
FPGA-based neural probe positioning to improve
spike sorting with OSort algorithm

László Schäffer∗, Zoltán Nagy†, Zoltán Kincses,∗ and Richárd Fiáth‡
∗Faculty of Science and Informatics, University of Szeged, Szeged, H-6725

Email: {schaffer,kincsesz}@inf.u-szeged.hu
†Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, H-1083

Email: nagy.zoltan@itk.ppke.hu
‡Institute of Cognitive Neuroscience and Psychology, Hungarian Academy of Sciences, Budapest, H-1117,

Email: fiath.richard@ttk.mta.hu

Abstract—The extracellular measurement of brain electrical
activity contains local field potentials and mixtures of action
potentials generated by the neurons. It is essential to determine
which individual neuron produces the recorded unit activity,
so spike sorting methods are used. High channel-count neural
probes are capable of recording the activity of large neural
ensembles from up to more than hundred individual brain
positions simultaneously, pose an even greater challenge for spike
sorting applied on general-purpose hardware. Real-time clinical
applications could greatly benefit from a hardware-accelerated
data processing, especially in the case of Field-Programmable
Gate Arrays (FPGAs) or Application Specific Integrated Circuits
(ASICs), which are energy-efficient compared to traditional CPUs
or GPUs, and can significantly reduce the computation time
required to process large amounts of high-dimensional data. In
this paper, we present a real-time FPGA-based implementation of
a multi-channel Online Sorting (OSort) algorithm to pre-cluster
neural data. Based on this pre-processing the neurobiologists can
fine-tune the position of neural probe and improve the efficiency
of offline spike sorting.

I. INTRODUCTION

The human brain is probably the most complex system in
the universe consisting of billions of neurons and quadrillions
of synaptic connections. To probe this organ and to in-
vestigate fundamental neuronal mechanisms and higher-order
brain functions, such as perception, learning and memory, an
experimental technique used widely by neuroscientists can
be applied: the extracellular measurement of brain electrical
activity [1]. Commonly, one or several neural implants with
multiple electrodes are lowered into the brain tissue to record
the brief, electrical impulses (called action potentials or spikes)
generated by neurons. The recorded, in most cases multi-
channel signal is the sum of the spikes fired by several neurons
surrounding the recording sites of neural probes.

To separate the spike trains of individual neurons (single-
unit activity) from the recorded multi-unit activity, usually a
method called spike sorting is applied [2]. Spike sorting is
used in basic neuroscience research during the offline analysis
of experimental data (e.g. to study the dynamics of neural
networks [3]) and also in real-time clinical applications (e.g.
neuroprosthetic devices, brain-machine interfaces [4], [5]). A
typical spike sorting algorithm contains several computation-
ally intensive steps (detection, feature extraction and cluster-
ing), which makes the real-time processing of data cumber-
some and can degrade the performance of clinical applications

requiring rapid feedback. The spike detection is based on an
amplitude threshold, which can be automatically calculated
using standard deviation, median absolute deviation, energy
operator, wavelet transform or probability theory. During the
feature extraction process the spike shapes are differentiated
based on features like spike amplitude, spike width or a
region of the spike itself. However more complex methods
can be used to extract features, such as Principal Component
Analysis (PCA) or wavelet transformation. The last step is to
determine the similarity between spikes. The similar spikes are
probably generated by the same neuron and can be grouped
into a cluster. Clustering algorithms are based on neural
network, statistics, probability, fuzzy, superparamagnetic or
distance based classification [6], [7]. Spike sorting algorithms
can apply offline or online and supervised or unsupervised
classification methods for clustering. The offline classification
works on pre-recorded neural data, while the online algorithms
make the classification during the measurement. Supervised
classification algorithms are using a ground truth to teach
the algorithm how spikes looks like, and which spikes are
similar. On the other hand unsupervised algorithms teach
themselves on the fly and no ground truth is necessary [7].
High channel-count neural probes, capable of recording the
activity of large neural ensembles from up to more than
hundred individual brain positions simultaneously [8], pose an
even greater challenge for spike sorting applied on general-
purpose hardware. Real-time clinical applications could greatly
benefit from a hardware-accelerated data processing, especially
in the case of FPGAs or Appliction Specific Integrated Circuits
(ASICs) which are energy-efficient compared to traditional
CPUs or GPUs, and can significantly reduce the computation
time required to process large amounts of high-dimensional
data [9] - [15].

