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A SPACE-TIME FINITE ELEMENT METHOD FOR NEURAL FIELD
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Abstract. We present and analyze a new space-time finite element method for the solution
of neural field equations with transmission delays. The numerical treatment of these systems is
rare in the literature and currently has several restrictions on the spatial domain and the functions
involved, such as connectivity and delay functions. The use of a space-time discretization, with
basis functions that are discontinuous in time and continuous in space (dGcG-FEM), is a natural
way to deal with space-dependent delays, which is important for many neural field applications. In
this paper we provide a detailed description of a space-time dGcG-FEM algorithm for neural delay
equations, including an a priori error analysis. We demonstrate the application of the dGcG-FEM
algorithm on several neural field models, including problems with an inhomogeneous kernel.
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1. Introduction. The motivation of this work is the need for numerical meth-
ods that can accurately and efficiently discretize delayed integro-differential equations
originating from neural field models, in particular when the delay in the system is space
dependent. Only a few studies so far have considered the numerical treatment of neu-
ral field systems; see [8], [10], [11], and references therein. In [8], the authors used
special types of delay and connectivity functions in order to reduce the spatial discre-
tization to a large system of delay differential equations with constant time delays.
This system was then solved with the MATLAB solver dde23. In [10] a new numeri-
cal scheme was introduced that includes a convolution structure and hence allows the
implementation of fast numerical algorithms. In both studies the connectivity kernel
depends on the distance between two spatial locations. While this choice has been
shown to successfully model neural activity known from experiments, it introduces,
however, a limitation to the applicability of the presented techniques.

Here we propose the use of space-time finite element methods (FEMs) using
discontinuous basis functions in time and continuous basis functions in space (dGcG-
FEM), which are well established to solve ordinary and partial differential equations;
see, e.g., [5], [6], [7], [9], [12], [13]. The novelty of this work is the successful application
of the space-time dGcG method to the neural field equations. The motivation of our
choice is that the time-discontinuous Galerkin method has good long-time accuracy
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ALPS, ELI-HU Non-Profit Ltd, Dugonics tér 13, Szeged 6720, Hungary (polner@math.u-szeged.hu).
‡Mathematics of Computational Science Group, Department of Applied Mathematics, University

of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands (j.j.w.vandervegt@utwente.nl).
§Applied Analysis, Department of Applied Mathematics, University of Twente, P.O. Box 217,

7500 AE, Enschede, The Netherlands (s.a.vangils@utwente.nl).

B797

D
ow

nl
oa

de
d 

09
/2

1/
17

 to
 1

30
.8

9.
10

9.
97

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/sisc/39-5/M108502.html
mailto:polner@math.u-szeged.hu
mailto:j.j.w.vandervegt@utwente.nl
mailto:s.a.vangils@utwente.nl


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B798 M. POLNER, J. VAN DER VEGT, AND S. VAN GILS

[6], [12]. Moreover, the use of a space-time discretization is a natural way to deal
with the space-dependent delays. As will be discussed later, there is no need in a
space-time method to interpolate the solution from previous time levels. The space-
time dGcG method was successfully used for stiff systems and is well suited for mesh
adaptation, which is of great importance when local changes in the solution are of
interest. Further benefits are that we do not need to make restrictions, neither to the
functions involved in the system, such as the connectivity kernel or the delay function,
nor to the dimension or shape of the spatial domain.

In this paper we present a novel space-time dGcG method for delay differential
equations. We provide a theoretical analysis of the stability and order of accuracy of
the numerical discretization and demonstrate its application on a number of neural
field problems. We focus on the design and an a priori error analysis of the space-time
dGcG-FEM for nonlinear neural field equations with space-dependent delay.

The outline of this paper is as follows. In the introductory section 2 we recall a
mathematical model for neural fields. In section 3 we introduce the space-time dGcG-
FEM method. The main difficulty is the treatment of the delay term in the neural
field equations, which is investigated in detail in section 3.2. An a priori error analysis
of the space-time discretization is given in section 4. Next, we show in section 5 some
numerical simulations for the neural field equations in one and two space dimensions
with one population. Some of the examples are taken from literature [8], [14], where
both analytical and numerical results are known for comparison. We demonstrate
some further computational benefits of the space-time dGcG-FEM by introducing an
inhomogeneous kernel in the delay term in section 5.2.1. The numerical algorithms
presented in [8] and [10] are not suitable for the treatment of local inhomogeneities.

In consecutive papers we will show computations on more complicated spatial
domains and extend the model to more populations in the neural field system.

2. Neural fields with space-dependent delays. The mathematical model for
neural fields with space-dependent delays is as follows. Consider p populations con-
sisting of neurons distributed over a bounded, connected, and open domain Ω ⊂ Rd,
d = 1, 2, 3. For each i, the variable Vi(t, r) is the membrane potential at time t,
averaged over those neurons in the ith population positioned at r ∈ Ω. These poten-
tials are assumed to evolve according to the following system of integro-differential
equations:

(1)
∂Vi
∂t

(t, r) = −αiVi(t, r) +
p∑
j=1

∫
Ω
Jij(r, r′, t)Sj(Vj(t− τij(r, r′), r′))d r′

for i = 1, . . . , p. The intrinsic dynamics exhibits exponential decay to the baseline
level 0, as αi > 0. The propagation delays τij(r, r′) measure the time it takes for a
signal sent by a type-j neuron located at position r′ to reach a type-i neuron located
at position r. The function Jij(r, r′, t) represents the connection strength between
population j at location r′ and population i at location r at time t. The firing rate
functions are Sj . For the definition and interpretation of these functions we refer to
[15]. Some examples will be given in later sections.

Throughout this paper we consider a single population, p = 1, in a bounded
domain Ω ⊂ Rd, on a time interval [t0, T ), with T > t0 the final time,

(2)
∂u

∂t
(t, x) = −αu(t, x) +

∫
Ω
J(x, r)S(u(t− τ(x, r), r))d r, α > 0.

Note that we will only deal with autonomous systems. Therefore, we assume from
here on that the connectivity does not depend on time. We assume that the following
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SPACE-TIME FINITE ELEMENTS FOR NEURAL FIELDS B799

hypotheses are satisfied for the functions involved in the system (as in [14]): the
connectivity kernel J ∈ C(Ω̄ × Ω̄), the firing rate function S ∈ C∞(R) and its kth
derivative is bounded for every k ∈ N0, and the delay function τ ∈ C(Ω̄ × Ω̄) is
nonnegative.

