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Abstract We revisit a previously established model for influenza transmis-
sion dynamics, in which antiviral treatment as a single containment strategy
was administered within a specified window of opportunity for initiating treat-
ment. We extend this model to a more general framework with age-of-infection
dependent treatment rates. The resulting age structured model can be trans-
formed into a closed system of delay differential equations, for which we per-
form a complete global stability analysis. By constructing suitable Lyapunov
functions, we show that the effective reproduction number fully characterizes
the possible outcomes of disease dynamics. Our results allow us to evaluate
treatment strategies and examine the impact of treatment delays on the po-
tential success of disease control.

Keywords age of infection · epidemiological model · delay · Lyapunov
function · disease control

1 Introduction

The classical SIR (Susceptible-Infected-Recovered) model of disease transmis-
sion [10] provides a basic framework for most compartmental epidemic models.
The degree of complexity in such models is largely determined by the immuno-
logical and epidemiological characteristics of the disease. One example that im-
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mediately comes to mind is influenza, which is a respiratory infection mainly
caused through human-to-human transmission of small particle aerosols. The
dynamics of influenza spread, and many other infectious diseases with similar
characteristics, in a population can be described by a model that comprises the
classes of susceptible, exposed (infected but not infectious), asymptomatic (in-
fectious without developing clinical symptoms), pre-symptomatic (infectious
before the symptoms appear), and symptomatic (infectious with clinical symp-
toms) individuals. However, this structure may even become more complex
when applying the model to evaluate the effectiveness of intervention strate-
gies, such as treatment of symptomatic infection. It has been shown that an
effective course of influenza therapy requires the prompt onset of treatment
within 48 hours of the onset of clinical symptoms [16]. In practice, however,
diagnosis of most infected cases and therefore start of treatment is associated
with a delay after the symptoms appear. In a previous study [1], we have
shown that such delay can be incorporated into the model as an independent
structure variable, by monitoring the density of infected individuals in terms
of the time elapsed since the onset of clinical disease. The model, formulated
as a system of delay differential equations, enabled us to determine the condi-
tions for disease eradication in terms of the population-level of treatment and
delay in start of treatment.

While treatment remains a key component of infection management strate-
gies for several diseases, the timing for initiation of treatment can have a sig-
nificant impact on the short- and long-term disease epidemiology in the pop-
ulation [2,15,9]. This is particularly relevant to the development and spread
of drug-resistance, which remain an important global public health concern.
For example, recent studies show that, depending on the probability of re-
sistance development at the host level and the relative transmission fitness
of the resistant-type at the population level, the minimum infection state of
the system at equilibrium for competing pathogen subtypes may occur with
considerable delay in start of the treatment during the infectious period [9].
Although such delay in start of treatment could play a critical role in dis-
ease dynamics, current treatment practices largely pivot towards management
of infection and severe outcomes in patients, leaving out the possible evolu-
tion and epidemiological consequences of resistance spread under the selection
pressure of drugs. The impact of delay as a control parameter has also been
recognized in vaccine-preventable diseases for scheduling booster doses in order
to determine the optimal timing of vaccination for generating a longer term
herd protection and reducing the impact of disease on the population [18].
Collectively, these studies suggest that the ‘delay’ term in epidemic models
could reveal important factors that influence disease dynamics, and pertinent
strategies for control and prevention.

In this paper, we revisit the work of Alexander et al. [1] and extend the
model to include demographic turnover and study the conditions for disease
propagation in the population in the context of age-of-infection dependent
treatment rates and delay in start of treatment. We identify the effective re-
production number and show that when it is less than unity [1], the disease
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will be eradicated from the population. On the other hand, when the repro-
duction number of disease transmission exceeds the unity, by constructing a
Lyapunov function we prove the global stability of a unique endemic equilib-
rium. Therefore, the effectiveness of the treatment strategy for disease control
is fully characterized by the reproduction number as a threshold parameter.
In what follows, we provide the structure of the model and its analysis, which
relies on the general framework developed in our previous work [1].