In this paper, an FPGA-based spike sorting architecture is
presented for real-time multi-channel clustering of neural data.
This solution can help neuroscientists to position the electrode
array before the real neural recording starts, so the offline
classification efficiency can be improved. The Online Sorting
(OSort) [16] algorithm is used, which original implementation
works on only single-channel. Since neuroscientists require the
correlation between the electrodes, so the original algorithm is
modified to support multi-channel electrode arrays.



II. SYSTEM SETUP

The measurement is done with the RHD2000 electrophys-
iological recording system from Intan Technologies, which is
an open-source hardware and software that allows users to
record biopotential signals from up to 256 low-noise amplifier
channels. The system includes two 32-channel RHD2132 and
one 64-channel RHD2164 amplifier boards to do 128-channel
neural recordings with 16-bit resolution. The 128-channel
electrode array are built up from 4x32 electrodes, and the
sampling frequency is 20kHz. The RHD2000 recording system
already includes an Opal Kelly XEM6010 module, which
contains a Spartan-6 FPGA board, and it could be utilized
for online pre-clustering.

Using this setup a typical neural recording is 5 minutes
long. However it is not rare to prepare several hours recording,
if there are rarely firing neurons, which generate one spike in
a second, or a day-night cycle monitoring is done on a specific
neuron. The number of spikes are depends on the number of
channels, the length of the recording, the detection threshold,
the wakefulness of the patient, the chosen measurement area
and the injury of the measured brain tissue, etc. In case of a five
minute long measurements the number of detected spikes can
be from 10 to 100 thousand. The expected number of clusters
also depends on the earlier criterions, but in our experiments
using a 128-channel setup the well-separable clusters are in
the range of 15-35, with the average values of 20-25. In case
of a longer neural recording these values can increase with
10-30%. In the proposed architecture only a 5x4 part of the
128 electrode is used, with 64 data points per spike.

III. SPIKE DETECTION

The first step of spike sorting is the detection of spikes.
Based on [6] and [7], several spike detection algorithms
have been implemented and tested in MATLAB. The results
showed that the Non-Linear Energy Operator (NEO) is suitable
for FPGA implementation [9], [10]. NEO is based on the
following equation:

ψ[x(n)] = x(n)2 − x(n+ 1) · x(n− 1), (1)

where x(n) is nth sample of the original signal, and ψ[x(n)]
is the nth sample of the NEO signal. The amplitude of the
NEO signal is high only when the signal power and frequency
are high. The detection based on the calculated NEO signal
(1) and the detection threshold (TD) calculated automatically
as follows:

TD = cD ·
1

N

N∑
n=1

ψ[x(n)], (2)

where N is the number of samples and cD is the detection
correction factor, which is some power of two.

The spike detection architecture can be seen in Fig. 1. The
data from the neural probe are interleaved by the Serializer
module and then stored in the external memory. According to
(1) the NEO unit requires the nth, (n − 1)th and (n + 1)th

samples from each channel to calculate the corresponding NEO
values. The nth and (n − 1)th data are temporarily stored
in the BRAMs. The detection threshold value is computed
in the AV G&Shift unit, based on (2). The AV G&Shift
unit calculates the average of the NEO values, then shifts the

Fig. 1. The architecture of the NEO spike detection

result to left by the correction factor (in our case c = 8).
Finally the ThresholdModule reloads the NEO signal and
compares it to the calculated detection threshold. If a NEO
value is above the threshold the ThresholdModule transfers
the spike and all other corresponding samples of each channel
(5x4) from the original signal. This spike data is transferred
to the SpikeMemory via AXI-Stream.

The spike detection can be separated from the spike
clustering, so it can be changed easily to another detection
architecture for future experiments.

IV. SPIKE SORTING - OSORT

The OSort [16] is an online unsupervised template-
matching spike sorting algorithm, which works on the de-
tected spikes and uses them as features. Important parts of
the algorithm are the automatically computed clustering and
merging thresholds (TC ,TM ), which are calculated based on
the standard deviation of the signal as follows:

TC = TM = std(signal)2 · cC ·NS , (3)

where cC is the clustering correction factor (1.15 in our case),
and NS is the number of data points in a spike.

