group.

�A. Kem�eny et al. / Environmental Pollution xxx (2017) 1e148

Please cite this article in press as: Kem�eny, �A., et al., Integrative characterization of chronic cigarette smoke-induced cardiopulmonary
comorbidities in a mouse model, Environmental Pollution (2017), http://dx.doi.org/10.1016/j.envpol.2017.04.098



Fig. 5. Inflammatory cell concentrations in the BALF. The number of lymphocytes (A), granulocytes (B) and macrophages (C) in bronchoalveolar lavage fluid (BALF) samples were
analysed with flow cytometry after each month. N ¼ 6 per group (two-way ANOVA followed by Sidak's multiple comparison test, ***p < 0.001 vs. the intact, non-smoking group).
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exposure of the same type of cigarette demonstrated by others
(Phillips et al., 2015). It should be emphasized that they targeted a 4
times higher TPM and 3 times daily exposure and used female mice
being more sensitive to oxidative stress and TGF-b pathways in the
small airways compared to males (Tam et al., 2015). It is crucial to
choose the correct experimental paradigm depending on which
mechanisms and phase of the chronic disease model are aimed to
be investigated (Leberl et al., 2013).

Our present study demonstrates for the first time in the litera-
ture the alterations of myocardial functions, as well as cardiac
cytokine and MMP profiles in response to chronic smoke exposure
(Suppl. Fig. E3). Recently, smoking-induced COPD models have
been in the focus of respiratory research (Eltom et al., 2013; Luo
et al., 2017; Wang et al., 2014), but none of these studies investi-
gated the effects of chronic cigarette smoking on cardiac alter-
ations. AlthoughWang et al. investigated the alterations of the right
ventricle in a rat model of smoking-induced COPD, they did not
determine either cardiac functional parameters or MMPs activity
and inflammatory cytokines, but only right ventricular hypertrophy
index (Wang et al., 2014). Therefore, the present study provides
novel insight into the functional and molecular changes in the
heart, especially in the left ventricle, during the development of
COPD induced by chronic cigarette smoking. The transient
impairment of the cardiovascular functions after 1 and 2 months of
smoke exposure is likely to be due to the massive edema formation
and inflammation in the lung, as described by the histopathological
evaluation. Since the measured cardiovascular alterations are
closely and sensitively related to the pulmonary pathophysiology,
the observed mild, but significant systolic and diastolic dysfunc-
tions at these earlier time points. CO could potentially be involved
in the cardiac changes as a direct or indirect pathogenic factor in
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our model, and might explain -at least partially- the ejection frac-
tion decrease.

According to the well-established involvement of MMPs in
COPD and emphysema even proposing a potential approach for
pharmacological intervention (Gueders et al., 2006), we measured
MMP-2 and MMP-9 activities in the mouse lung and found a sig-
nificant increase after 6 months of smoking. Similarly to our find-
ings, intraperitoneal administration of a cigarette smoke extract in
mice also showed increased pulmonary expressions and activities
of these gelatinases (Zhang et al., 2013). In contrast, another recent
mouse experiment of 6-month-long cigarette smoke exposure
presented no differences either in MMP-2 or in MMP-9 mRNA
levels in lung samples (Eurlings et al., 2014). However, without any
alterations in gene expressions, MMP-2 and -9 may exert increased
activities in case they are activated by enhanced oxidative stress as
a result of cigarette smoke exposure (Bencsik et al., 2008; Viappiani
et al., 2009; Zhang et al., 2005). Regarding the role of MMP-9 in
cigarette smoke-induced pathophysiological alterations in the lung,
MMP-9-deficient mice developed similar emphysema, but they
were protected from small airway fibrosis (Barnes et al., 2003).
Clinical data revealed elevatedMMP-1, -9 and -12 levels in the BALF
and plasma of patients with severe COPD (D'Armiento et al., 2013),
as well as increased MMP-9 in the plasma and emphysematous
lung of smokers (Atkinson et al., 2011). Furthermore, enhanced
release of MMP-9 and its endogenous inhibitor, TIMP-1 were
detected from isolated human macrophages obtained from the
BALF of smokers (Sam et al., 2000), and the BALF concentrations
and macrophage expression of MMP-9 and MMP-1 (collagenase)
also increased in COPD-emphysema patients (Barnes et al., 2003).
Increased activity of the active 64 kDa MMP-2 isoform was shown
in pneumocytes and alveolar macrophages isolated from COPD
racterization of chronic cigarette smoke-induced cardiopulmonary
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Fig. 6. MMP-2 and MMP-9 activities in the mouse lung. Panel A shows representative zymograms of the lung samples obtained after 1 or 6 months of tobacco smoke exposure in
comparison with the non-smoking intact. Panel B represents the mean arbitrary units±S.E.M. of N ¼ 6 mice per group. (Student's t-test for unpaired comparison, *p < 0.05 vs. the
intact, non-smoking group).
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patients with emphysema (Ohnishi et al., 1998). Furthermore, in a
coronary artery disease patient group we have previously found a
significantly increased activity of serum MMP-2 in a smoking
subgroup of patients as compared to non-smoking patients with
the same selection criteria (severity of disease, other co-
morbidities, medications, etc.; 50.5 ± 9.8 vs. 26.2 ± 5.0;
n ¼ 8e13, p < 0.05 with Student's t-test for unpaired comparison)
(Bencsik et al., 2015). Plasma MMP-9 activity was also higher, but it
did not reach the level of statistical significance (193.3 ± 74.2 vs.
122.6 ± 34.4). However, in another study, the increased MMP levels
in the plasma, BALF, and lung did not correlate with the disease
severity and were not predictive of the progression (D'Armiento
et al., 2013). Therefore, our MMP results can point out a similarity
between the mechanisms in the mouse model and the human
disease supporting its translational relevance, but specific inhibi-
tion of MMP-9 is not likely to be an effective therapy for cigarette
smoke-induced emphysema (Atkinson et al., 2011).