2 The model

Our starting point is the model of Alexander et al. [1], and we extend that to
include a constant recruitment rate (Λ) into the susceptible population, and
a natural death rate (γ). The population is divided into the compartments of
susceptible, exposed (infected but not infectious), asymptomatic and symp-
tomatic infected individuals. Denoting susceptible and exposed classes by S
and E, assuming mass action incidence we have

S′(t) = Λ− βS(t)Q(t)− γS(t) (1)

and
E′(t) = βS(t)Q(t)− µ

E
E(t)− γE(t), (2)

where β is the baseline transmission rate, 1/µ
E

represents the lentgh of in-
cubation period, and Q(t) is the force of infection, to be formulated below.
Let p ∈ [0, 1] be the probability for an exposed individual to develop symp-
toms. Asymptomatic individuals (A) may possibly shed pathogen during their
infectious period (1/µ

A
), and this compartment follows

A′(t) = (1− p)µ
E
E(t)− µ

A
A(t)− γA(t). (3)

Only symptomatic infected individuals may receive treatment within a window
of opportunity for efficient treatment, and to accurately track the treated and
untreated symptomatic infection, we structure this class with respect to the
time elapsed since the start of infection, denoting the density of untreated and
treated infected individuals with respect to age-since-infection a at time t by
i
U

(t, a) and i
T

(t, a), respectively. We divide the infectious period of the symp-
tomatic infection into two stages. The primary stage represents the window
of opportunity for initiating therapy, and it terminates at time since infection
a = n. We assume that individuals do not recover during this primary stage,
neither die due to the disease. Individuals who have initiated treatment during
this window will progress to the secondary stage and receive no treatment for
the entire course of symptomatic infection.

Now we consider the equations governing the disease dynamics within the
primary stage. Assuming that the treatment rate at time a after the onset of
symptoms is r(a), we have for a ∈ [0, n] that(

∂

∂t
+
∂

∂t

)
i
U

(t, a) = −r(a)i
U

(t, a)− γi
U

(t, a), (4)
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(
∂

∂t
+
∂

∂t

)
i
T

(t, a) = r(a)i
U

(t, a)− γi
T

(t, a), (5)

subject to the boundary conditions

i
U

(t, 0) = pµ
E
E(t), i

T
(t, 0) = 0, t ≥ 0, (6)

and initial conditions

i
U

(0, a) = i0
U

(a), i
T

(0, a) = i0
T

(a), 0 ≤ a ≤ n.

Let I
U

(t) and I
T

(t) denote, respectively, the total number of untreated and
treated infected individuals in the secondary stage, when a ≥ n. Their dynam-
ics is governed by

I ′
U

(t) = i
U

(t, n)− (µ
U

+ d
U

)I
U

(t), I ′
T

(t) = i
T

(t, n)− (µ
T

+ d
T

)I
T

(t), (7)

where 1/µ
U

and 1/µ
T

are the mean secondary infectious periods, and d
U

and d
U

represent disease induced mortality rates of untreated and treated
individuals, respectively. See Figure 1 for the flowchart of the dynamics.

Next we formulate the last remaining component of the model, the force of
infection Q(t). To this end, we introduce the parameters δ

A
, δ

U
, representing

transmissibility during asymptomatic and secondary stage infection, relative
to the primary stage symptomatic infection; and δ

T
denotes the reduction of

transmission due to therapy. This way, using mass action, we obtain

Q(t) = δ
A
A(t) + δ

U
I
U

(t) + δ
T
δ
U
I
T

(t) +

∫ n

0

i
U

(t, a)da+ δ
T

∫ n

0

i
T

(t, a)da.

Solving (4) and (5) along characteristics subject to (6), for t ≥ n we obtain

i
U

(t, a) = i
U

(t− a, 0)e−
∫ a
0
r(s)dse−aγ = e−

∫ a
0
r(s)dse−aγpµ

E
E(t− a) (8)
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and
i
T

(t, a) = (1− e−
∫ a
0
r(s)ds)e−aγpµ

E
E(t− a). (9)

Introduce the function q(a) = e−
∫ a
0
r(s)ds representing the probability that an

individual is not treated at age a in the primary stage, and let

g̃(a) := e−γa
[
q(a) + δ

T
(1− q(a))

]
for a ∈ [0, n], g(a) := pµ

E
g̃(a).