The algorithm works as follows: When the first spike is
received from the detector, the mean of this spike is stored as
the first cluster. The next incoming spike is compared to the
cluster mean using squared difference as distance metric. If
this distance is below the cluster threshold, then the spike is
assigned to this cluster, if not then a new cluster is formed. This
process is applied to all spikes. When the cluster assignment
is done the mean of the cluster is updated and the merging
begins. In this process the distance between the stored means
and the new cluster mean are calculated. When the cluster with
the lowest distance is below the merging threshold, then it is
merged with the updated cluster.

V. MULTI-CHANNEL OSORT IMPLEMENTATION

The original version of the OSort algorithm [16] works
with a single-channel. To handle multi-channel measurements
some modification is required. The modified version of the
algorithm is similar to the original one, but the data flow and
structure is completely redesigned. An FPGA-based version
of the OSort algorithm was already reported in the literature
[9], but due to the increased data requirements in the multi-
channel case it runs into memory bandwidth problems. In our
case one cluster has 5 × 4 × 64 data points, and the spike



Fig. 2. The architecture of one Cluster Module

data is stored as 16 bit signed integer values and the cluster
mean values are stored as 18 bit fixed point numbers with 2
bit fractional part. The original version of OSort is working
with 64 or 256 (interpolated) samples per spike and use double
precision for storage. Our experiments show that rounding the
cluster means to integer values during the computation does
not alter the resulting clusters significantly.

In the widest data bus configuration the 36 kbit Block-
RAMs (BRAM) of the Xilinx 7-series FPGAs are 72 bit wide
and 512 element deep therefore 8 clusters can be stored in
5 BRAMs. The expected number of clusters in our current
application are in the order of 100, therefore in the initial
implementation the number of clusters is maximized to 128
clusters, which can be stored in 80 BRAMs. Computations
of the OSort algorithm is executed on an array of processors
with 20 (5 × 4) Arithmetic Units where one multiplier and 3
adders are used in each unit. Therefore low-cost FPGAs can
be suitable for this task.

The architecture of the Cluster Module is shown in Fig. 2.
Spike data is loaded from an on-chip BRAM via the input
AXI-Stream bus and go through an optional deserializer. The
data width of the stream can be reduced by using serialization
when multiple Cluster Modules are computing in parallel, but
the order of computations must be changed in this case. For
simplicity only the non-serialized operation is discussed in the
current paper.

In the first stage of the OSort algorithm spike data for each
channel is loaded in parallel through the AXI-Stream bus and
the corresponding mean values of the first cluster is provided
by the Cluster Memory. Partial results of the summed squared
difference is computed by the Arithmetic Units. The partial
results are summed by the Adder Tree for each sample and
an accumulator (ACC) is used to compute the sum over the
entire 64 elements sample window. The result and the cluster
number is saved into the MIN register if it is smaller than
the previous minimum squared distance. These steps should

TABLE I. AREA REQUIREMENTS AND DEVICE UTILIZATION OF THE
SYNTHESIZED CLUSTERING MODULE

Resource requirements
FF LUT DSP BRAM

12,150 14,037 120 102
Device Utilization

FF LUT DSP BRAM
XC7Z7020 11.42% 26.38% 54.55% 72.86%
XC7Z7100 2.19% 5.05% 5.94% 18.72%
XC7K325T 2.98% 6.88% 14.29% 22.92%
XC7V690T 1.40% 3.24% 3.33% 6.94%

be executed for each living cluster in the Cluster Memory.

If the distance of the current spike between all clusters
is computed and the value in the MIN register is larger than
the TC clustering threshold then the spike data is reloaded and
saved into the Cluster Memory as a new cluster. If the distance
is smaller than TC the spike should be merged with the closest
cluster. The weighted average of the cluster mean and the new
spike is computed by the Arithmetic Units and the results are
saved into the Cluster Memory and also to the spike memory.
The weights which can be precomputed by the serial divider
and stored in the local memory are n/(n+ 1) and 1/(n+ 1)
for the cluster mean and the new spike respectively, where n is
the number of spikes in the cluster. The new number of spikes
(n+ 1) and the new weights ((n+ 1)/(n+ 2), 1/(n+ 2)) is
computed and stored in the local memory.

