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Abstract: Stereoselective synthesis of monoterpene-based 1,2,4- and 1,3,4-oxadiazole derivatives
was accomplished starting from α,β-unsaturated carboxylic acids, obtained by the oxidation of
(−)-2-carene-3-aldehyde and commercially available (−)-myrtenal. 1,2,4-Oxadiazoles were prepared
in two steps via the corresponding O-acylamidoxime intermediates, which then underwent cyclisation
induced by tetrabutylammonium fluoride (TBAF) under mild reaction conditions. Stereoselective
dihydroxylation in highly stereospecific reactions with the OsO4/NMO (N-methylmorpholine
N-oxide) system produced α,β-dihydroxy 1,2,4-oxadiazoles. Pinane-based 1,3,4-oxadiazoles were
obtained similarly from acids by coupling with acyl hydrazines followed by POCl3-mediated
dehydrative ring closure. In the case of the arane counterpart, the rearrangement of the constrained
carane system occurred with the loss of chirality under the same conditions. Stereoselective
dihydroxylation with OsO4/NMO produced α,β-dihydroxy 1,3,4-oxadiazoles. The prepared diols
were applied as chiral catalysts in the enantioselective addition of diethylzinc to aldehydes. All
compounds were screened in vitro for their antiproliferative effects against four malignant human
adherent cell lines by means of the MTT assay with the O-acylated amidoxime intermediates exerting
remarkable antiproliferative action.

Keywords: terpenoid; stereoselective; 1,2,4-oxadiazole; 1,3,4-oxadiazole; chiral catalyst; diethyl zinc;
antiproliferative activity

1. Introduction

In asymmetric synthetic chemistry a growing demand occurs for new chiral ligands and
synthons. New strategies are being developed for the synthesis of reliable enantiopure catalysts [1–3].
Incorporation of chirality into ligands by applying optically active monoterpenes as starting materials
bears several advantages: the natural chiral origin can determine the stereochemistry of newly forming
chiral centers as well the chiral activities of these newly desired chiral catalysts [4,5]. A large variety
of chiral amino alcohol and aminodiol-type ligands, derived from monoterpenes, such as α- and
β-pinene [6–10], (−)-(S)-perillaldehyde, carene [11–13], and fenchone-camphor [13,14], have been
reported as successful chiral catalysts. We recently described the synthesis and transformation of
enantiomerically pure pinane- and carane-based 3-amino-1,2-diols, whereas the amino moiety served as
a fundamental building block in the synthesis of terpenoid-type nucleoside analogues with remarkable
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sodium/calcium exchanger (NCX) inhibitor activity [15,16]. Monoterpene-based 1,3-heterocycles, such
as 1,3-oxazines or -oxazolidines could be successfully applied as chiral catalysts in a wide range of
stereoselective transformations [11,17–21].

On the other hand, 1,2,4- and 1,3,4-oxadiazoles have also been extensively studied in the past
decade [22–28]. A wide range of biologically active pharmacophores possess these five-membered
heteroaromatic ring systems with remarkable biological properties including sphinosine kinase
inhibitor [29], diacylglycerol acyltransferase 1 (DGAT-1) inhibitor [30], glycogen synthase kinase
(GSK-3) inhibitor [31], sirtuin (SIRT) inhibitor [32] and methionine aminopeptidase inhibitor
activities [33]. Some diterpenic 1,2,4- and 1,3,4-oxadiazoles, including steroid-based compounds,
have also shown remarkable antiproliferative action on adherent human cancer cell lines [25,26,34–37].

In the present work, we set out to create pinane- and carane-based dihydroxy-derived 1,2,4- and
1,3,4-oxadiazoles as heterocyclic analogues of previously prepared monoterpenic 3-amino-1,2-diol
library. The syntheses were started from readily available (−)-(S)-perillaldehyde and (−)-myrtenal,
as natural monoterpene sources, then applying the resulting tridental ligands as chiral catalysts in
the enantioselective addition of diethylzinc to benzaldehyde. We also planned to screen the prepared
compounds in vitro for their antiproliferative effects against four malignant human adherent cell lines
by means of the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay.