Noting that, with the simplifying notation q = q(n), we have

i
U

(t, n) = qe−nγpµ
E
E(t− n), i

T
(t, n) = (1− q)e−nγpµ

E
E(t− n). (10)

Then the model equations (1),(2),(3),(7) take the form

S′(t) = Λ− βS(t)Q(t)− γS(t), (11)

E′(t) = βS(t)Q(t)− (µ
E

+ γ)E(t), (12)

A′(t) = (1− p)µ
E
E(t)− (µ

A
+ γ)A(t), (13)

I ′
U

(t) = pµ
E
e−γnE(t− n)q − (µ

U
+ d

U
+ γ)I

U
(t), (14)

I ′
T

(t) = pµ
E
e−γnE(t− n)(1− q)− (µ

T
+ d

T
+ γ)I

T
(t), (15)

with

Q(t) = δ
A
A(t) + δ

U
I
U

(t) + δ
T
δ
U
I
T

(t) +

∫ n

0

E(t− a)g(a)da, (16)

which is now a closed system of delay differential equations with fixed and
distributed delays. One can specify the equation

R′(t) = µ
A
A(t) + µ

U
I
U

(t) + µ
T
I
T

(t)− γR(t)

for the class of recovered individuals, however, since R(t) decouples from the
other equations, we omit it from the further analysis. In the following sec-
tions, we perform a global stability analysis of system (11)-(15). For the de-
tailed explanation of the original model in the context of pandemic influenza
with antiviral treatment and its associated parameters, the reader may consult
Alexander et al. [1].

3 Basic properties and reproduction numbers

The effective reproduction number Rc expresses the expected number of sec-
ondary infections generated by a single exposed individual introduced into an
entirely susceptible population, while treatment is administered as a control
measure with a given age of infection dependent rate r(a). To calculate a for-
mula for Rc, we trace a single exposed individual and count its contributions
throughout the different stages towards the next generation of infections [6].
Clearly there is a nontrivial disease-free equilibrium P0 = (S0, 0, 0, 0, 0), where
S0 = Λ/γ. The probability of surviving the exposed period is

µ
E

µ
E
+γ . Then,

the individual becomes asymptomatic with probability 1− p, and infects with
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a reduction factor δ
A

for a period of 1/(µ
A

+ γ). With probability p it moves
to the primary stage of symptomatic infection, and throughout this period
the expected infectivity is expressed by g̃(a). At the end of primary stage, a
fraction q remains untreated, and a fraction 1 − q will be further treated for
periods of 1/(µ

U
+ d

U
+ γ) and 1/(µ

T
+ d

T
+ γ), respectively, provided they

survived the primary stage which has probability e−γn . Summing up all the
above, we find

Rc =
µ

E
βS0

µ
E

+ γ

( (1− p)δ
A

µ
A

+ γ
+

pqe−γnδ
U

µ
U

+ d
U

+ γ
+
p(1− q)e−γnδ

T
δ
U

µ
T

+ d
T

+ γ
+ p

∫ n

0

g̃(a)da
)
.

(17)
In the absence of any treatment we have r(a) = 0, thus q(a) = 1 and Rc
reduces to the basic reproduction number

R0 =
µ

E
βS0

µ
E

+ γ

( (1− p)δ
A

µ
A

+ γ
+

pe−γnδ
U

µ
U

+ d
U

+ γ
+ p

∫ n

0

g̃(a)da
)
. (18)

Since there are delays in the right hand side of system (11)-(15), but only
in the E variable, the natural phase space is X = R × C × R3, where C is
the Banach space of continuous function from [−n, 0] to R with the supremum
norm. Standard results show that for any x ∈ X there is a unique solution
of system (11)-(15) with initial data x. Biologically relevant solutions live in
the non-negative cone X+ = R+

0 × C
+
0 × (R+

0 )3, where C+
0 represents the set

of nonnegative continuous functions on the interval [−n, 0]. Let us denote the
segment of E(t) by Et ∈ C0, which is Et(θ) = E(t + θ) for any θ ∈ [−n, 0].

We also use the notation u(t) :=
(
S(t), Et, A(t), I

U
(t), I

T
(t)
)
∈ X for the

solutions, with the norm

|u(t)| = |S(t)|+ sup
θ∈[−n,0]

|E(t+ θ)|+ |A(t)|+ |I
U

(t)|+ |I
T

(t)|.

Proposition 1 Solutions with non-negative initial data remain non-negative,
and the system is point dissipative.