In the third stage the cluster means, which updated pre-
viously, is loaded from the spike memory and its distance is
computed for all clusters similarly to stage one. When the
computed minimum distance is smaller than the TM merging
threshold the mean values of the two clusters are merged in
stage four similarly to stage two. If the recently updated cluster
A has n elements and the closest cluster B has m elements
then the weights are n/(n+m) and m/(n+m), which can be
precomputed when the distance of the two clusters is computed
in stage three. Cluster A marked as unused and merged in a
table held in the local memory and the new number of spikes
in cluster B is computed (n +m). The new weights required
in stage two ((n+m+1)/(n+m+2), 1/(n+m+2)) are also
precomputed. The system halts until a new spike is detected
and computation is restarted from stage one.

VI. RESULTS

The proposed Clustering Module is developed using Vivado
HLS 2016.4. The original MATLAB algorithm is translated to
C/C++ taking into account the architecture described in Sec-
tion V. and the special requirements of High Level Synthesis
(HLS) compiler. The spike input and cluster number outputs
are mapped to an AXI-Stream bus while the threshold can
be set via an AXI-Light connection. The estimated dedicated
resource requirements are 80 BRAMs to store the 128 clusters,
5 BRAMs to store spike data and 1 BRAM for the local
memory. Each Arithmetic Unit requires one DSP slice and
a 42 bit accumulator, therefore 20 DSP slices required in
the 20 channel case. The full system requires additional
blocks such as AXI interconnect, AXI-DMA engine, memory,
Ethernet, ADC interface to connect to peripheral devices and a
MicroBlaze or ARM processor in case of Zynq-7000 devices
to control the high level operation of the system.



TABLE II. DETAILED LATENCY OF THE CLUSTERING MODULE

Latency
Iteration
Latency

Trip Count

Load Spike load spike sp ch 1,281 3 1280
Stage 1 comp diff sc 8,197 7 8,192

Stage 2
update mean 66 4 64
mean save 64 2 64
new cluster 64 2 64

Stage 3 comp diff cc 8,197 7 8,192

Stage 4
merge clust 66 4 64
merge save 64 2 64

Read merge table merge read 129 3 128

The real area requirements of the synthesized Clustering
Module is shown on Table I. The memory and DSP require-
ments of the architecture synthesized by Vivado HLS are
larger than expected. During synthesis the spike and cluster
memories are build from BRAMs configured as 18 bit×1024
and 2 bit×8192 respectively. The DSP slice requirements are
six times higher than our first estimation. It seems that DSP
resources are not shared between the different stages of the
algorithm when integer operands used during computation.
The Arithmetic Unit of stage one and three requires 20-20
DSP slices while stage two and four is computed by using
40-40 DSP slices, despite these steps are executed serially. In
spite of the suboptimal synthesis the proposed architecture still
can be implemented on a Xilinx KC-705 development board
with Kintex-7 XC7K325T FPGA. Even a cheap Zynq device
(XC7Z7020) is suitable for the task.

Due to the relatively low operand bit width the system
can operate on 200MHz clock frequency. If the number of
clusters is maximized to 128 the first and third stage of the
OSort algorithm can be computed in approximately 8192-8192
clock cycles (64 clock per cluster, 128 clusters). Computation
of the second and fourth stages are divided into two parts:
computation of the new mean values and saving them into the
Cluster Memory which can be carried out in 130 clock cycles.
Running on 200MHz clock frequency one spike (5×4×64 data
points) can be clustered in 18,127 clock cycles in the worst
case, which results in 90.635µs clustering time for a spike or
more than 11,000 spike/s.

The proposed Clustering module was implemented on
XC7Z7020 FPGA. Actual latencies of the different stages
of the architecture operate on 101MHz clock frequency are
summarized on Table II. The test results showed, that spikes
can be clustered with an average of 18,005 clock cycles. Based
on the results, it can be concluded that the estimations were
right.

VII. CONCLUSION AND FUTURE WORK

In this paper an FPGA-based implementation of the OSort
algorithm for unsupervised online multi-channel neural spike
clustering is proposed. The results show that the presented
architecture can be implemented on a mid range FPGA device
running on 200MHz, which classifies the incoming spikes
from 20 distinct channels in 90.635µs, or 11,000 spikes/s.
Furthermore it can be concluded that it is 40 times faster than
the identical algorithm running offline on the PC (i7-4770,
3.4GHz, 8GB DDR3) in MATLAB. For a fair comparison the
MATLAB implementation was not compared to an optimized

C/C++ based implementation. The proposed architecture cur-
rently sorts 20 channels of neural data in only one 5 × 4
window, but in the future we want to increase the number
of channels and also the number of windows. Furthermore
the windows could overlap with each other and calculated
in parallel, so the architecture could be utilized to sort 128-
channel neural recordings in real-time.