Without loss of generality, we take t0 = 0. From the assumption on the delay
function τ , we may set

0 < τmax = sup
(x,r)∈Ω̄×Ω̄

τ(x, r) <∞.

Note that when τmax = 0, the delay function τ(x, r) = 0 for all (x, r) ∈ Ω̄× Ω̄, and in
this case (2) reduces to an integro-differential equation without delay. As we will see
later, our numerical method can handle this case as well.

Let Y = C(Ω̄) and set X = C ([−τmax, 0];Y ). For ϕ ∈ X, s ∈ [−τmax, 0] and for
x ∈ Ω we write ϕ(s)(x) = ϕ(s, x), and its norm is given by

‖ϕ‖X = sup
s∈[−τmax,0]

‖ϕ(s, ·)‖Y ,

where ‖ϕ(s, ·)‖Y = supx∈Ω |ϕ(s, x)|. From the assumption on the connectivity kernel,
it follows that it is bounded in the following norm:

‖J‖C = sup
(x,r)∈Ω̄×Ω̄

|J(x, r)|.

We use the traditional notation for the state of the system at time t:

ut(s) = u(t+ s) ∈ C(Ω̄), s ∈ [−τmax, 0], t ≥ 0.

Define the nonlinear operator G : X → Y by

(3) G(ϕ)(x) =
∫

Ω
J(x, r)S (ϕ(−τ(x, r), r)) d r.

Then the neural field equation (2) can be written as a delay differential equation
(DDE) as

(4)
∂u

∂t
(t) = −αu(t) +G(ut),

where the solution is an element of C([−τmax,∞);Y ) ∩ C1([0,∞);Y ). Similarly,
we have the state of the solution at time t defined as ut(s)(x) = u(t + s, x), s ∈
[−τmax, 0], t ≥ 0, x ∈ Ω. It was shown in [14] that under the above assumptions on
the connectivity, the firing rate function and delay, the operator G is well defined and
satisfies a global Lipschitz condition.

Note that the assumptions on the firing rate function S imposed in [14] were
needed for further analysis of the neural field equations. For the numerical analysis
presented in this paper it is sufficient to assume that S is Lipschitz continuous.

3. The discontinuous Galerkin finite element method. The starting point
of our numerical discretization is the weak formulation. The numerical method is
investigated for the nonlinear equation (4), which may be written in variational form
as follows: Find u ∈ C1 ([0, T ), Y ) ∩ C ([−τmax, T ), Y ) such that(∂u

∂t
(t) + αu(t), v

)
− (G(ut), v) = 0 ∀v ∈ Y, ∀t ∈ (0, T ),(5)

u(s) = u0(s), s ∈ [−τmax, 0],(6)
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En

Ω(tn)

Ω(tn−1)

Kn
jIn

x

t

Fig. 1. Two-dimensional space-time elements in physical space.

where (·, ·) is the usual L2(Ω) inner product. Here the delay contribution is expressed
as (

G(ut), v
)

=
∫

Ω
G(ut)(x)v(x)dx =

∫
Ω

∫
Ω
J(x, r)S (ut(−τ(x, r), r)) dr v(x)dx.

Note that for any t > 0, all functions in the inner product are elements of Y = C(Ω̄),
which is a dense subset of L2(Ω), and hence the inner product is well defined.

3.1. The space-time dGcG-FEM discretization. Consider the neural field
equations in the domain Ω. We will not distinguish between space and time variables
and consider directly the space Rd+1, where d is the number of space dimensions.

Let E ⊂ Rd+1 be an open, bounded, space-time domain in which a point has
coordinates (t, x) ∈ Rd+1, with x ∈ Rd the position vector and time t. First, partition
the time interval Ī = [0, T ] using the time levels 0 = t0 < t1 < · · · < tN = T and
denote by In = (tn−1, tn] the nth time interval of length kn = tn− tn−1. A space-time
slab is defined as En = In × Ω. Second, we approximate the spatial domain Ω with
Ωh using a tessellation of nonoverlapping hexahedral elements (line elements in 1D,
quadrilaterals in 2D, etc.)

T̄h =

Kj :
M⋃
j=1

K̄j = Ω̄h, Kj ∩Ki = ∅ if i 6= j

 .

The domain approximation is such that Ωh → Ω as h → 0, where h is the radius of
the smallest sphere containing each element Kj ∈ T̄h. The space-time elements Knj
are now obtained as Knj = (tn−1, tn)×Kj . The space-time tessellation is defined as

T nh =
{
K = GnK(K̂) : K ∈ T̄h

}
,

where GnK denotes the mapping from the space-time reference element K̂ = (−1, 1)d+1

to the space-time element in physical space K; see Figure 1. The tessellation Th of
the whole discrete space-time domain is Th = ∪Nn=1T nh .

The space-time FEM discretization is obtained by approximating the test and
trial functions in each space-time element in the tessellation Kn ∈ T nh with polynomial
expansions that are assumed to be continuous within each space-time slab, but dis-
continuous across the interfaces of the space-time slabs, namely at times t0, t1, . . . , tN .

D
ow

nl
oa

de
d 

09
/2

1/
17

 to
 1

30
.8

9.
10

9.
97

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SPACE-TIME FINITE ELEMENTS FOR NEURAL FIELDS B801

The finite element space associated with the tessellation T nh is defined as

(7) V nh =
{
u ∈ C(En) : u |K ◦GnK ∈ (P̂q(−1, 1)⊗ P̂r(K̂))∀K ∈ T nh

}
,

where P̂q(−1, 1) and P̂r(K̂), respectively, represent qth-order polynomials on (−1, 1)
and rth-order tensor product polynomials in the reference element K̂ = (−1, 1)d.
Finally, define

Vh = {u ∈ L2(E) : u |En∈ V nh , n = 1, 2, . . . , N}.
Note that the functions in Vh are allowed to be discontinuous at the nodes of the
partition of the time interval. We will use the notation un,± = lims→0± u(tn + s).
Moreover, since 0 /∈ I1, we specify u0,− = u0(0).