2. Results

2.1. Synthesis of Monoterpene-Based 1,2,4- and 1,3,4-Oxadiazoles

Stereoselective synthesis of monoterpene-based 1,2,4-oxadiazole derivatives was accomplished
starting from α,β-unsaturated carboxylic acids prepared previously through the oxidation
of (−)-2-carene-3-aldehyde (derived in a two-step reaction from (−)-(S)-perillaldehyde) using
commercially available (−)-myrtenal [12,38]. There are several methods for the preparation of
1,2,4-oxazoles starting from compounds bearing carboxyl function. Because of the well-known
sensitivity of constrained bicyclic monoterpenes, however, a pathway with mild reaction condition
was applied in our case [26]. Carboxylic acids 1 and 2 were coupled with amidoximes in
the presence of CDI in DCM with excellent yields, followed by TBAF-catalyzed ring closure of
O-acylated amidoximes 3–5 at room temperature. The obtained α,β-unsaturated 3-aryl-1,2,4-oxazoles
6–8 were stereoselectively dihydroxylated with the OsO4/NMO system resulting in 9–11 as
single diastereoisomers (Scheme 1) [8,20]. The configuration of the new stereogenic centers was
determined by NMR (nuclear magnetic resonance) with Nuclear Overhauser Effect Spectroscopy
(NOESY) experiments.
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Scheme 1. Stereoselective synthesis of monoterpene-based 1,2,4-oxadiazoles. TBAF: 
tetrabutylammonium fluoride; THF: tetrahydrofurane; CDI: 1,1′-carbonyldiimidazole; DCM: 
dichloromethane. 

The synthesis of the isomeric 1,3,4-oxadiazole ring system was also started from monoterpenic 
acids 1 and 2. In this case, however, we have found different reactivity between the pinane and carane 
ring system under the ring-closure process. Myrtenic acid 1 was coupled with benzhydrazide in the 
presence of CDI. Cyclodehydration of N,N′-diacylhydrazine 12 with POCl3 at 80 °C furnished 13 with 

Scheme 1. Stereoselective synthesis of monoterpene-based 1,2,4-oxadiazoles. TBAF: tetrabutylammonium
fluoride; THF: tetrahydrofurane; CDI: 1,1′-carbonyldiimidazole; DCM: dichloromethane.

The synthesis of the isomeric 1,3,4-oxadiazole ring system was also started from monoterpenic
acids 1 and 2. In this case, however, we have found different reactivity between the pinane and carane
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ring system under the ring-closure process. Myrtenic acid 1 was coupled with benzhydrazide in the
presence of CDI. Cyclodehydration of N,N′-diacylhydrazine 12 with POCl3 at 80 ◦C furnished 13 with
moderate yield [25]. Dihydroxylation of 13 with OsO4/NMO afforded 14 in a highly diastereoselective
reaction, similar to 1,2,4-oxadiazoles 6–8 (Scheme 2).
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2.2. Application of the Prepared Catalysts 9–11 and 14

The prepared potential catalysts 9–11 and 14 were used in the reaction of diethylzinc and
benzaldehyde affording the formation of chiral 1-phenyl-1-propanol as a reference product (Scheme 4).
They were applied in a 10% molar ratio in n-hexane at room temperature. The enantiomeric purities
of 1-phenyl-1-propanols 19 and 20 obtained were determined by GC on a Chirasil-DEX CB column,
according to literature methods [39,40]. Our results are presented in Table 1.

Table 1. Influence of catalyst on the reaction yield and enantioselectivity according to Scheme 4.

Entry Catalyst Yield (%) a ee (%) b Configuration of the Major Enantiomer c

1 9 87 74 S
2 10 85 62 S
3 11 86 50 S
4 14 83 70 S

a Yields obtained after chromatography on silica column; b Determined with the crude product by GC (Chirasil-DEX
CB column); c Determined by comparing the tR of GC analysis and the optical rotation with literature data [39,40].
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Moderate enantioselectivity was observed for carane-based 1,2,4-oxadiazole 11 with S selectivity,
while pinane-based 1,2,4-oxadiazoles (9 and 10) and 1,3,4-oxadiazole 14 have shown reasonable, similar
S selectivity (up to 74% ee, Table 1) in the model reaction. We found that the type of the heterocyclic
ring system has affected catalytic activities.

2.3. Antiproliferative Activities

Since several steroid-based 1,2,4- and 1,3,4-oxadiazoles as well as their amidoxime type
intermediates have shown exerting antiproliferative action on adherent human cancer cell
lines [25,26,34], antiproliferative activities of the prepared analogues were also tested against a panel
of human malignant cell lines isolated from cervical (HeLa), ovarian (A2780), and breast (MCF7 and
MDA-MB-231) cancers (Table 2). O-Acylated amidoximes (3–5) exhibited remarkable growth inhibitory
activities with calculated IC50 values comparable to those of reference agent cisplatin. Compounds with
pinane building block (3 and 4) were slightly more effective than their carane containing analog (5) and
A2780 cells seemed to be outstandingly sensitive (IC50 values: 1.44–2.05 µM). These active molecules
displayed moderately lower antiproliferative activities against triple-negative breast cancer cell line
(MDA-MB-231) than other utilized gynecological cell lines. All prepared and tested oxadiazoles (6–14),
with the exception of compound 6, exerted substantially lower action at 10 and 30 µM against A2780
cells. Therefore, no additional experiments were carried out in order to calculate their IC50 values.

