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Background: Adiponectin and leptin are implicated in the initiation and

pathomechanism of Alzheimer’s disease (AD). The serum concentrations of these

adipokines has been extensively studied in AD, however little is known about their

receptors in this disease.

Objective: We developed a novel approach to examine whether the receptors

of adiponectin (AdipoR1 and -R2) and/or leptin (LepR) can contribute to AD

pathomechanism. To achieve this, we investigated the effect of both genetic and

environmental factors associated with AD on the expression of these receptors.

Method: We used C57BL/6J (WT) and APP(swe)/Presen(e9d)1 (AD) mice. Both strains

were exposed to restraint stress (RS) daily for 6h over different time periods. Then,

we measured the mRNA expression of AdipoR1, AdipoR2 and LepR and the level of

AdipoR1 and AdipoR2 proteins in the hippocampal and prefrontal cortical areas of each

mouse.

Results: We detected brain region specific transcriptomic changes of adiponectin

receptors induced by APP and PS1 transgenes. Both acute and chronic RS caused

significant elevations in AdipoR1 mRNA expression in the hippocampus of WT mice. In

the prefrontal cortex, the mRNA expression of AdipoR1 followed a biphasic course. In

AD mice, RS did not promote any changes in the expression of AdipoR1 mRNA and

AdipoR1 protein levels. AdipoR2 mRNA in AD animals, however, showed a significant

increase in the prefrontal cortex during RS. Regarding AdipoR1 and AdipoR2 mRNA

and protein expression, relevant changes could be measured during stress exposure in

both brain areas. Furthermore, stress exposed groups exhibited little change in LepR

mRNA expression.

Conclusion: Our findings indicate that carrying the transgenes associated with AD

induces modification in the expression of both adiponectin receptors. In the case of a

normal genetic background, these receptors also appear to be sensitive to environmental

factors, while in a genetically determined AD model less response to stress stimuli could

be observed. The results suggest that modification of adipokine receptors could also be

considered in the therapeutic approach to AD.
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FIGURE 3 | Effects of restraint stress on the expression of AdipoR1 mRNA in the hippocampus (A) and prefrontal cortex (B) of the wild type and APP/PS1

transgenic mice. Stress-exposed groups were compared to their respective controls (per gene, per brain area, and per mouse strain) by one-way analysis of variance

(ANOVA) followed by Bonferroni and Tukey post hoc tests. Data are expressed as means + SEM (n = 6), *p < 0.05; **p < 0.01. The gray lines represent linearized

(A,B, APP/PS1 strain) and polynomial (B, WT strain) trends of change in the two strains.

As in AdipoR1, AdipoR2’s protein levels were decreased
in the hippocampus of WT mice in every stress-exposed
group (day 3, 7, 14, or 21) (Figure 6A), despite the increased
production of its mRNA caused by short term (3 and 7
day) stress. As for the AD animals, only the longer, chronic
(day 21) RS induced a mild, but significant, decrease in
AdipoR2 protein levels in the hippocampus compared to the
control group. In the prefrontal cortex of WT mice, AdipoR2
levels showed the same tendency as in the hippocampus, the
reduction was significant on the 7th, 14th, and 21st days
(Figure 6B). This AdipoR2 protein expression pattern was the
only dataset where the protein levels matched the mRNA
levels. Furthermore, in stress-exposed AD animals, the prefrontal
cortical levels of AdipoR2 did not differ from those of the
control group (Figure 6B). Exact points of protein adiponectin
receptor expression data are summarized in the Supplementary
Table 2.

The Effect of Restraint Stress on LepR
mRNA Expression in WT and APP/PS1
Animals
It can be suggested, that the decreased level of LepR may be a
possible cause of leptin insensitivity, which has been described
in AD. Therefore, we used TaqMan based PCR chemistry to
precisely measure the LEPR long isoform mRNA in our samples,
which is solely responsible for coding LepR.

The resulting data indicated that RS did not induce any
consistent changes in the hippocampal LepR mRNA expression
in WT mice (Figure 7A). However, in the prefrontal cortical
area, chronic RS resulted in a significant decrease in LepR
mRNA expression by day 7. Then LepR mRNA returned to
the control group’s level again by day 14, and finally elevated
significantly by day 21 (Figure 7B). In APP/PS1 transgenic mice,
only the longer, 21-day RS caused significant LepR mRNA
reduction in the hippocampus (Figure 7A). In conclusion, for
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FIGURE 4 | Effects of restraint stress on the expression of AdipoR2 mRNA in the hippocampus (A) and prefrontal cortex (B) of the wild type and APP/PS1

transgenic mice. Stress-exposed groups were compared to their respective controls (per gene, per brain area and per mouse strain) by one-way analysis of variance

(ANOVA) followed by Bonferroni and Tukey post hoc tests. Data are expressed as means + SEM (n = 6), *p < 0.05; **p < 0.01, and ***p < 0.001. The gray lines

represent linearized trends of change in the two strains.