The space-time dGcG-FEM method applied to problem (5)–(6) can be formulated
as follows: Find uh ∈ Vh such that

N∑
n=1

∑
K∈T n

h

[(∂uh

∂t
+ αuh, vh

)
K

−
∫
K

[∫
Ω
J(x, r)S (uh(t− τ(x, r), r)) d r

]
vh(t, x)dx dt

]

+
N∑

n=2

(
[uh]n−1, v

n−1,+
h

)
+
(
u0,+

h , v0,+
h

)
=
(
u0(0), v0,+

h

)
(8)

holds for all vh ∈ Vh and where u0,−
h = u0(0). Here [uh]n = un,+h − un,−h denotes the

jump of uh at tn and (·, ·)K is the L2(K)-inner product on a space-time element. The
jumps were added to the weak formulation to ensure weak continuity between time
slabs, since the basis functions in dGcG-FEM discretizations are discontinuous at the
space-time slab boundary.

Note that throughout this paper the FEM solution will be denoted by uh, which
should not be confused with the state of the system notation introduced in section
2. Moreover, it is important to remark that, for uh ∈ Vh, the segments uht, t > 0,
are not necessarily continuous but piecewise continuous on [−τmax, 0]. Denoting the
space of piecewise continuous functions on [−τmax, 0] by X̂ = PC ([−τmax, 0];Y ), we
define the operator Ĝ : X̂ → Y as

(9) Ĝψ =
∫

Ω
J(·, r)S (ψ(−τ(·, r), r)) dr, ψ ∈ X̂.

Then the nonlinear integral operator in (8) is equal to Ĝ(uht).
The weak formulation (8) can be transformed into an integrated-by-parts form,

and since we added the jump term at each time level, it is possible to drop the
summation over the space-time slabs. Moreover, after integration by parts, (8) can
be decoupled into a sequence of local problems by choosing test functions that have
support only in a single space-time slab En. Hence we can solve the problem succes-
sively, i.e., using the known value uh(t−n−1) from the previous space-time slab. The
weak formulation for the dGcG-FEM discretization of the neural field equation is the
following.

Find uh ∈ V nh , such that for all vh ∈ V nh the variational equation is satisfied:∫
Kn

(
−uh

∂vh
∂t

+ αuhvh

)
dxdt+

∫
K(tn)

un,−h vn,−h dx

−
∫
Kn

Ĝ (uht) (x)vhdxdt =
∫
K(tn−1)

un−1,−
h vn−1,+

h dx,(10)
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x

t

−1 1xq

Km

Kn

tn−1

tm−1

tn

t0rqs

τ (xq, rqs)

tm

Fig. 2. The computational domain.

with Kn ∈ T nh for n = 1, . . . , N .
Note here that the delay term may use values from space-time slabs where the

solution was computed previously, but also from the current space-time slab, depend-
ing on the magnitude of the delay function compared to the time step. This problem
will be discussed later in detail.

3.2. How to treat the delay term? In this section we discuss the dGcG-
FEM approximation of the delay term in the weak formulation (10). Introduce the
approximation

(11) uh(t, x) |K=
Np∑
m=1

ûKmψ
K
m(t, x)

into (10) and set the test function vh(t, x) |K= ψKi (t, x), i ∈ {1, . . . , Np}, with Np the
number of degrees of freedom in element K and ψKi standard Lagrange tensor product
basis functions. The delay term becomes∫

K
ψKi (t, x)

(∫
Ω
J(x, r)S (uh(t− τ(x, r), r)) dr

)
dx dt

=
∫
K
ψKi (t, x)

(∑
L∈T̄h

∫
L

J(x, r)S
( Np∑
m=1

ûLmψ
L
m(t− τ(x, r), r)

)
dr
)
dxdt.(12)

All integrals in the weak formulation are evaluated using Gaussian quadrature rules.
Let us fix a quadrature point (tq, xq) ∈ Kn in a space-time element and let τmax =
max(x,r)∈Ω̄×Ω̄ τ(x, r), as before. To compute the integral over a space element L in
(12), consider a space quadrature point rqs ∈ Ω, and distinguish three cases for the
time delay tq − τ(xq, rqs); see Figure 2.

Case 1. If −τmax ≤ tq − τ(xq, rqs) ≤ 0, then the solution at this time level is
given by the initial solution, i.e., uh(tq − τ(xq, rqs), rqs) = u0(tq − τ(xq, rqs), rqs).
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Case 2. When tq − τ(xq, rqs) ≥ tn−1, then the delay term (12) is implicit since
we remain in the same space-time slab En, where the solution is unknown. Hence,
when the delay time is small enough compared to the time step, an additional Newton
method needs to be incorporated for the solution of the nonlinear system.

If we introduce the finite element approximations for uh and vh also into the other
terms in the weak formulation (10), then we obtain for all K ∈ T nh

Np∑
j=1

{
ûKj

∫
K

(
−ψKj (t, x)

∂

∂t
ψKi (t, x) + αψKj (t, x)ψKi (t, x)

)
dxdt

+ ûKj

∫
K(t−n )

ψKj (t−n , x)ψKi (t−n , x)dx

}

−
∑
L∈T̄h

∫
K
ψKi (t, x)

[ ∫
L

J(x, r)S
( Np∑
m=1

ûLmψ
L
m(t− τ(x, r), r)

)
dr

]
dxdt

=
Np∑
j=1

ûK,n−1
j

∫
K(t+n−1)

ψKj (t−n−1, x)ψKi (t+n−1, x)dx,(13)

where ûK,n−1
j are the coefficients of space-time element K in the space-time slab En−1.

Case 3. When 0 ≤ tq − τ(xq, rqs) < tn−1, then the delay term is explicit since we
go back to a previous space-time slab, where the FEM solution is already computed.

4. Error analysis. In this section we give an a priori error analysis for the
space-time dGcG method (13). In the error analysis we will use a slightly modified
version of the temporal interpolation functions defined in [12, Proposition 4.1]. First,
define the space

(14) Sk =
{
w : [0, T ]→ Y : w |In=

q∑
j=0

ϕjt
j , ϕj ∈ Y, ∀n ≥ 1

}
,

with In = (tn−1, tn] and |In| = kn. Note that these functions are allowed to be
discontinuous at the nodes of the partition of the time interval, but continuous from
the left in each subinterval In, i.e., w(tn) = limt→t−n w(t). For the restriction of
the functions in Sk to In, we use the notation Snk . Define the temporal polynomial
interpolant

(15) Tk : C ([0, T ], Y )→ Sk

as follows; see also [12].