Table 2. Antiproliferative activities of the tested monoterpene analogs.

Analog Conc. (µM)
Inhibition (%) ± SEM [Calculated IC50 Value (µM)]

HeLa A2780 MCF7 MDA-MB-231

3 10 29.83 ± 1.65 96.66 ± 0.23 35.07 ± 2.64 19.06 ± 2.98
30 98.46 ± 0.08 96.60 ± 0.37 93.00 ± 0.68 84.58 ± 1.87

[12.23] [1.44] [12.37] [16.47]
4 10 37.96 ± 2.20 96.28 ± 0.32 49.99 ± 0.80 33.33 ± 1.94

30 98.17 ± 0.19 96.82 ± 0.18 96.08 ± 0.52 89.95 ± 0.90
[11.46] [1.91] [10.02] [13.02]

5 10 21.94 ± 2.94 91.95 ± 0.26 28.62 ± 1.98 20.31 ± 1.45
30 96.31 ± 0.33 93.77 ± 0.27 85.27 ± 1.84 58.06 ± 1.75

[13.62] [2.05] [14.54] [24.28]
6 10 – * 56.80 ± 3.18 17.30 ± 1.74 19.61 ± 2.23

30 47.39 ± 2.99 93.34 ± 0.69 23.87 ± 2.37 29.68 ± 2.54
7 10 – 15.35 ± 1.79 19.80 ± 1.99 –

30 24.18 ± 2.42 36.92 ± 1.39 23.44 ± 1.86 24.66 ± 1.38
8 10 – 12.18 ± 1.70 14.62 ± 2.49 11.71 ± 0.74

30 12.31 ± 2.25 36.58 ± 1.38 35.75 ± 2.79 20.27 ± 2.62
9 10 – – – 11.45 ± 2.75

30 10.83 ± 2.40 34.56 ± 1.83 – 21.57 ± 1.69
10 10 – 17.93 ± 1.06 – 11.43 ± 1.68

30 26.01 ± 0.74 48.27 ± 0.64 44.00 ± 1.34 24.67 ± 2.13
11 10 12.36 ± 1.23 – – –

30 13.41 ± 1.87 28.44 ± 0.92 25.32 ± 1.10 10.36 ± 2.14
12 10 – – – 15.51 ± 2.77

30 – 31.13 ± 2.48 – 15.92 ± 2.69
13 10 – 11.76 ± 0.76 – –

30 – 48.66 ± 1.97 – 18.81 ± 2.59
14 10 – – – –

30 – 29.12 ± 2.32 14.46 ± 2.31 16.28 ± 1.85
cisplatin 10 42.61 ± 2.33 83.57 ± 1.21 53.03 ± 2.29 67.51 ± 1.01

30 99.93 ± 0.26 95.02 ± 0.28 86.90 ± 1.24 87.75 ± 1.10
[12.43] [1.30] [5.78] [3.74]

* Growth inhibition values less than 10% are considered negligible and not given numerically.
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3. Discussion

Starting from monoterpenic acids, dihydroxy-substituted 1,2,4-oxadiazoles and 1,3,4-oxadiazole
were prepared and their catalytic activities were examined in the enantioselective synthesis of
1-phenyl-1-propanol. In pharmacological studies the O-acylamidoxime intermediates showed
remarkable cytotoxic activity. Under the construction of the 1,3,4-oxadiazole system, rearrangement of
the carane ring was observed with loss of chirality.

4. Materials and Methods

4.1. General Methods

Commercially available compounds were used as obtained from suppliers (Molar Chemicals
Ltd, Halásztelek, Hungary; Merck Ltd., Budapest, Hungary and VWR International Ltd., Debrecen,
Hungary) while applied solvents were dried according to standard procedures. Optical rotations
were measured in MeOH at 20 ◦C, with a Perkin-Elmer 341 polarimeter (PerkinElmer Inc., Shelton,
CT, USA). Chromatographic separations and monitoring of reactions were carried out on Merck
Kieselgel 60 (Merck Ltd., Budapest, Hungary). Elemental analyses for all prepared compounds were
performed on a Perkin-Elmer 2400 Elemental Analyzer (PerkinElmer Inc., Waltham, MA, USA). GC
measurements for direct separation of enantiomers was performed on a Chirasil-DEX CB column
(2500 × 0.25 mm I.D.) on a Perkin-Elmer Autosystem XL GC consisting of a Flame Ionization
Detector (Perkin-Elmer Corporation, Norwalk, CT, USA) and a Turbochrom Workstation data system
(Perkin-Elmer Corp., Norwalk, CT, USA). Melting points were determined on a Kofler apparatus
(Nagema, Dresden, Germany) and are uncorrected. 1H and 13C NMR spectroscopic data were recorded
at room temperature on a Bruker Avance DRX 400 MHz spectrometer (Bruker Corp., Billerica, MA,
USA) in CDCl3 or in DMSO.