Proof Whenever u(t) is in the non-negative cone and any component of u(t)
is zero, then it is easily seen from the equation that the time derivative of
that component is non-negative, thus we can apply Proposition 1.2 from [19]
to guarantee that non-negative initial data give rise to non-negative solutions.
For a given solution u(t), consider the function

N(t) := S(t) + E(t) +A(t) + I
U

(t) + I
T

(t) + pµ
E

∫ t

t−n
e−(t−a)γE(a)da,

which actually represents the total population in the susceptible and infected
compartments. It can easily be seen that N ′(t) ≤ Λ − γN(t), and therefore
by a standard comparison argument, N(t) is bounded by max{N(0), Λ/γ},
furthermore ifM > Λ/γ, then there exists a T such that for all t > T , N(t) <
M. Then, for t > T + τ we also have the simple estimate |u(t)| ≤ (1 + n)M.

ut
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4 Extinction of infection

Theorem 1 The disease will be eradicated if Rc < 1, i.e. all infected com-
partments converge to zero.

Proof Recall

S′(t) = Λ− βS(t)Q(t)− γS(t), (19)

E′(t) = βS(t)Q(t)− (µ
E

+ γ)E(t), (20)

A′(t) = (1− p)µ
E
E(t)− (µ

A
+ γ)A(t), (21)

I ′
U

(t) = pµ
E
e−γnE(t− n)q − (µ

U
+ d

U
+ γ)I

U
(t), (22)

I ′
T

(t) = pµ
E
e−γnE(t− n)(1− q)− (µ

T
+ d

T
+ γ)I

T
(t). (23)

From Proposition 1, we have S∞ ≤ Λ/γ = S0, where S∞ denotes lim supt→∞ S(t).
From the boundedness of solutions, we can apply the fluctuation lemma to
E(t), so there exists a sequence tk →∞ as k →∞ such that E′(tk)→ 0 and
E(tk)→ E∞. From non-negativity of solutions and (12), we find the relation

(µ
E

+ γ)E∞ ≤ βS0Q
∞.

Similarly, we obtain

(µ
A

+ γ)A∞ ≤ (1− p)µ
E
E∞,

(µ
U

+ d
U

+ γ)I∞
U
≤ pµ

E
e−γnE∞q,

(µ
T

+ d
T

+ γ)I∞
T
≤ pµ

E
e−γnE∞(1− q).

Combining all these with

Q∞ ≤ δ
A
A∞ + δ

U
I∞
U

+ δ
T
δ
U
I∞
T

+ E∞
∫ n

0

g(a)da

gives

E∞ ≤ RcE∞.

If Rc < 1, then the only possibility is E∞ = 0. But then also A∞ = I∞
U

=
I∞
T

= 0.
ut

5 Endemic equilibrium

A non-negative equilibrium of system (11)-(15) is called an endemic equilib-
rium if it has at least one positive component corresponding to an infected
compartment.

Proposition 2 An endemic equilibrium exists if and only if Rc > 1, and it is
unique.
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Proof From the steady state equations

0 = Λ− βS∗Q∗ − γS∗, (24)

0 = βS∗Q∗ − (µ
E

+ γ)E∗, (25)

0 = (1− p)µ
E
E∗ − (µ

A
+ γ)A∗, (26)

0 = pµ
E
e−γnE∗q − (µ

U
+ d

U
+ γ)I∗

U
, (27)

0 = pµ
E
e−γnE∗(1− q)− (µ

T
+ d

T
+ γ)I∗

T
, (28)

Q∗ = δ
A
A∗ + δ

U
I∗
U

+ δ
T
δ
U
I∗
T

+ E∗
∫ n

0

g(a)da, (29)

we derive

A∗ =
(1− p)µ

E
E∗

µ
A

+ γ
, I∗

U
=
pµ

E
e−γnE∗q

µ
U

+ d
U

+ γ
, I∗

T
=
pµ

E
e−γnE∗(1− q)
µ

T
+ d

T
+ γ

,

hence

Q∗ = E∗
(
δ
A

(1− p)µ
E

µ
A

+ γ
+
δ
U
pµ

E
e−γnq

µ
U

+ d
U

+ γ
+
δ
T
δ
U
pµ

E
e−γn(1− q)

µ
T

+ d
T

+ γ
+

∫ n

0

g(a)da

)
.

If E∗ = 0, then A∗ = I∗
U

= I∗
T

= Q∗ = 0, and we obtain the disease free
equilibrium. Now assume that E∗ 6= 0, and note that S∗ 6= 0 when Λ > 0.
Then from (25) we have

µ
E

(
δ
A

(1− p)
µ

A
+ γ

+
δ
U
pe−γnq

µ
U

+ d
U

+ γ
+
δ
T
δ
U
pe−γn(1− q)

µ
T

+ d
T

+ γ
+ p

∫ n

0

g̃(a)da

)
=
µ

E
+ γ

βS∗
,

which is equivalent to

S∗ =
S0

Rc
.