Proposition 1. Let ũ = Tku ∈ Sk be the time-interpolant of u ∈ C ([0, T ], Y ) ∩
Hq+1 ([0, T ], Y ), q ≥ 0, with the following properties:

ũ(tn−1) = u(tn−1) for n ≥ 1,(16) ∫
It

(ũ(s)− u(s)) slds = 0 for l = 0, . . . , q − 1, t ∈ In, It = (tn−1, t], n ≥ 1.(17)
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The interpolation error then can be estimated as

(18) ‖ũ(s)− u(s)‖ ≤ CIkq+1/2
t

(∫
It

‖∂q+1
s u(s, ·)‖2ds

)1/2

for s ∈ It,

where ∂q+1
s denotes the (q+ 1)th-order derivative w.r.t. time, kt = |It|, and the norm

‖ · ‖ = ‖ · ‖L2(Ω) hereafter.

Observe that ũ interpolates exactly at the nodes and the interpolation error is
orthogonal to polynomials of degree at most q − 1. For constant polynomials (q = 0)
condition (17) is not used.

Next, define the spatial interpolant. Let Wh be the space of tensor product
polynomials of degree up to r ≥ 0 on each space element Kj , i.e.,

(19) Wh = {v ∈ C(Ω) : v |K ◦GnK ∈ P̂r(K̂) ∀K ∈ T̄h},

where GnK denotes the mapping from the reference element K̂ = (−1, 1)d to the
element K ∈ T̄h in physical space. Let

Ph : Y →Wh

be the L2-projection to the (spatial) finite element space, defined as (Phv, wh) =
(v, wh) for all wh ∈ Wh. We use the standard interpolation estimate in space (see,
e.g., [2], [3])

(20) ‖v − Phv‖ ≤ Chr+1‖v‖r+1 ∀v ∈ Y ∩Hr+1(Ω),

where ‖·‖r+1 = ‖·‖Hr+1(Ω), h denotes the maximal space element diameter as before,
and the constant C is independent of h and v.

In the error analysis we also need the interpolation of the initial segment of the
solution. Let the given initial function be u0 ∈ X ∩ Hq+1

(
[−τmax, 0];Hr+1(Ω)

)
for

some q, r ≥ 0. Use a partition of the interval [−τmax, 0] into M subintervals Ji of
length ki, respectively. On each Ji we use the same temporal interpolation ũ0 = Tku0
of u0, as introduced in Proposition 1. Then for all s ∈ Ji we have

‖u0(s)− PhTku0(s)‖ = ‖u0(s)− Phũ0(s)‖

≤ ‖u0(s)− Phu0(s)‖+ ‖Ph‖‖u0(s)− Tku0(s)‖

≤ Chr+1‖u0(s)‖r+1 + CIk
q+1/2
i

(∫
Ji

‖∂q+1
s u0(s, ·)‖2ds

)1/2

,(21)

where we use that the operator norm of the Lagrange interpolation Ph is bounded;
see [2], [4].

We will also need an estimate of the integral of the interpolation error on the
partition of the initial segment. There exists C > 0, a generic constant (independent
of the solution and mesh size), such that∫

Ji

‖u0(s)− PhTku0(s)‖2ds ≤ CB(u0, Ji)

:= C

(
h2r+2ki‖u0‖2r+1,Ji + k2q+2

i

∫
Ji

‖∂q+1
s u0(s, ·)‖2ds

)
,(22)
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where we denote the norm
‖ϕ‖r,I = sup

t∈I
‖ϕ(t)‖r.

Next, we state the main result of the a priori error analysis of the dGcG discre-
tization (10) for the neural field equations.

Theorem 2. Let u ∈ C1 ([0, T );Y ) ∩ Hq+1
(
[0, T ];Hr+1(Ω)

)
be the solution of

(4) for some q, r ≥ 0 and with initial state u0 ∈ X ∩Hq+1
(
[−τmax, 0];Hr+1(Ω)

)
, and

let uh ∈ V nh be the solution of (10). Then

‖uh(tN )− u(tN )‖2 ≤ C
(

M∑
i=1

m(i)B(u0, Ji) +
N∑
n=1

m(n)k2q+2
n

∫
In

‖∂q+1
t u(t, ·)‖2dt

+h2r+2
N∑
n=0

‖u(tn)‖2r+1 +
N∑
n=1

h2r+2m(n)kn‖u‖2r+1,In

)
(23)

holds for tN ≥ 0, N the number of time slabs, where C is a positive constant inde-
pendent of the time step kn = tn − tn−1 and the maximal space element diameter h.
Here m(n) ≤ N − 1, 1 ≤ n ≤ N , is the multiplicity of how many times we visited the
interval In due to the delay term.

Proof. Let us decompose the error of the numerical discretization into the sum

(uh − u)(t, x) = [uh(t, x)− Phũ(t)(x)] + [Phũ(t)(x)− u(t, x)]

= θ(t, x) + ρ(t, x) for t > 0,(24)

with θ the discretization error and ρ the interpolation error. When t ∈ [−τmax, 0], we
only have the interpolation error of the given initial solution u0, that is, θ(t, x) = 0
and ρ(t, x) = Phũ0(t)(x)−u0(t, x). From here on, we suppress the spatial dependence
where it is clear from the context. Since ũ interpolates exactly at the nodes t = tn−1,
we have that

‖ρ(tn−1)‖ = ‖PhTku(tn−1)− u(tn−1)‖
= ‖Phu(tn−1)− u(tn−1)‖ ≤ Chr+1‖u(tn−1)‖r+1(25)

holds for all n ≥ 1. Here the constant C is independent of h; see, e.g., [2]. When we
are in the interior of a time interval Ij , we decompose ρ to be able to use the bound
on the interpolation error in time and space, respectively, as in (21):

‖ρ(t)‖ = ‖PhTku(t)− u(t)‖

≤ C
(
hr+1‖u(t)‖r+1 + k

q+1/2
j

(∫
Ij

‖∂q+1
s u(s, ·)‖2ds

)1/2
)

(26)

for any t ∈ Ij and j = 1, . . . , N . It is, therefore, sufficient to bound θN = θ(tN ).
Since both uh and u satisfy the weak formulation (10) with G and Ĝ, respectively, we
obtain that for all v ∈ V nh∫

In

(
∂

∂t
θ(t) + αθ(t), v(t)

)
dt+

(
[θ]n−1, v

n−1,+)
=
∫
In

(
− ∂

∂t
ρ(t)− αρ(t) + Ĝ(uht)−G(ut), v(t)

)
dt−

(
[ρ]n−1, v

n−1,+) .(27)
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The variational equation (27) holds for any partition of the time interval In, and hence
the following equation is also valid for any t ∈ (tn−1, tn]:∫