4.2. General Procedure for the Preparation of 3, 4 and 5

1 or 2 (6.02 mmol) was dissolved in dry CH2Cl2 (75 mL) and CDI (9.07 mmol) was added.
The solution was stirred at room temperature for 2 h, then benzamid oxime (18.07 mmol) or
4-chlorobenzamide oxime (18.07 mmol) was added in one portion. The mixture was stirred
overnight then evaporated to dryness and purified by column chromatography on silica gel with
CH2Cl2/EtOAc 19:1.

(E)-N′-(((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-ene-2-carbonyl)oxy)benzimidamide (3): Yield: 85%, white
crystals, m.p.: 133–136 ◦C. [α]20

D = −40 (c 0.250, MeOH). 1H NMR (400 MHz, dimethyl sulfoxide
(DMSO)): δ 7.77–7.71 (2H, m), 7.54–7.42 (3H, m), 7.10–7.06 (1H, m), 2.80 (1H, dt, J = 1.3 Hz, 5.6 Hz),
2.49–2.36 (3H, m), 2.17–2.11 (1H, m), 1.34 (3H, s), 1.10 (1H, d, J = 8.8 Hz), 0.80 (3H, s). 13C NMR
(100 MHz, DMSO): δ 162.9, 156.2, 138.3, 136.2, 131.9, 130.3, 128.2, 126.8, 40.8, 39.8, 37.2, 31.7, 30.9, 25.7,
20.8 (Figure S1). Anal. calcd. for C17H20N2O2: C, 71.81; H, 7.09; N, 9.85. Found: C, 71.68; H, 7.13;
N, 9.81.

(E)-4-chloro-N′-(((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-ene-2-carbonyl)oxy)benzimidamide (4): Yield: 99%,
white crystals, m.p.: 144–146 ◦C. [α]20

D = −30 (c 0.250, MeOH). 1H NMR (400 MHz, DMSO): δ 7.74
(2H, d, J = 8.6 Hz), 7.52 (2H, d, J = 8.6 Hz), 7.10–7.06 (1H, m), 6.77 (2H, br s), 2.78 (1H, dt, J = 1 Hz,
5.7 Hz), 2.48–2.44 (2H, m), 2.41 (1H, t, J = 2.9 Hz), 2.15–2.09 (1H, m), 1.33 (3H, s), 1.09 (1H, d, J = 8.9 Hz),
0.79 (3H, s). 13C NMR (100 MHz, DMSO): δ 162.8, 155.2, 138.2, 136.4, 135.0, 130.7, 128.6, 128.3, 40.8,
39.8, 37.2, 31.7, 30.9, 25.7, 20.8 (Figure S2). Anal. calcd. for C17H19ClN2O2: C, 64.05; H, 6.01; N, 8.79.
Found: C, 64.11; H, 6.09; N, 8.59.

N′-(((1R,6S)-7,7-dimethylbicyclo[4.1.0]hept-2-ene-3-carbonyl)oxy)benzimidamide (5): Yield: 87%, colorless
oil. [α]20

D = +129 (c 0.250, MeOH). 1H NMR (400 MHz, DMSO): δ 7.74–7.69 (2H, m), 7.52–7.37 (4H, m),
6.67 (2H, br s), 2.47–2.38 (1H, m), 2.00–1.82 (2H, m), 1.81–1.70 (1H, m), 1.36–1.31 (1H, m), 1.21–1.17
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(1H, m), 1.16 (3H, s), 0.92 (3H, s). 13C NMR (100 MHz, DMSO): δ 164.0, 156.3, 138.9, 131.9, 130.3, 128.2,
126.7, 126.1, 28.8, 28.4, 24.9, 23.4, 21.3, 16.6, 15.7 (Figure S3). Anal. calcd. for C17H20N2O2: C, 71.81;
H, 7.09; N, 9.85. Found: C, 71.88; H, 7.03; N, 9.88.