The cytokine panel measured from the lung homogenates
showed a 2-phase pattern during the 6-month-smoke exposure: a
characteristic profile was seen at the end of the second month
when the inflammatory reaction reached its maximum, and
another group of cytokines increased at 5e6 months related to the
definitive tissue destruction and emphysema. The inflammatory
burst at month 2 clearly suggests an IL-1-driven cascade with the
elevation of C5a, IL-1a, IL-1ra, IL-16, IP-10, M-CSF, KC, MIG, RANTES,
TIMP-1 (Dinarello, 2011). IL-1b remarkably increased at month 1
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and IL-1a at months 1e2, but then the massive elevation of IL-1ra
seems to down-regulate their production. However, the increased
inflammatory cytokines demonstrate an IL-1-downstream profile
(Barksby et al., 2007). Several members of the IL-1 family including
IL-1b are important mediators of lung inflammation. The expres-
sion of an inactive IL-1b precursor is induced in immune cells via
activation of signaling pathways upstream of the transcription
factor NFkB. Cigarette smoking leads to IL-1b release in the human
lung (Kuschner et al., 1996). Mice overexpressing IL-1b in the lung
present a phenotype similar to COPD including lung inflammation,
emphysema and fibrosis (Lappalainen et al., 2005). IL-1b increases
the production of neutrophil chemoattractant factors, and the ac-
tivity of MMP-2 and MMP-9 by alveolar macrophages, and these
gelatinases are also able to activate the active form of IL-1b from its
inactive form (Chakrabarti and Patel, 2009). The importance of the
IL-b cascade in lung pathology is shown by the fact that an IL-1-
blocking monoclonal antibody (canakinumab) is currently being
investigated for the treatment of several conditions including COPD
(Rogliani et al., 2015). The complement component C5a is a potent
inflammatory peptide, which is suggested to be involved in the
pathogenesis of COPD. Plasma C5a concentrations in COPD patients
were significantly higher than in healthy smokers. Elevated C5a and
C3a levels were also measured in the sputum of stable COPD pa-
tients suggesting that the complement system is continuously
activated during stable phase of the disease. Besides its chemotactic
function, it enhances the production of various cytokines, regulate
racterization of chronic cigarette smoke-induced cardiopulmonary
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Fig. 7. Cytokine determinations in the lung and the heart homogenates. A: heat map of cytokine expression in intact and smoking lung samples during the six-month treatment
period (red dots) and intact and 6-month smoking serum samples (yellow dots), B: representative picture of the membranes after chemiluminescent detection of cytokines in lung
tissue homogenates. C: representative picture of the membranes after chemiluminescent detection of cytokines in serum samples. The most important cytokine signals in duplicate
are labeled. D: Expression of sICAM-1 cell adhesion molecule in intact and 6-month smoking heart tissues (upper panel). Representative picture of the membranes after
chemiluminescent detection of cytokines in heart tissues (lower panel). The most important cytokine signals in duplicate are labeled. N ¼ 3 per group (two-way ANOVA followed by
Bonferroni's post-test, **p < 0,005 vs. the intact, non-smoking group).
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vascular permeability and influence the adaptive immune system
by stimulating Th1 response. As a result of its action, abnormal
inflammation could eventually lead to structural changes in the
lungs (Marc et al., 2010). C5a induces autophagy in mouse alveolar
macrophages promoting their apoptosis (Hu et al., 2014). Both
cigarette smoke extract and C5a induce increased expression of
ICAM-1 on airway epithelial monolayers (Floreani et al., 2003).
Clinical findings showing that the Th1-attracting chemokine IP-10/
CXCL10 was increased in the bronchial mucosa and bron-
choalveolar lavage fluid of moderate/severe asthma and COPD pa-
tients. IP-10 is produced by epithelial cells and act as the ligands for
the CXCR3 receptor expressed on Th1 cells (Takaku et al., 2016; Ying
et al., 2008). The number of receptor-positive cells was increased in
smokers with COPD as compared to non-smoking subjects, but not
as compared with smokers of normal lung function, suggesting its
pro-inflammatory role (Saetta et al., 2002). Our interesting exper-
imental finding showing a remarkably increased IP-10 level in the
lung perfectly correlate with these data, therefore, emphasize the
translational relevance of our results.