It

(
∂

∂s
θ(s) + αθ(s), v(s)

)
ds+

(
[θ]n−1, v

n−1,+)
=
∫
It

(
− ∂

∂s
ρ(s)− αρ(s) + Ĝ(uhs)−G(us), v(s)

)
ds−

(
[ρ]n−1, v

n−1,+) ,(28)

where It = (tn−1, t]. Using the assumptions on the interpolant, some terms in (28)
will cancel, i.e., for all t ∈ In∫

It

(
∂

∂s
ρ(s), v(s)

)
ds+

(
ρ(t+n−1)− ρ(t−n−1), vn−1,+)

= −
∫
It

(
ρ(s),

∂

∂s
v(s)

)
ds+ (ρ(s), v(s)) |t

t=t+n−1
+
(
ρn−1,+ − ρn−1,−, vn−1,+)

= −
∫
It

(
ρ(s),

∂

∂s
v(s)

)
ds+ (ρ(t), v(t))−

(
ρn−1,−, vn−1,+)

= (ρ(t), v(t))−
(
ρn−1,−, vn−1,+) .(29)

Let v = 2θ ∈ Snk in (28). Then for each In and t ∈ In the following holds:∫
It

2
(
∂

∂s
θ(s) + αθ(s), θ(s)

)
ds+ 2

(
[θ]n−1, θ

n−1,+)

=
∫
It

2
(
−αρ(s) + Ĝ(uhs)−G(us), θ(s)

)
ds− 2 (ρ(t), θ(t)) + 2

(
ρn−1,−, θn−1,+) .(30)

This may be further written as∫
It

[ d
ds
‖θ(s)‖2 + 2α‖θ(s)‖2

]
ds+ 2‖θn−1,+‖2 = 2

(
θn−1,−, θn−1,+)

+
∫
It

2
(
−αρ(s) + Ĝ(uhs)−G(us), θ(s)

)
ds− 2 (ρ(t), θ(t)) + 2

(
ρn−1,−, θn−1,+) .(31)

Using the Schwarz inequality and the inequality 2ab ≤ ε2a2 + 1
ε2 b

2, we obtain

(1− ε2)‖θ(t)‖2 ≤− 2α
∫
It

‖θ(s)‖2ds+ 2‖θn−1,−‖2

+ α

∫
It

(
‖ρ(s)‖2 + ‖θ(s)‖2

)
ds+

1
ε2
‖ρ(t)‖2

+ 2
∫
It

(
Ĝ(uhs)−G(us), θ(s)

)
ds+ 2‖ρn−1,−‖2.(32)

Since the nonlinearity S is Lipschitz continuous with some Lipschitz constant CS , we
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can estimate the nonlinear term as

2
∫
It

(
Ĝ(uhs)−G(us), θ(s)

)
ds

= 2
∫
It

∫
Ω

[∫
Ω
J(x, r) [S (uh (s− τ(x, r), r))− S (u (s− τ(x, r), r))] dr

]
θ(s, x)dx ds

≤ 2CS
∫
It

∫
Ω

[∫
Ω
|J(x, r)| (|θ (s− τ(x, r), r) |+ |ρ (s− τ(x, r), r) |) dr

]
θ(s, x)dx ds.

(33)

Let us estimate the first term on the right-hand side of (33) as

T1 :=
∫
It

∫
Ω

[∫
Ω
|J(x, r)||θ (s− τ(x, r), r) |dr

]
θ(s, x)dx ds

≤
∫
It

(∫
Ω

(∫
Ω
|J(x, r)||θ (s− τ(x, r), r) |dr

)2

dx

)1/2(∫
Ω
θ2(s, x)dx

)1/2

ds

≤
∫
It

(
|Ω|
∫

Ω

∫
Ω
J2(x, r)θ2 (s− τ(x, r), r) drdx

)1/2(∫
Ω
θ2(s, x)dx

)1/2

ds

≤
(
|Ω|
∫
It

∫
Ω

∫
Ω
J2(x, r)θ2 (s− τ(x, r), r) drdxds

)1/2(∫
It

∫
Ω
θ2(s, x)dxds

)1/2

,

(34)

where we used the Schwarz inequality in each estimation step and |Ω| = vol(Ω). Next,
since 0 < τ(x, r) ≤ τmax and J(x, r) ≤ ‖J‖C , for all (x, r) ∈ Ω̄ × Ω̄, the following
estimate is valid:∫

It

∫
Ω

∫
Ω
J2(x, r)θ2(s− τ(x, r), r)dr dx ds

≤ ‖J‖2C
∫
It

∫
Ω

∫
Ω
θ2(s− τ(x, r), r)dr dx ds

≤ ‖J‖2C |Ω|
∫ t

tn−1−τmax

∫
Ω
θ2(s, r)dr ds.(35)

Hence we can further estimate (34) as

T1 ≤ ‖J‖C |Ω|
(∫ t

tn−1−τmax
‖θ(s)‖2ds

)1/2(∫
It

‖θ(s)‖2ds
)1/2

≤ ‖J‖C |Ω|
∫ t

tn−1−τmax
‖θ(s)‖2ds = ‖J‖C |Ω|

(∫ tn−1

tn−1−τmax
‖θ(s)‖2ds+

∫
It

‖θ(s)‖2ds
)
.

(36)
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B808 M. POLNER, J. VAN DER VEGT, AND S. VAN GILS

Similarly as in (34) and (35), for the last term in (33) we obtain

T2 :=2
∫
It

∫
Ω

[∫
Ω
|J(x, r)||ρ (s− τ(x, r), r) |dr

]
θ(s, x)dx ds

≤ 2‖J‖C |Ω|
(∫ t

tn−1−τmax
‖ρ(s)‖2ds

)1/2(∫
It

‖θ(s)‖2ds
)1/2

≤ ‖J‖2C |Ω|2
∫ tn

tn−1−τmax
‖ρ(s)‖2ds+

∫
It

‖θ(s)‖2ds.(37)

After introducing the above estimates into (32) we obtain that for all t ∈ In,

(1− ε2)‖θ(t)‖2 ≤(CS − α+ 2CS‖J‖C |Ω|)
∫
It

‖θ(s)‖2ds+ 2‖θn−1‖2

+ α

∫
In

‖ρ(s)‖2ds+ 2CS‖J‖C |Ω|
∫ tn−1

tn−1−τmax
‖θ(s)‖2ds

+ CS‖J‖2C |Ω|2
∫ tn

tn−1−τmax
‖ρ(s)‖2ds+

1
ε2
‖ρ(t)‖2 + 2‖ρn−1‖2(38)

is valid for all n ≥ 1. Divide by 1− ε2, where 0 < ε < 1, and denote

β =
|CS − α+ 2CS‖J‖C |Ω| |

1− ε2 > 0,

ωn(t) = γn +
1

ε2(1− ε2)
‖ρ(t)‖2,

γn =
1

1− ε2

(
2‖θn−1‖2 + α

∫
In

‖ρ(s)‖2ds+ 2CS‖J‖C |Ω|
∫ tn−1

tn−1−τmax
‖θ(s)‖2ds

+CS‖J‖2C |Ω|2
∫ tn

tn−1−τmax
‖ρ(s)‖2ds+ 2‖ρn−1‖2

)
, n ≥ 1.