4.3. General Procedure for the Preparation of 6, 7 and 8

3, 4 or 5 (3.52 mmol), was dissolved in freshly-distilled THF (35 mL) and TBAF (1 M solution in
THF, 0.35 mL) was added under Ar atmosphere. The solution was stirred for 1 h then water (50 mL)
was added and the mixture was extracted with CH2Cl2 (3 × 80 mL). The organic phase was dried
(Na2SO4) and evaporated to dryness. The crude product was purified by column chromatography on
silica gel with n-hexane/EtOAc 19:1.

5-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-3-phenyl-1,2,4-oxadiazole (6): Yield: 73%, colorless oil.
[α]20

D = −11 (c 0.250, MeOH). 1H NMR (400 MHz, DMSO): δ 8.03–7.98 (2H, m), 7.62–7.52 (3H, m),
7.05–7.00 (1H, m), 2.99 (1H, dt, J = 1.3 Hz, 5.8 Hz), 2.66–2.52 (3H, m), 2.24–2.18 (1H, m), 1.39 (3H, s),
1.23 (1H, d, J = 9.1 Hz), 0.83 (3H, s). 13C NMR (100 MHz, DMSO): δ 174.4, 167.8, 135.5, 132.4, 131.4,
129.1, 127.0, 126.2, 42.0, 39.6, 37.4, 32.1, 30.7, 25.6, 25.5, 20.7 (Figure S4). Anal. calcd. for C17H10N2O:
C, 76.66; H, 6.81; N, 10.52. Found: C, 76.70; H, 6.75; N, 10.44.

3-(4-Chlorophenyl)-5-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-1,2,4-oxadiazole (7): Yield: 81%,
colorless oil. [α]20

D = −11 (c 0.250, MeOH). 1H NMR (400 MHz, DMSO): δ 8.02 (2H, d, J = 8.6 Hz), 7.63
(2H, d, J = 8.6 Hz), 7.05–7.02 (1H, m), 2.98 (1H, dt, J = 1.1 Hz, 5.6 Hz), 2.66–2.53 (3H, m), 2.24–2.18
(1H, m), 1.38 (3H, s), 1.23 (1H, d, J = 9.2 Hz), 0.83 (3H, s). 13C NMR (100 MHz, DMSO): δ 174.8, 167.0,
136.2, 135.9, 132.4, 129.3, 128.8, 125.1, 42.0, 39.6, 37.4, 32.1, 30.6, 25.6, 20.7 (Figure S5). Anal. calcd. for
C17H17ClN2O: C, 67.88; H, 5.70; N, 9.31. Found: C, 67.90; H, 5.74; N, 9.24.

5-((1R,6S)-7,7-dimethylbicyclo[4.1.0]hept-2-en-3-yl)-3-phenyl-1,2,4-oxadiazole (8): Yield: 89%, white crystals,
m.p.: 50–52 ◦C. [α]20

D = +190 (c 0.250, MeOH). 1H NMR (400 MHz, CDCl3): δ 8.12–8.05 (2H, m),
7.50–7.40 (4H, m), 2.73–2.65 (1H, m), 2.31–2.21 (1H, m), 2.06–1.88 (1H, m), 1.42–1.36 (1H, m), 1.26 (1H,
dt, J = 2.4 Hz, 8.2 Hz), 1.21 (3H, s), 0.99 (3H, s). 13C NMR (100 MHz, DMSO): δ 176.0, 167.7, 138.4, 131.3,
129.1, 126.9, 126.4, 120.4, 29.5, 28.7, 25.1, 23.5, 21.7, 16.2, 15.7 (Figure S6). Anal. calcd. for C17H18N2O:
C, 76.66; H, 6.81; N, 10.52. Found: C, 76.81; H, 6.69; N, 10.60.

4.4. General Procedure for the Preparation of 12 and 15

1 or 2 (6.02 mmol) and CDI (9.07 mmol) were dissolved in dry CH2Cl2 (75 mL). The mixture was
stirred at room temperature for 1 h, then the solvent was evaporated and the residue was dissolved in
anhydrous DMF (60 mL). After adding benzhydrazide (12.05 mmol), the mixture was stirred for 40 h
at room temperature then evaporated to dryness. The residue was dissolved in water (50 mL) and the
aqueous phase was extracted with CH2Cl2 (3 × 50 mL). The organic phase was dried (Na2SO4) and
concentrated in vacuo.