In the tissue destruction phase of our model at months 5e6, the
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increased cytokines were C5a, IFN-g, IL-4, IL-7, IL-13, IL-17, IL-27,
TNF-a, MIP-1a, JE, TIMP-1, interferon-inducible T-cell chemo-
attractant (I-TAC) and TREM-1. An adaptive immune reaction
mediated by CD4þ and CD8þ T cells and a Th1 cell-regulated che-
mokine-cytokine profile might be important factors of emphysema
in susceptible animals. There is a great upregulation of the in-
flammatory mediators pointing towards a Th1-adaptive inflam-
matory response in mice with significant increases in MIP-1a
(Guerassimov et al., 2004). Both natural killer (NK) and T cells use
MIP-1a along with interferon-g, RANTES and the I-TAC as a “func-
tional unit” to drive the Th1 response (Dorner et al., 2002). TIMP-1
specifically interacts with proMMP-9, its expression is regulated by
growth factors and cytokines (Ries, 2014). TIMP-1 does not only
inhibit MMP activities, but also acts as a cytokine by promoting cell
growth in a wide range of cell types including fibroblasts, epithelial
cells and the SV40 transformed human lung cell line (Hayakawa
et al., 1992). TNF-a is also a key factor implicated in emphysema
pathogenesis, its type 2 receptor plays a critical role in the pro-
inflammatory pathway (Goldklang et al., 2013). IFN-g is a potent
stimulator of MMP-9 and CCR5 ligands (MIP-1a, MIP-1b, RANTES)
racterization of chronic cigarette smoke-induced cardiopulmonary
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Fig. 8. Echocardiographic parameters. Evaluation of cardiac functions and dimensions. A: Ejection fraction (EF%), B: representative images of M-mode measurements, C: decel-
eration time (Tdeceleration) and D: tricuspid annular plane systolic excursion (TAPSE). N ¼ 6 mice per group (Student's t-test for unpaired comparison, *p < 0.05 vs. the intact, non-
smoking groups of respective age).
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which ultimately results in DNA damage, apoptosis and emphy-
sema (Ma et al., 2005).

In contrast to asthma studies, Bowler and co-workers found that
subjects with emphysema had decreased IL-16 protein in plasma
and decreased IL-16 mRNA expression in peripheral blood mono-
nuclear cells (Bowler et al., 2013). Our results correlate with these
findings as IL-16 expression decreased at months 5e6 when
emphysema developed.

ICAM-1 is a central molecule in inflammatory processes and
functions as a co-stimulatory signal being important for the trans-
endothelial migration of leukocytes and the activation of T cells.
Increased circulating levels of sICAM-1 are highly associated with
major cardiovascular complications (e.g.: increased risk of
myocardial infarction (Ridker et al., 1998), in addition chronic
smokers have elevated levels of sICAM-1 (Rohde et al., 1999).
Furthermore, significant increase in sICAM-1 was associated with
the extent of emphysema in patients involved in the Multi-Ethnic
Study of Atherosclerosis Lung study (Aaron et al., 2015). Two clin-
ical studies have found significant associations between increasing
concentration of sICAM-1 and risk of myocardial infarction, espe-
cially among participants with baseline sICAM-1 concentrations in
the highest quartile (Luc et al., 2003; Ridker et al., 1998; Sungprem
et al., 2009). Vascular inflammation is crucial in pathophysiological
processes underlying many cardiovascular diseases. ICAM-1 me-
diates vascular inflammation by promoting leukocyte adhesion to
the activated endothelial cells (Badimon et al., 2012). MMPs are
responsible for the cleavage and generation of soluble adhesion
molecules, including sICAM-1 and sVCAM-1 from the endothelium,
and could act as mediators beyond the lung to establish and sustain
low-grade inflammation and aggravate the cardiovascular compli-
cations (Pope et al., 2016). The selective increase of sICAM-1 in the
heart suggests that our mouse model can mimic this key
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mechanism in smoking-related cardiovascular alterations. How-
ever, the limitation of this study, besides that our facility is lacking
the forced oscillation technique to determine airwaymechanics in a
non-invasive way, are that we did not determine specific bio-
markers of the smoke exposure and could not directly prove the
functional roles of either sICAM-1 in the heart or the other detected
mediators in the lung.

In summary, the major conclusion of this study is that the
chronic moderate cigarette smoke exposure-induced mouse model
is appropriate to investigate smoking-induced time-dependent
characteristic alterations and mechanisms simultaneously in the
lung and the heart. Our primary focus was to show links with the
human disease and to describe common mediators as potential
markers and/or therapeutic targets. The pathophysiological alter-
ations we described here appear to be similar to that observed in
the clinics, which highlights the translational value of our model in
relation to the human cardiopulmonary comorbidity seen in COPD.
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