Then, inequality (38) can be written as

(39) η(t) ≤ ωn(t) + β

∫
It

η(s)ds, t ∈ In,

where η(t) = ‖θ(t)‖2. Apply Grönwall’s inequality to (39) to obtain

(40) η(t) ≤ ωn(t) + β

∫
It

ωn(s)eβ(t−s)ds, t ∈ In.

When t = tn,

(41) η(tn) ≤ ωn(tn) + β

∫
In

ωn(s)eβ(tn−s)ds,

where

(42) ωn(tn) = γn +
1

ε2(1− ε2)
‖ρ(tn)‖2, n ≥ 1.
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Note that the only time-dependent term in ωn(t) is ‖ρ(t)‖2. Hence, the integral term
in (41) can be estimated as∫

In

ωn(s)eβ(tn−s)ds =
∫
In

(
γn +

1
ε2(1− ε2)

‖ρ(s)‖2
)
eβ(tn−s)ds

≤ eβkn
(
knγn +

1
ε2(1− ε2)

∫
In

‖ρ(s)‖2ds
)
.(43)

Therefore, we obtain for n ≥ 1 that

(44) η(tn) ≤
(
1 + βkne

βkn
)
γn +

βeβkn

ε2(1− ε2)

∫
In

‖ρ(s)‖2ds+
1

ε2(1− ε2)
‖ρn‖2.

Let us recall that

γn =
1

1− ε2

(
2η(tn−1) + 2CS‖J‖C |Ω|

∫ tn−1

tn−1−τmax
η(s)ds+ α

∫
In

‖ρ(s)‖2ds

+CS‖J‖2C |Ω|2
∫ tn

tn−1−τmax
‖ρ(s)‖2ds+ 2‖ρn−1‖2

)
(45)

and observe that the right-hand side of (44) can be estimated by the bound of the
interpolation error and the bound of the integral of η(t) over earlier time intervals,
i.e., for t ≤ tn−1. Hence we can write

η(tn) ≤ C1η(tn−1) + C2

∫ tn−1

tn−1−τmax
η(s)ds

+ C3

∫ tn

tn−1−τmax
‖ρ(s)‖2ds+ C4‖ρn−1‖2 +

1
ε2(1− ε2)

‖ρn‖2,(46)

where Ci, i = 1, . . . , 4, depend on the parameters α, β, ε, ‖J‖C , |Ω| and kn, such that
Ci = O(1) as kn → 0.

By integrating (40) we obtain the following general formula:∫ tn−1

tn−1−τmax
η(s)ds ≤

n−1∑
j=m(n)

∫
Ij

η(s)ds

≤
n−1∑

j=m(n)

∫
Ij

(
ωj(s) + β

∫
Is

ωj(τ)eβ(s−τ)dτ

)
ds

≤
n−1∑

j=m(n)

∫
Ij

(
ωj(s) + β

∫
Ij

ωj(τ)eβ(tj−τ)dτ

)
ds

≤
n−1∑

j=m(n)

(
1 + kjβe

βkj
) ∫

Ij

ωj(s)ds

≤
n−1∑

j=m(n)

(
1 + kjβe

βkj
)(

kjγj +
1

ε2(1− ε2)

∫
Ij

‖ρ(s)‖2ds
)
,(47)
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where we used that η(s) = ‖θ(s)‖2 = 0 for s ∈ [−τmax, 0] and (43) in the last
inequality. Here m = m(n) ≤ n − 1 is the index of the interval Im for which tn−1 −
τmax ∈ Im.

As we can see, the integral of η(s) can be bounded by the integral of ‖ρ(s)‖, and
hence in (46) we have

η(tn) ≤ C
n−1∑

j=m(n)

[(
1 + kjβe

βkj
)
kjγj +

(
1 + kjβe

βkj

ε2(1− ε2)
+ 1
)∫

Ij

‖ρ(s)‖2ds
]

+ C3

∫
In

‖ρ(s)‖2ds+ C4‖ρn−1‖2 +
1

ε2(1− ε2)
‖ρn‖2 + C1η(tn−1).(48)

We can use (26) to bound the integral of ‖ρ(s)‖ as follows:

(49)
∫
Ij

‖ρ(s)‖2ds = C

[
h2r+2kj‖u‖2r+1,Ij + k2q+2

j

∫
Ij

‖∂q+1
s u(s, ·)‖2ds

]
.

For n = 1, combining (46) with (21), (22), (25), (26) and (49) and using that η(0) = 0,
we find that there exists a generic constant C, independent of the time step k1 and
the spatial mesh size h, such that

η(t1) ≤ C3

∫ t1

−τmax
‖ρ(s)‖2 + C4‖ρ0‖2 +

1
ε2(1− ε2)

‖ρ1‖2

≤ C
[
M∑
i=1

B(u0, Ji) + h2r+2 (‖u(0)‖2r+1 + ‖u(t1)‖2r+1
)

+ h2r+2k1‖u‖2r+1,I1 + k2q+2
1

∫
I1

‖∂q+1
s u(s, ·)‖2ds

]
.(50)

For n = 2, using again (46) and then (25), (26), (47) and (50), we find that there is
a constant C, such that

η(t2) ≤ C1η(t1) + C2

∫ t1

t1−τmax
η(s)ds+ C3

∫ t2

t1−τmax
‖ρ(s)‖2

+ C4‖ρ1‖2 +
1

ε2(1− ε2)
‖ρ2‖2

≤ C
[
M∑
i=1

m(i)B(u0, Ji) + h2r+2 (‖u(0)‖2r+1 + ‖u(t1)‖2r+1 + ‖u(t2)‖2r+1
)

+h2r+2
2∑
j=1

m(j)kj‖u‖2r+1,Ij +
2∑
j=1

m(j)k2q+2
j

∫
Ij

‖∂q+1
s u(s, ·)‖2ds

 ,(51)

where m(i) and m(j) are the multiplicity of how many times we visited the interval
Ji and Ij , respectively, in the integral of ‖ρ(s)‖ over the delay interval. If τmax is
large compared to the time step, then m(i) is consequently also larger.