(1R,5S)-N′-benzoyl-6,6-dimethylbicyclo[3.1.1]hept-2-ene-2-carbohydrazide (12): The crude product was
purified by column chromatography on silica gel with n-hexane/EtOAc 1:1. Yield: 42%, white crystals,
m.p.: 178–181 ◦C. [α]20

D =−21 (c 0.250, MeOH). 1H NMR (400 MHz, DMSO): δ 10.21 (1H, s), 9.83 (1H, s),
7.88 (2H, d, J = 7.4 Hz), 7.61–7.44 (3H, m), 6.56 (1H, s), 2.72 (1H, t, J = 5.3 Hz), 2.49–2.29 (3H, m),
2.15–2.08 (1H, m), 1.31 (3H, s), 1.07 (1H, d, J = 8.8 Hz), 0.79 (3H, s). 13C NMR (100 MHz, DMSO): δ
165.7, 165.6, 141.4, 132.7, 131.6, 129.8, 128.8, 128.4, 127.3, 127.0, 40.9, 39.9, 37.2, 31.4, 30.8, 25.8, 20.8
(Figure S11). Anal. calcd. for C17H20N2O2: C, 71.81; H, 7.09; N, 9.85. Found: C, 71.89; H, 7.08; N, 9.85.

(1R,6S)-N′-benzoyl-7,7-dimethylbicyclo[4.1.0]hept-2-ene-3-carbohydrazide (15): The crude product was
purified by column chromatography on silica gel with n-hexane/EtOAc 3:1. Yield: 55%, white crystals,
m.p.: 188–191 ◦C. [α]20

D > = +79 (c 0.250, MeOH). 1H NMR (400 MHz, DMSO) δ 10.21 (1H, br s), 9.75
(1H, br s), 7.89 (2H, d, J = 7.66 Hz), 7.62–7.48 (3H, m), 6.92 (1H, d, J = 4.93 Hz), 2.38–2.27 (1H, m),
1.96–1.72 (3H, m), 1.32–1.24 (1H, m), 1.16 (3H, s), 1.19–1.11 (1H, m), 0.92 (3H, s). 13C NMR (100 MHz,
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DMSO): δ 132.8, 132.7, 131.6, 129.5, 128.4, 127.3, 28.6, 27.2, 24.0, 22.7, 21.5, 16.7, 15.6 (Figure S14). Anal.
calcd. for C17H20N2O2: C, 71.81; H, 7.09; N, 9.85. Found: C, 71.84; H, 7.11; N, 9.80.

4.5. General Procedure for the Preparation of 13 and 16

12 or 15 (3.52 mmol) was heated in POCl3 (28 mL) at 80 ◦C for 3 h then the reaction mixture was
cooled to room temperature, poured onto ice and made basic (pH 8) with saturated NaHCO3 solution.
The aqueous phase was extracted with CH2Cl2 (3 × 100 mL), then the organic phase was dried
(Na2SO4) and evaporated to dryness. The crude product was purified by column chromatography on
silica gel with n-hexane/EtOAc 4:1.

2-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-5-phenyl-1,3,4-oxadiazole (13): Yield: 38%, white
crystals, m.p.: 54–56 ◦C. [α]20

D = −52 (c 0.250, MeOH). 1H NMR (400 MHz, DMSO): δ 8.09–8.04
(2H, m), 7.53–7.46 (3H, m), 6.74–6.70 (1H, m), 3.14 (1H, dt, J = 1.4 Hz, 5.9 Hz), 2.63–2.48 (3H, m),
2.26–2.20 (1H, m), 1.41 (3H, s), 1.31 (1H, d, J = 9.3 Hz), 0.89 (3H, s). 13C NMR (100 MHz, DMSO): δ
163.4, 131.9, 131.8, 130.8, 129.3, 126.5, 123.3, 41.6, 39.8, 37.4, 31.8, 30.6, 25.6, 20.7 (Figure S12). Anal.
calcd. for C17H18N2O: C, 76.66; H, 6.81; N, 10.52. Found: C, 76.81; H, 6.59; N, 10.59.

2-Phenyl-5-(4-(propan-2-ylidene)cyclohex-1-en-1-yl)-1,3,4-oxadiazole (16): Yield: 15%, yellow crystals, m.p.:
87–90 ◦C. 1H NMR (400 MHz, DMSO): δ 8.10–8.06 (2H, m), 7.64–7.57 (3H, m), 7.56 (1H, s), 2.56 (2H, t,
J = 5.9 Hz), 2.38 (2H, t, J = 5.9 Hz), 1.96 (3H, s), 1.84 (3H, s), 1.80–1.73 (2H, m). 13C NMR (100 MHz,
DMSO): δ 165.3, 163.1, 135.2, 131.7, 129.6, 129.3, 127.0, 126.5, 123.4, 119.6, 25.4, 24.0, 21.6, 21.1, 20.0
(Figure S15). Anal. calcd. for C17H18N2O: C, 76.66; H, 6.81; N, 10.52. Found: C, 76.54; H, 6.86; N, 10.55.