Summing (24) and (25) gives

E∗ =
Λ− γS∗

µ
E

+ γ
=

Λ(Rc − 1)

Rc(µe + γ)
,

and so

A∗ =
(1− p)µ

E
Λ(Rc − 1)

(µ
A

+ γ)Rc(µe + γ)
, I∗

U
=

pµ
E
e−γnΛ(Rc − 1)q

(µ
U

+ d
U

+ γ)Rc(µe + γ)
,

I∗
T

=
pµ

E
e−γnΛ(Rc − 1)(1− q)

(µ
T

+ d
T

+ γ)Rc(µe + γ)
,

therefore the obtained equilibrium is unique and the components are positive
if and only if Rc > 1.

ut
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6 Convergence to endemic state

Theorem 2 The endemic equilibrium is globally asymptotically stable when-
ever Rc > 1.

Proof We construct a suitable Lyapunov function. We shall use the function

f(ξ) = ξ − 1− ln ξ,

and to facilitate the analysis, we introduce the notations

x =
S

S∗
, y =

E

E∗
, z =

A

A∗
, u =

IU
I∗U
, v =

IT
I∗T
.

Consider the following two functions

V =S∗f(x) + E∗f(y) +
βδAS

∗A∗

(1− p)µEE∗
A∗f(z)

+
βδUS

∗I∗U
pµEe−γnE∗q

I∗Uf(u) +
βδT δUS

∗I∗T
pµEe−γnE∗(1− q)

I∗T f(v)

and

W =βS∗E∗
∫ n

0

g(a)

∫ t

t−a
f(y(σ))dσda+ βδUS

∗I∗U

∫ t

t−n
f(y(σ))dσ

+ βδT δUS
∗I∗T

∫ t

t−n
f(y(σ))dσ.

To show that L = V +W is a Lyapunov function such that L′ ≤ 0, we calculate
the derivative term by term:

(S∗f(x))
′

=

(
1− 1

x

)
S′ =

(
1− 1

x

)
(Λ− βSQ− γS)

=

(
1− 1

x

)
(βS∗Q∗ + γS∗ − βSQ− γS)

=

(
1− 1

x

)[
βS∗

(
δAA

∗ + δUI
∗
U + δT δUI

∗
T + E∗

∫ n

0

g(a)da

)
−βS

(
δAA+ δUIU + δT δUIT +

∫ n

0

E(t− a)g(a)da

)
+ γS∗(1− x)

]
=

(
1− 1

x

)
β

[
δAS

∗A∗(1− xz) + δUS
∗I∗U (1− xu) + δT δUS

∗I∗T (1− xv)

+S∗E∗
∫ n

0

(1− xy(t− a)) g(a)da

]
+ γS∗

(
1− 1

x

)
(1− x). (30)
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Note that

(
1− 1

x

)
(1− xz) =

(
1− 1

x
− xz + z

)
=

(
−f
(

1

x

)
− f(xz) + f(z)

)
,(

1− 1

x

)
(1− xu) =

(
1− 1

x
− xu+ u

)
=

(
−f
(

1

x

)
− f(xu) + f(u)

)
,(

1− 1

x

)
(1− xv) =

(
1− 1

x
− xv + v

)
=

(
−f
(

1

x

)
− f(xv) + f(v)

)
,(

1− 1

x

)
(1− xyt−a) =

(
1− 1

x
− xyt−a + yt−a

)
=

(
−f
(

1

x

)
− f(xyt−a) + f(yt−a)

)
,(

1− 1

x

)
(1− x) =

(
1− 1

x
− x+ 1

)
=

(
−f
(

1

x

)
− f(x)

)
,

where yt−a = y(t− a). Hence, (30) can be rearranged as follows.