LepR we only identified a few significant differences in our
stress-treated groups, implying that LepR’s expression is not
affected prominently by the APP/PS1 transgenes or by stress.
Furthermore, these data are consistent with the results of Balland
and colleagues, who found that LepR regulation and availability
is not an element in the leptin resistance mechanisms. Exact
points of LepR mRNA expression data are summarized in
Supplementary Table 1.

DISCUSSION

The significant contribution of adiponectin and leptin in the
pathomechanism of AD has been highly researched in the past
few years (Tezapsidis et al., 2009; van Himbergen et al., 2012;
Pedros et al., 2015). However, the exact role of these molecules
in the disease is still very elusive, thanks to their complex
interactions with the CNS. Adiponectin and leptin may not only
be associated with AD via their changed serum concentrations,

but also through other means. The possible target points
regarding the CNSmay be the signaling pathways, more precisely
the receptors of these adipokines (Waragai et al., 2016). Taking
this into consideration, the current study shows that bearing
the APP/PS1 transgenes associated with AD induces altered
expression of AdipoR1 and AdipoR2 in the hippocampus and
the prefrontal cortex. The present paper also demonstrates that
chronic stress, a potential AD inducer, may influence the levels of
both adiponectin receptors in the aforementioned brain areas of
wild type mice. Furthermore, the same receptors responded less
or not at all to identical chronic RS in the APP(swe)/PS1(e9d)1
transgenemurinemodel of AD. The differences in stress response
were stronger at the protein level. Considering LepR mRNA
in the same strains and brain areas, we only detected slight
modifications compared to the adiponectin receptors.

The presence of AdipoR1 and AdipoR2 in several brain areas,
including the frontal cortex and the hippocampus, has been
shown previously (Qiu et al., 2011). However, information on
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FIGURE 5 | Effects of restraint stress on the expression of AdipoR1 protein in the hippocampus (A) and prefrontal cortex (B) of the wild type and APP/PS1

transgenic mice. Stress-exposed groups were compared to their respective controls (per protein, per brain area, and per mouse strain) by one-way analysis of

variance (ANOVA) followed by Bonferroni and Tukey post hoc tests. Data are expressed as means + SEM (n = 3), *p < 0.05.

the AD-related changes of AdipoR1 and AdipoR2 is still very
limited. Therefore, in this study, the expression of adiponectin
receptors mRNA and proteins were quantified for the first time in
WT and APP/PS1 transgenic mice. In contrast with the increased
transcription of the hippocampal AdipoR1, the presence of
the two AD-related transgenes decreased the AdipoR1 protein
levels. These results assume a downregulated signalization of
adiponectin in AD and support earlier findings (Waragai et al.,
2016). In this cross-sectional study, pathologically changed
adiponectin-adiponectin receptor signaling was suggested based
on the higher serum and lower CSF adiponectin levels in AD
patients.

Based on the fact that chronic stress has considerable
effects on cognitive decline and memory loss, a possible link
between psychological stress and AD development has been
suggested (Khalsa, 2015). Our results show that stress stimuli
can downregulate AdipoR1 and AdipoR2 transcription and
translation in the hippocampal and prefrontal cortical areas

of wild type mice. The question arises as to what this stress-
induced modification of adipokine receptors really means for
the pathomechanism of AD. Adiponectin has been reported
to have anti-inflammatory, anti-atherogenic, anti-diabetogenic
and neuroprotective effects (Berg et al., 2002; Qiu et al., 2011;
Ohashi et al., 2012). According to our observations, because
of the decreased availability of AdipoR1 and AdipoR2, the
beneficial properties of adiponectin may diminish during stress;
thus adiponectin may fail to exert its protective effects against
neuronal cell death in the hippocampus and in the prefrontal
cortex. It can be concluded that chronic stress, due to the
decreased availability of adiponectin receptors, may contribute to
the loss of the favorable effects of adiponectin and, consequently,
may accelerate the progression of AD. Additionally, we could not
demonstrate similar modulating effects of stress in the transgenic
murine model of AD, since the mRNA and protein levels
of adiponectin receptors were not reduced. These unexpected
results suggest that the availability of adiponectin receptors can
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FIGURE 6 | Effects of restraint stress on the expression of AdipoR2 protein in the hippocampus (A) and prefrontal cortex (B) of the wild type and APP/PS1

transgenic mice. Stress-exposed groups were compared to their respective controls (per protein, per brain area, and per mouse strain) by one-way analysis of

variance (ANOVA) followed by Bonferroni and Tukey post hoc tests. Data are expressed as means + SEM (n = 3), *p < 0.05; **p < 0.01.

be stabilized even in cases where genetic and environmental risk
factors for AD co-occur. Recently, Han et al. (2016) demonstrated
that insulin receptor levels are decreased in the hippocampus
of AD mice and can further decline after stress exposure,
concluding that people with harmful genetic mutations are more
likely to be vulnerable to stress. Further investigation is necessary
to explore the mechanism to explain the difference between the
stress-induced changes of adiponectin and insulin receptors.