4.6. General Procedure for Dihydroxylation

To compounds 6–8, 13 and 16 (1.09 mmol) in acetone (30 mL) NMO (0.99 mL, 50% aqueous
solution) and OsO4 (0.32 mL, 2% t-BuOH solution) were added. The reaction mixture was stirred
for 24 h at room temperature. The reaction was then quenched by the addition of saturated Na2SO3

solution (30 mL) and extracted with EtOAc (3 × 50 mL). The organic layer was dried (Na2SO4) and
evaporated in vacuo.

(1R,2R,3S,5R)-6,6-dimethyl-2-(3-phenyl-1,2,4-oxadiazol-5-yl)bicyclo[3.1.1]heptane-2,3-diol (9): The crude
product was purified by column chromatography on silica gel with n-hexane/EtOAc 4:1. Yield: 80%,
white crystals, m.p.: 133–136 ◦C. [α]20

D = −19 (c 0.250, MeOH). 1H NMR (400 MHz, DMSO) δ 8.05–7.99
(2H, m), 7.64–7.55 (3H, m), 5.96 (1H, d, J = 5.3 Hz), 5.62 (1H, s), 4.96–4.88 (1H, m), 2.69 (1H, t, J = 5.6 Hz),
2.49–2.42 (1H, m), 2.31–2.22 (1H, m), 1.96–1.89 (1H, m), 1.80 (1H, dt, J = 3.4, 14.1 Hz), 1.55 (1H, d,
J = 10.5 Hz), 1.26 (3H, s), 0.56 (3H, s). 13C NMR (DMSO, 100 MHz) δ 183.62, 167.14, 131.5, 129.2, 127.0,
126.1, 72.3, 63.6, 50.0, 39.6, 37.9, 36.9, 26.8, 25.9, 21.9 (Figures S7 and S8). Anal. calcd. for C17H20N2O3:
C, 67.98; H, 6.71; N, 9.33. Found: C, 67.88; H, 6.75; N, 9.41.

(1R,2R,3S,5R)-2-(3-(4-chlorophenyl)-1,2,4-oxadiazol-5-yl)-6,6-dimethylbicyclo[3.1.1]heptane-2,3-diol (10): The
crude product was purified by column chromatography on silica gel with n-hexane/EtOAc 4:1. Yield:
95%, white crystals, m.p.: 114–117 ◦C. [α]20

D = −20 (c 0.250, MeOH). 1H NMR (400 MHz, DMSO): δ
8.04 (2H, d, J = 8.5 Hz), 7.67 (2H, d, J = 8.5 Hz), 5.97 (1H, d, J = 6.5 Hz), 5.65 (1H, s), 5.96–4.89 (1H, m),
2.69 (1H, t, J = 5.8 Hz), 2.50–2.43 (1H, m), 2.30–2.23 (1H, m), 1.96–1.90 (1H, m), 1.81 (1H, dt, J = 14.0 Hz,
3.5 Hz), 1.56 (1H, d, J = 10.5 Hz), 1.26 (3H, s), 0.57 (3H, s). 13C NMR (100 MHz, DMSO): δ 183.9, 166.4,
136.3, 129.4, 128.8, 125.0, 72.4, 63.6, 50.0, 39.6, 37.8, 36.8, 26.8, 25.9, 21.9 (Figure S9). Anal. calcd. for
C17H19ClN2O3: C, 60.99; H, 5.72; N, 8.37. Found: C, 61.09; H, 5.70; N, 8.40.

(1R,2S,3R,6S)-7,7-dimethyl-3-(3-phenyl-1,2,4-oxadiazol-5-yl)bicyclo[4.1.0]heptane-2,3-diol (11): The crude
product was purified by column chromatography on silica gel with n-hexane/EtOAc 4:1. Yield: 41%,
colorless oil. [α]20

D = −6 (c 0.250, MeOH). 1H NMR (400 MHz, DMSO): δ 8.02–7.98 (2H, m), 7.61–7.53
(3H, m), 5.50 (1H, s), 5.15 (1H, d, J = 7.3 Hz), 3.60 (1H, dd, J = 3.1 Hz, 7.3 Hz), 2.02–1.81 (2H, m), 1.62–1.51
(2H, m), 1.07 (3H, s), 1.03 (3H, s), 0.80–0.73 (1H, m), 0.69–0.64 (1H, m). 13C NMR (100 MHz, DMSO): δ
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185.0, 167.4, 131.3, 129.1, 127.0, 126.4, 73.2, 69.9, 32.8, 28.6, 25.9, 19.8, 16.1, 15.0, 14.3 (Figure S10). Anal.
calcd. for C17H20N2O3: C, 67.98; H, 6.71; N, 9.33. Found: C, 67.88; H, 6.77; N, 9.38.