(S∗f(x))
′

=βδAS
∗A∗

(
−f
(

1

x

)
− f(xz) + f(z)

)
+ βδUS

∗I∗U

(
−f
(

1

x

)
− f(xu) + f(u)

)
+ βδT δUS

∗I∗T

(
−f
(

1

x

)
− f(xv) + f(v)

)
+ βS∗E∗

∫ n

0

(
−f
(

1

x

)
− f(xyt−a) + f(yt−a)

)
g(a)da

+ γS∗
(
−f
(

1

x

)
− f(x)

)
. (31)
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Similarly, we have

(E∗f(y))
′

=

(
1− 1

y

)
E′ =

(
1− 1

y

)
(βSQ− (µE + γ)E)

=

(
1− 1

y

)
(βSQ− (µE + γ)E∗y) =

(
1− 1

y

)
(βSQ− βS∗Q∗y)

=

(
1− 1

y

)
β

[
δAS

∗A∗(xz − y) + δUS
∗I∗U (xu− y)

+ δT δUS
∗I∗T (xv − y) + S∗E∗

∫ n

0

((xyt−a)− y) g(a)da

]
=βδAS

∗A∗
(
f(xz)− f

(
xz

y

)
− f(y)

)
+ βδUS

∗I∗U

(
f(xu)− f

(
xu

y

)
− f(y)

)
+ βδT δUS

∗I∗T

(
f(xv)− f

(
xv

y

)
− f(y)

)
+ βS∗E∗

∫ n

0

(
f(xyt−a)− f

(
xyt−a
y

)
− f(y)

)
g(a)da, (32)

and

(
βδAS

∗A∗

(1− p)µEE∗
A∗f(z)

)′
=

βδAS
∗A∗

(1− p)µEE∗

(
1− 1

z

)
A′

=
βδAS

∗A∗

(1− p)µEE∗

(
1− 1

z

)
((1− p)µEE − (µA + γ)A)

=
βδAS

∗A∗

(1− p)µEE∗

(
1− 1

z

)
((1− p)µEE − (µA + γ)A∗z)

=
βδAS

∗A∗

(1− p)µEE∗

(
1− 1

z

)
((1− p)µEE − (1− p)µEE∗z)

= βδAS
∗A∗

(
1− 1

z

)
(y − z) = βδAS

∗A∗
(
f(y)− f

(y
z

)
− f(z)

)
, (33)
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βδUS

∗I∗U
pµEe−γnE∗q

I∗Uf(u)

)′
=

βδUS
∗I∗U

pµEe−γnE∗q

(
1− 1

u

)
I ′U

=
βδUS

∗I∗U
pµEe−γnE∗q

(
1− 1

u

)
· (pµEe−γnE(t− n)q − (µU + dU + γ)IU )

=
βδUS

∗I∗U
pµEe−γnE∗q

(
1− 1

u

)
· (pµEe−γnE(t− n)q − (µU + dU + γ)I∗Uu)

=
βδUS

∗I∗U
pµEe−γnE∗q

(
1− 1

u

)
· (pµEe−γnE(t− n)q − pµEe−γnE∗qu)

= βδUS
∗I∗U

(
1− 1

u

)
(yt−n − u)

= βδUS
∗I∗U

(
f(yt−n)− f

(yt−n
u

)
− f(u)

)
, (34)

and

(
βδT δUS

∗I∗T
pµEe−γnE∗(1− q)

I∗T f(v)

)′
=

βδT δUS
∗I∗T

pµEe−γnE∗(1− q)

(
1− 1

v

)
I ′T

=
βδT δUS

∗I∗T
pµEe−γnE∗(1− q)

(
1− 1

v

)
· (pµEe−γnE(t− n)(1− q)− (µT + dT + γ)IT )

=
βδT δUS

∗I∗T
pµEe−γnE∗(1− q)

(
1− 1

v

)
· (pµEe−γnE(t− n)(1− q)− (µT + dT + γ)I∗T v)

=
βδT δUS

∗I∗T
pµEe−γnE∗(1− q)

(
1− 1

v

)
· (pµEe−γnE(t− n)(1− q)− pµEe−γnE∗(1− q)v)

= βδT δUS
∗I∗T

(
1− 1

v

)
(yt−n − v)

= βδT δUS
∗I∗T

(
f(yt−n)− f

(yt−n
v

)
− f(v)

)
. (35)
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Combining (31), (32), (33), (34) and (35), we can calculate the derivative of
V as follows.