RS affected adiponectin receptor protein levels less remarkably
than their mRNA, which is not an unexpected finding since
the proteome is much more stable than the mRNA levels.
It is well known, that expression of a given mRNA and
protein do not always match completely, mainly due to post-
transciptional and post-translational control mechanisms. As
post-transcriptional regulators of gene expression, microRNAs
may be partly responsible for the disparate expression of
adiponectin receptors at the protein and RNA levels. A recent
bioinformatics analysis showed that adiponectin signaling is
regulated by microRNAs: miR-221 inhibits AdipoR1 expression,

which suggests that miR-221 regulates AdipoR1 signaling in
different pathological processes (Chen et al., 2015). On the other
hand, AdipoR2 has been identified as a direct target of miR-218
(Du et al., 2015). In our experiments, the expression of AdipoR2
in the prefrontal cortex of AD mice increased significantly at
all time-points of RS, however these changes could not be
measured at the protein level. One potential explanation of our
observations may be the role of miR-218 in this signaling process,
which nevertheless needs further clarification.

The most well characterized adipokine for its role in AD is
leptin (Folch et al., 2012). Population-based studies indicate that
decreased leptin levels are associated with cognitive impairment
(Perez-Gonzalez et al., 2011; Furiya et al., 2013), while higher
leptin levels were associated with a lower risk of dementia (Lieb
et al., 2009; Warren et al., 2012). However, leptin is also involved
in the stress response and stress-related disorders, including
depression and anxiety (Haleem, 2014). Both acute and chronic
stress modify the circulating levels of leptin depending on the
duration of the stress and the stress type itself (Haleem, 2014).
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FIGURE 7 | Effects of restraint stress on the expression of LepR mRNA in the hippocampus (A) and prefrontal cortex (B) of the wild type and APP/PS1

transgenic mice. Stress-exposed groups were compared to their respective controls (per protein, per brain area, and per mouse strain) by one-way analysis of

variance (ANOVA) followed by Bonferroni and Tukey post hoc tests. Data are expressed as means + SEM. (n = 6), *p < 0.05. The gray lines represent linearized

trends of change in the two strains.

Investigation of the effect of RS on LepR’s mRNA expression in
both WT and AD mice showed that LepR is less sensitive to
RS than the adiponectin receptors, since only long-term, chronic
RS decreased the transcription of LepR in the hippocampus of
transgenic mice. This is consistent with previous data obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
cohort study, which showed decreased LepR immunoreactivity
in brains from individuals suffering severe AD, and similarly the
LepRmRNAwas also reduced only in the old AD transgenic mice
(Maioli et al., 2015). Thus, we propose that APP/PS1 transgenes
and RS do not affect LepR’s transcription as much as they
affect the adiponectin receptors’ transcription. The mechanism
of leptin resistance also seems to be independent from LepR
regulation, which also coincides with our results (Balland and
Cowley, 2015).

Our experiment had several limitations which must be
considered during the evaluation of results. ELISA assays were

performed only for AdipoR1 and AdipoR2 and we only used
three randomly selected protein samples from the six available
for each group to represent one group from the viewpoint of
stress exposure. Thus, a major limitation in the interpretation
of our results is the low number of samples. A study with a
higher sample size may strengthen some of the observations
made in this paper. Furthermore, we did not measure changes
in serum cortisol throughout the experiment, which is one of
the best indicators of psychological stress. The reason behind
this decision was twofold; on the one hand, the stress paradigm
we used is well-documented in the scientific literature to trigger
molecular stress responses in murine models, including the
increase in corticosterone and adrenocorticotropic hormone
secretion (Buynitsky and Mostofsky, 2009). On the other hand,
we wanted to monitor the effect of stress less invasively with
weight measurements to avoid potential alterations in the
resulting data due to the stress of blood sampling.
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CONCLUSION

In summary, we were the first to quantitatively investigate
adiponectin receptors concentrations in AD-associated areas
of the brain, namely the hippocampus and the prefrontal
cortex. Based on our results, the expression of adiponectin
receptors AdipoR1 and AdipoR2 are affected by genes APP and
PS1 in a region-specific manner in the brain. These receptor
molecules of adipokine frequently associated with AD are also
influenced by chronic stress in a possibly neurodegeneration-
promoting manner in the hippocampus and prefrontal cortex of
C57BL/6J WT mice. We also demonstrated that in a model of
fully developed AD, an APP(swe)/PSEN(e9d)1 transgene mouse
strain, these receptors respond less plastically or not at all to
the same chronic stress treatment. Furthermore, based on our
observations, LepR plays an essential role only in the late phases
of AD. These results also imply that variation in LepR expression
is not an element of leptin resistance mechanisms.
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