(1R,2R,3S,5R)-6,6-dimethyl-2-(5-phenyl-1,3,4-oxadiazol-2-yl)bicyclo[3.1.1]heptane-2,3-diol (14): The crude
product was purified by column chromatography on silica gel with n-hexane/EtOAc 2:1. Yield: 95%,
white crystals, m.p.: 110–112 ◦C. [α]20

D = +11 (c 0.250, MeOH). 1H NMR (400 MHz, DMSO): δ 8.06–8.01
(2H, m), 7.68–7.59 (3H, m), 5.94 (1H, d, J = 6.3 Hz), 5.51 (1H, s), 4.94–4.88 (1H, m), 2.68 (1H, t, J = 5.7 Hz),
2.42–2.29 (1H, m), 2.29–2.21 (1H, m), 1.95–1.89 (1H, m), 1.78 (1H, dt, J = 14.0 Hz, 3.6 Hz), 1.55 (1H, d,
J = 10.4 Hz), 1.25 (3H, s), 0.59 (3H, s). 13C NMR (100 MHz, DMSO): δ 170.4, 163.9, 132.0, 129.4, 126.5,
123.3, 71.7, 63.1, 49.7, 39.7, 37.9, 36.9, 27.0, 26.1, 22.0 (Figure S13). Anal. calcd. for C17H20N2O3: C,
67.98; H, 6.71; N, 9.33. Found: C, 68.05; H, 6.65; N, 9.30.

1-(2-Hydroxypropan-2-yl)-4-(5-phenyl-1,3,4-oxadiazol-2-yl)cyclohex-3-enol (17): The crude product was
purified by column chromatography on silica gel with n-hexane/EtOAc 1:1. Yield: 55%, colorless
oil. 1H NMR (400 MHz, DMSO): δ 8.07–8.02 (2H, m), 7.65–7.58 (3H, m), 6.99 (1H, s), 4.67 (1H, s), 4.30
(1H, s), 2.65–2.57 (1H, m), 2.31–2.20 (1H, m), 1.85–1.75 (2H, m), 1.71–1.62 (2H, m), 1.89 (3H, s), 1.09
(3H, s). 13C NMR (100 MHz, DMSO): δ 164.7, 163.3, 136.3, 131.9, 129.4, 126.5, 124.0, 123.3, 73.4, 72.4,
29.9, 25.0, 24.3, 24.2, 18.0 (Figure S16). Anal. calcd. for C17H20N2O3: C, 67.98; H, 6.71; N, 9.33. Found:
C, 67.99; H, 6.59; N, 9.53.

4.7. Antiproliferative Assay

The human gynecological cancer cell lines isolated from cervical adenocarcinoma (HeLa), ovarian
cancer (A2780), and breast cancers (MDA-MB-231 and MCF7) were purchased from European
Collection of Cell Cultures (Salisbury, UK). The cells were grown in Minimum Essential Medium
(MEM) supplemented with 10% fetal calf serum (FCS), 1% non-essential amino acids, and 1%
penicillin-streptomycin. All media and supplements for these experiments were obtained from
Lonza Group Ltd. (Basel, Switzerland). The cells were maintained at 37 ◦C in humidified atmosphere
containing 5% CO2. The antiproliferative properties of the prepared monoterpene-based oxadiazoles
were determined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay
against adherent cancer cell lines [41]. Briefly, cells were seeded into 96 well plates (5000 cells/well)
and incubated with two concentrations of the tested compounds (10 and 30 µM) under cell-culturing
conditions. After incubation for 72 h, MTT solution (5 mg/mL) was added to each sample which
were incubated for further 4 h. The formazan crystals precipitated were dissolved in 100 µL
dimethyl sulfoxide, and the absorbance was measured at 545 nm with a microplate reader (Awareness
Technology, Palm City, FL, USA). Two independent experiments were performed with five wells for
each condition. Cisplatin (Ebewe GmbH, Unterach, Austria), a clinically used anticancer agent, was
used as a reference agent. It the case of the most effective agents, the assay was repeated with a set of
concentrations (0.01–30 µM) in order to determine the IC50 values. Calculations were done by means of
the GraphPad Prism 5.01 software (GraphPad Software Inc., San Diego, CA, USA) using the non-linear
regression model log (inhibitor) vs. normalized response and variable slope fit.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/19/1/81/s1.
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Abbreviations

DCM dichloromethane
CDI 1,1′-carbonyldiimidazol
TBAF tetrabutylammonium fluoride
NMO 4-methylmorpholine N-oxide
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