V ′ =βδAS
∗A∗

(
−f
(

1

x

)
− f(xz) + f(z) + f(xz)− f

(
xz

y

)
− f(y)

+ f(y)− f
(y
z

)
− f(z)

)
+ βδUS

∗I∗U

(
−f
(

1

x

)
− f(xu) + f(u) + f(xu)− f

(
xu

y

)
− f(y)

+ f(yt−n)− f
(yt−n

u

)
− f(u)

)
+ βδT δUS

∗I∗T

(
−f
(

1

x

)
− f(xv) + f(v) + f(xv)− f

(
xv

y

)
− f(y)

+ f(yt−n)− f
(yt−n

v

)
− f(v)

)
+ βS∗E∗

∫ n

0

(
−f
(

1

x

)
− f(xyt−a) + f(yt−a)

+ f(xyt−a)− f
(
xyt−a
y

)
− f(y)

)
g(a)da+ γS∗

(
−f
(

1

x

)
− f(x)

)
=βδAS

∗A∗
(
−f
(

1

x

)
− f

(
xz

y

)
− f

(y
z

))
+ βδUS

∗I∗U

(
−f
(

1

x

)
− f

(
xu

y

)
− f(y) + f(yt−n)− f

(yt−n
u

))
+ βδT δUS

∗I∗T

(
−f
(

1

x

)
− f

(
xv

y

)
− f(y) + f(yt−n)− f

(yt−n
v

))
+ βS∗E∗

∫ n

0

(
−f
(

1

x

)
+ f(yt−a)− f

(
xyt−a
y

)
− f(y)

)
g(a)da

+ γS∗
(
−f
(

1

x

)
− f(x)

)
. (36)

On the other hand, the derivative of W is calculated as follows.

W ′ =βS∗E∗
∫ n

0

g(a) (f(y)− f(yt−a)) da+ βδUS
∗I∗U (f(y)− f(yt−n))

+ βδT δUS
∗I∗T (f(y)− f(yt−n)) . (37)
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Hence, combining (36) and (37), we have

L′ =V ′ +W ′ = βδAS
∗A∗

(
−f
(

1

x

)
− f

(
xz

y

)
− f

(y
z

))
+ βδUS

∗I∗U

(
−f
(

1

x

)
− f

(
xu

y

)
− f

(yt−n
u

))
+ βδT δUS

∗I∗T

(
−f
(

1

x

)
− f

(
xv

y

)
− f

(yt−n
v

))
+ βS∗E∗

∫ n

0

(
−f
(

1

x

)
− f

(
xyt−a
y

))
g(a)da

+ γS∗
(
−f
(

1

x

)
− f(x)

)
. (38)

Recalling that f(ξ) = ξ − 1 − ln ξ ≥ 0, we see from (38) that L′ ≤ 0, and
L′ = 0 only if all the arguments of f in the above expression are exactly one.
The set G = {φ ∈ X+ : L(φ) ≤ L(u(0))} is closed and positive invariant,
therefore the continuous L is a Lyapunov functional on G. Let Σ = {φ ∈ G :
L′(φ) = 0} and M be the largest invariant set in Σ. If φ ∈ M , then x = 1
and from the invariance we find that S(t) = S∗ along the solution starting
from φ, consequently Q is constant. For L′ = 0 one needs y = z = u = v too,
which implies that all components are constants, therefore M includes only
the endemic equilibrium, which is, from LaSalle’s invariance principle, globally
attractive on G (see Chapter 5.3 of [7]). To conclude global stability, we can
apply Corollary 3.1 of [7] with choosing a(r) and b(r) as the non-delayed terms
of L and −L′.

ut

7 Concluding remarks

In this paper we constructed Lyapunov functions (similar to those in [12–14])
to investigate the global dynamics of a delay differential equations system,
which was obtained from an age structured model with age-since-infection de-
pendent treatment rates. Models with age-of-infection have been vastly studied
in the literature, see for example [3,5,8,11,17,20]; however, the global stabil-
ity of the endemic steady state has rarely been established for such models
formulated as partial differential equations.

The structure of our model can be applied to describe the dynamics of
an array of infectious diseases, including influenza and other respiratory ill-
nesses with similar characteristics. Since in practice, treatment can not start
immediately following the onset of infectiousness in an infected individual, but
likely with some delay τ , we may assume r(a) = 0 for a ∈ [0, τ ]. For simplicity
and the purpose of illustration in the discussion below, we consider a con-
stant treatment rate r(a) = θ for a ∈ [τ, n]. In this special case, q(a) = 1 for
a ∈ [0, τ ] and q(a) = e−(a−τ)θ for a ∈ [τ, n]. We note that 1− q(n) represents
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the fraction of infected individuals who receive treatment in the period [τ, n].
Then

g̃(a) = e−γa for a ∈ [0, τ ],

and
g̃(a) := e−γa

[
e−(a−τ)θ + δ

T
(1− e−(a−τ)θ)

]
for a ∈ [τ, n].