We can repeat this procedure for the subsequent time intervals, which completes
the proof of the theorem.
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5. Numerical examples. In this section we discuss the complexity of the algo-
rithm and present some applications of the dGcG-FEM discretization to neural field
equations in one and two space dimensions.

The dGcG-method to solve neural field equations is essentially the same as other
space-time methods for ordinary and partial differential equations. The main differ-
ence is the computation of the integral part that involves the history. It is well known
that the complexity of numerical algorithms to solve integro-differential equations can
be very high, especially in cases of several space dimensions. Neural field equations
often have weight kernels that model the interactions of populations of neurons having
an arbitrary spatial distribution. Depending on the kernel size, the localized nature of
the problem then can be lost and the matrices arising from the numerical discretiza-
tion will not be sparse. In that case, the linear system can still be solved efficiently
using a fast multipole method, but this is not considered in the present study. The
computational cost further increases when transmission time delays are considered.

In our dGcG method in each space-time slab we solve a nonlinear or linear system
of equations of the size of the total number of degrees of freedom in the slab. The
linearity, or nonlinearity, depends on the magnitude of the delay function compared
to the time step, as discussed in section 3.2. When we solve the linear system, the
integral part containing the delay is a source term, and it will contribute to the right-
hand side of the linear system. We need to compute this delay term each time step,
which requires the evaluation of the delay integral for a number of old time levels.
The cost of evaluating the delay integral per element is approximately the cost of
computing the residual for one time step, times the number of delay time steps for
that element. Depending on how large this delay is, this can computationally be
expensive.

5.1. Space and time accuracy. To verify our results on the error analysis, we
considered two examples: a DDE with one constant delay and an integro-differential
equation without delay.

First, consider a DDE of the form

(52) u̇(t) = f (u(t), u(t− τ)) , t > 0,

with initial function u(s) = u0(s), s ∈ [−τ, 0], τ > 0 constant delay, and f : R2 → R
linear, given by f(u(t), u(t − τ)) = −αu(t) + u(t − τ). The numerical integration of
these types of equations is very sensitive to jump discontinuities in the solution or in
its derivatives. Such discontinuity points are referred to in the literature as breaking
points [1]. The best procedure to guarantee the required accuracy is to include these
breaking points in the set of mesh points. Figure 3 illustrates the solution of (52)
with u0(s) = −s, s ∈ [−τ, 0], τ = 2, when α = 1, for which we know that it converges
to a nonzero steady state. We use the dG(1) method, using linear basis functions, set
the time steps kn = k for all n, and distinguish two cases. First, when τ/k is not an
integer, then the dG(1) method is second order accurate, which is consistent with our
result on the error estimate. When τ/k is, however, an integer, we observe a higher
order accuracy of order three. Figure 3 shows both cases.

Second, an important result of the new dGcG-FEM algorithm is the successful
treatment of integro-differential equations as

(53)
∂u

∂t
(t, x) + αu(t, x) =

∫
Ω
J(x, r)S (u(t, r)) dr, Ω̄ = [−1, 1],

i.e., when the delay is zero in the neural field equation. In our numerical simulation,
we considered J(x, r) = 1, and S (u(t, r)) = u(t, r), α = 1, and u0(x) = x. The exact
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Fig. 3. (a) The dG(1) solution of (52). (b) Discretization error in a log-log plot when τ/k is
not an integer and when it is an integer.
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Fig. 4. (a) The dGcG(1) solution of (53). (b) Discretization error in a log-log plot.

solution of (53) is u(t, x) = xe−t, which converges to zero as t→∞ for every x ∈ Ω.
We compared the dGcG(1) method, using linear basis functions, both in space and
time, with the exact solution and observed that the error is of superconvergent order;
see Figure 4. In this example we also verified the order of accuracy in space.

5.2. Neural field equations. In this section we demonstrate the dGcG method
in one and two space dimensions when using linear basis functions, both in space and
time (dGcG(1)). In our examples space and time are rescaled such that Ω̄ = [−1, 1]d,
d = 1, 2, and the propagation speed is 1. The delay function is

(54) τ(x, y) = τ0 + ‖x− y‖,

where τ0 ≥ 0 is a fixed finite delay and in the two-dimensional case we will use both
the ‖·‖1-norm and the ‖·‖2-norm. Note that the size of the maximal delay is different
in the two norms considered. The activation function is

(55) S(u) =
1

1 + e−σu
− 1

2
∀u ∈ R.

5.2.1. Neural field equations in one space dimension. Consider first a
single population model (2) when the space is one-dimensional,

(56)
∂u

∂t
(t, x) = −αu(t, x) +

∫ 1

−1
J(x, r)S(u(t− τ(x, r), r))dr,
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Fig. 5. Time evolution of system (56) in test case (1a) when σ = 6, beyond a Hopf bifurcation.

Fig. 6. Surface plot of the time evolution of the system (56) in test case (1a) when σ = 6,
beyond a Hopf bifurcation.

with

(57) τ(x, y) = τ0 + |x− y|.

Hopf bifurcations play an important role in the analysis of neural field equations.
By choosing the steepness parameter σ of the activation function as a bifurcation
parameter, we can simulate, using the dGcG(1) scheme, the space-time evolution of
the solution beyond a Hopf bifurcation. We choose the parameter α = 1 and the delay
τ0 = 1. The initial function for these simulations is u(s, x) = 0.01, s ∈ [−τmax, 0]
and x ∈ Ω̄. Note that, because the size of the delay is relatively large compared to
the time step, we do not need to linearize the system to solve the algebraic equations
with a Newton method. To observe periodic oscillations, we distinguish two cases.

Test case (1a). Homogeneous kernel. As in [14], in this simulation the connectiv-
ity function has a bi-exponential form

(58) J(x, r) = Ĵ(|x− r|) = ĉ1e
−µ1|x−r| + ĉ2e

−µ2|x−r|, x, r ∈ [−1, 1],

with ĉ1 = 3.0, ĉ2 = −5.5, µ1 = 0.5, µ2 = 1.0. The steepness of the activation
function (55) is σ = 6. Figure 5 shows the time evolution of the system, and Figure
6 is a surface plot of the numerical solution beyond a Hopf bifurcation.