ACKNOWLEDGMENT

This research project is supported by KTIA 13 NAP-A-
IV/1-4,6 for Istvan Ulbert.

REFERENCES

[1] G. Buzsaki, ”Large-scale recording of neuronal ensembles,” Nat Neu-
rosci, vol. 7, pp. 446-51, May 2004.

[2] M. S. Lewicki, A review of methods for spike sorting: the detection and
classification of neural action potentials, Network, vol. 9, pp. R53-78,
Nov 1998.

[3] S. Fujisawa, A. Amarasingham, M. T. Harrison, and G. Buzsaki,
Behavior-dependent short-term assembly dynamics in the medial pre-
frontal cortex, Nat Neurosci, vol. 11, pp. 823-33, Jul 2008.

[4] L. R. Hochberg, M. D. Serruya, G. M. Friehs, J. A. Mukand, M. Saleh,
A. H. Caplan, et al., Neuronal ensemble control of prosthetic devices by
a human with tetraplegia, Nature, vol. 442, pp. 164-71, Jul 13 2006.

[5] D. M. Taylor, S. I. H. Tillery, and A. B. Schwartz, Direct cortical control
of 3D neuroprosthetic devices, Science, vol. 296, no. 5574, pp. 18291832,
June 2002.

[6] H. G. Rey, C. Pedreira, R. Q. Quiroga, Past, present and future of spike
sorting techniques, Brain Research Bulletin, vol. 119, pp. 106117, 2015

[7] S. Gibson, J. W. Judy, D. Markovic, Comparison of Spike-Sorting Algo-
rithms for Future Hardware Implementation, 30th Annual International
Conference of the IEEE on Engineering in Medicine and Biology Society,
2008

[8] C. M. Lopez, A. Andrei, S. Mitra, M. Welkenhuysen, W. Eberle, C.
Bartic, et al., ”An Implantable 455-Active-Electrode 52-Channel CMOS
Neural Probe,” IEEE Journal of Solid-State Circuits, vol. 49, pp. 248-261,
Jan 2014.

[9] S. Gibson, J. W. Judy, and D. Markovic, An FPGA-based platform for
accelerated offline spike sorting, J Neurosci Methods, vol. 215, pp. 1-11,
Apr 30 2013.

[10] B. Yu, T. Mak, X. Li, F. Xia, A. Yakovlev, Y. Sun, et al., ”Real-Time
FPGA-Based Multichannel Spike Sorting Using Hebbian Eigenfilters,”
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
vol. 1, pp. 502-515, 2011.

[11] W. J. Hwang, W. H. Lee, S. J. Lin, and S. Y. Lai, ”Efficient architecture
for spike sorting in reconfigurable hardware,” Sensors (Basel), vol. 13,
pp. 14860-87, 2013.

[12] M. Pachitariu, N. A. Steinmetz, S. Kadir, M. Carandini and K. D. Harris,
Kilosort: realtime spike-sorting for extracellular electrophysiology with
hundreds of channels, bioRxiv dx.doi.org/10.1101/061481, 2016

[13] L. Schaffer, Z. Nagy, Z. Kincses, Zs. Voroshazi, R. Fiath, I. Ulbert, and
P. Szolgay, FPGA-based clustering of multi-channel neural spike trains,
CNNA 2016, Dresden, Germany, August 23-25. 2016.

[14] Z. Jiang, Q. Wang, M. Seok, A low power unsupervised spike sorting
accelerator, 52nd Design Automation Conference (DAC), 2015

[15] V. Karkare, S. Gibson, D. Markovic, A 75-W, 16-Channel Neural Spike-
Sorting Processor With Unsupervised Clustering, IEEE Journal of Solid-
State Circuits, volt. 48, issue 9, pp.2230-2238, 2013

[16] U. Rutishauser, E. M. Schuman, and A. N. Mamelak, Online detection
and sorting of extracellularly recorded action potentials in human medial
temporal lobe recordings, in vivo, J Neurosci Methods, vol. 154, pp. 204-
24, Jun 30 2006.