A straightforward calculation gives∫ n

0

g̃(a)da =

∫ τ

0

e−γada+

∫ n

τ

e−γa
[
e−(a−τ)θ + δ

T
(1− e−(a−τ)θ)

]
da

=
1− e−γτ

γ
+ δ

T

(
e−γτ − e−γn

γ

)
(39)

+ (1− δT )

(
e−γτ − e−nτq(n)

γ + θ

)
,

and thus the effective reproduction number becomes

Rc =
µ

E
βS0

µ
E

+ γ

(
(1− p)δ

A

µ
A

+ γ
+

pqe−γnδ
U

µ
U

+ d
U

+ γ
+
p(1− q)e−γnδ

T
δ
U

µ
T

+ d
T

+ γ

+ p

(
1− e−γτ

γ

)
+ pδ

T

(
e−γτ − e−γn

γ

)
+ p(1− δ

T
)

(
e−γτ − e−(n−τ)θ−γn

γ + θ

))
.

Since in Rc only the term
∫ τ
0
e−γada depends on the treatment strategy

specified by τ and θ, to assess how sensitive Rc is to these parameters, using
(39), we may consider

d

dτ

∫ n

0

g̃(a)da = (1− δ
T

)
θ

θ + γ
e−γτ

(
1− e−(θ+γ)(n−τ)

)
and

d

dθ

∫ n

0

g̃(a)da = (1− δ
T

)
e−γτ−(n−τ)(γ+θ)

(
(γ + θ)(n− τ) + 1− e(n−τ)(γ+θ)

)
(γ + θ)2

,

(40)
where the numerator of the fraction is negative due to ex > 1 + x. As one
expects, whenever treatment is beneficial to reduce disease transmission (δ

T
<

1), then increasing the delay increases Rc, and increasing the treatment rate
decreases Rc. To illustrate the amount of delay we can afford for a given
treatment rate to reduce Rc below 1 (as a condition for disease eradication),
we plotted the contours of Rc as a function of the delay in start of treatment
(τ) and the treatment level (1−q(n)), whenR0 = 2 (Figure 2) for influenza-like
parameters. Note that the treatment level in this case is 1−q(n) = 1−e−(n−τ)θ.
As shown in Figure 2, a higher level of treatment is required for Rc < 1 as
the delay for start of treatment increases. However, when the delay exceeds
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Fig. 2 Dependence of the effective reproduction number on the delay in start of treatment
and the level of treatment with R0 = 2. Parameter values used for this simulation are:
p = 0.6, δA = 1/14, δU = 1/7, δT = 0.4, γ = 1/(70 × 365), µE = 1/1.25, µA = 1/4.1,
µU = 1/2.85, µT = 1/1.35, dU = 0.002, dT = 0.001, βS0 = 0.84753, and n = 2. The
treatment rate θ was varied in the range 0− 5 and τ was varied in the range 0.25− 2 [1].

approximately 1 day, Rc cannot be reduced below 1 even with 100% treatment
level, indicating the importance of early treatment in the control of disease.

In conclusion, as shown in our global analysis of the system, the delay term
(τ) plays an important role in determining the possibility of disease control,
which is reflected in the value of the effective reproduction number (Rc). As
also demonstrated in our previous studies [9,18], the delay term can be re-
garded as a control parameter in epidemic models. Apart from the theoretical
aspects of the global dynamics, this control parameter could provide impor-
tant information on the long-term disease dynamics; for example to minimize
endemic states of drug-resistance with delay in start of treatment [9], or to
reduce timelines for achieving disease control in vaccine-preventable diseases
with optimal booster vaccine schedule [18].
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1. Alexander, M.E., Moghadas, S.M., Röst G. and Wu, J., A Delay Differential Model for
Pandemic Influenza with Antiviral Treatment, Bull. Math. Biol. 70 (2008), 382–397.

2. Alexander, M.E., Bowman, C.S., Feng, Z., Gardam, M., Moghadas, S.M., Röst, G., Wu,
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