Test case (1b). Neural fields with spatial inhomogeneity. Consider the locally
changed connectivity

(59) J̃(x, y) = J(x, y) + ωJ(x, y) |Ω̃, ω > 0,
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Fig. 7. Time evolution of system (56) in test case (1b) when σ = 4, in the homogeneous (top)
and the inhomogeneous (bottom) cases.

(a) (b)

Fig. 8. Time evolution of system (56) in test case (1b) when σ = 4, at given spatial position
x, in the homogeneous (a) and the inhomogeneous (b) cases.

where J is as given in (58) with the same parameters and Ω̃ ⊂ Ω. This means
that in (56) the connectivity J(x, y) is changed to J̃(x, y). The activation function
is given in (55) with the bifurcation parameter σ = 4, chosen below the threshold
for Hopf bifurcation to occur in the homogeneous case; see [14]. In Figures 7, 8,
and 9, we compare the solution of the system with homogeneous kernel, with the
solution where we have locally changed the connectivity in one element Ω̃ = K ∈
T̄h. Our simulations show that while the solution converges to a steady state in the
homogeneous case, in the inhomogeneous case the solution becomes periodic (ω = 15).
This is a new phenomenon observed in the one-dimensional case. It requires, however,
further bifurcation analysis in the two-parameter space (σ, ω).

5.2.2. Neural field equations in two space dimensions. Although in the
two-dimensional case there are few analytical results, our numerical computations
show that with a proper choice of the parameters, we can observe similar phenomena
as in the one-dimensional case.
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Fig. 9. Time evolution of system (56) in test case (1b) when σ = 4, at given spatial position
x, in the homogeneous (a) and the inhomogeneous (b) cases.
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Fig. 10. Time evolution of the system in test case (2a) when σ = 6, at a given position in space.

Test case (2). First, we choose the connectivity function as
(60)
J(x, r) = Ĵ(‖x− r‖) = ĉ1e

−µ1‖x−r‖ + ĉ2e
−µ2‖x−r‖, ĉj ∈ R, µj ∈ R, x, r ∈ [−1, 1]2.

Test case (2a). Homogeneous kernel. As in the one-dimensional case, we fix the
parameters ĉ1 = 3.0, ĉ2 = −5.5, µ1 = 0.5, µ2 = 1.0. The rate of natural decay of
activity α = 1, the delay τ0 = 1, and the initial function is again u(s, x, y) = 0.01
for all s ∈ [−τmax, 0] and x, y ∈ Ω̄. When the steepness of the activation function is
σ = 4, the numerical solution converges to the zero steady state, while for σ = 6 the
solution becomes periodic in time for both norms. This periodic solution is plotted
in Figures 10 and 11, where the ‖ · ‖1-norm was used.

Test case (2b). Spatial inhomogeneity. We consider σ = 4 and change locally
the kernel (60) as in (59), where Ω̃ ∈ T̄h is a connected region in Ω̄ consisting of two
space elements in our discretization and ω = 30. It is interesting to observe the same
behavior as in the one-dimensional case, i.e., instead of convergence to zero, as in
the homogeneous case, the solution becomes periodic; see Figure 12. The dynamic
behavior of the solution is strongly influenced by the size of Ω̃ and the magnitude of
ω. For a smaller region Ω̃ or ω below our threshold, the oscillations are damped, and
for larger values the amplitude of the oscillations grows. We used the ‖ · ‖2-norm in
this example.

Test case (3). In our second two-dimensional example, the connectivity kernel is
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Fig. 11. The solution of the system in test case (2a) when σ = 6, at the beginning and at half
of a time period.

Fig. 12. Time evolution of the system in test case (2b) when σ = 4, during half of a time period.

defined as in [8],

(61) J(x, r) = Ĵ(‖x− r‖) =
1√
2πξ2

1

e
− ‖x−r‖

2

2ξ21 − 1√
2πξ2

2

e
− ‖x−r‖

2

2ξ22 ,

with ξ1 = 0.3, ξ2 = 0.4, and we compute the numerical solutions when the norms are
the ‖·‖1 and ‖·‖2 norms, respectively. The sigmoidal firing rate function is considered
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Fig. 13. Pattern emerging in the two-dimensional neural field model in test case (3a), with
connectivity (61) and ‖ · ‖1-norm.

Fig. 14. Pattern emerging in the two-dimensional neural field model in test case (3b), with
connectivity (61), added inhomogeneity, and ‖ · ‖2-norm.

as in (55) with steepness σ = 45. In this example, we choose the rate of natural decay
of activity as a bifurcation parameter. When α = 1, the solution converges to the zero
steady state, and when α = 1/5, we observe the formation of two different patterns
for the homogeneous and inhomogeneous kernels, respectively.

Test case (3a). Homogeneous kernel. The initial function is chosen as u0(s, r) =
cos(7x) cos(7y), r = (x, y) ∈ Ω̄ for all s ∈ [−τmax, 0]. In Figure 13 we observe that
the numerical solution is converging to a simple bi-periodic pattern. The norm in the
connectivity and delay functions in this computation is the ‖ · ‖1-norm, but a similar
pattern can be observed in the ‖ · ‖2-norm case.

Test case (3b). Spatial inhomogeneity. When we change the connectivity (61)
locally to (59), with ω = 15, we observe the emergence of a different pattern than in
the homogeneous case; see Figure 14. The initial function is the constant function
u0(s, r) = 0.01, r = (x, y) ∈ Ω̄ for all s ∈ [−τmax, 0], and we used the ‖ · ‖2-norm in
this computation.

Finally, note that in all of our two-dimensional computations we used 1600 space
elements.

6. Concluding remarks. In this paper we have presented a new space-time
dGcG-FEM to solve delay integro-differential equations with space-dependent delays.
The main result is an a priori error estimate of the space-time dGcG method, which
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also shows that the method is numerically stable. We demonstrated that by using a
dGcG method we can handle general connectivity, synaptic activation, and delay func-
tions, and we do not need to make any restriction on spatial dimension or shape of the
domain. This makes it possible to extend our model to more general domains as well
as more populations in the system, which are particularly interesting in applications.

Acknowledgment. We would like to thank Sid Visser for his great help with
the two-dimensional computations.
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