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Abstract 
 
Photoelectrochemical hydrogen evolution is a promising avenue to store the energy of 

sunlight in the form of chemical bonds. The recent rapid development of new synthetic 

approaches enables the nanoscale engineering of semiconductor photoelectrodes, thus 

tailoring their physico-chemical properties towards efficient H2 formation. In this work we 

carried out the parallel optimization of the morphological features of the semiconductor light 

absorber (NiO) and the co-catalyst (Pt). While nanoporous NiO films were obtained by 

electrochemical anodization, the monodisperse Pt nanoparticles were synthesized using wet 

chemical methods. The Pt/NiO nanocomposites were characterized by XRD, XPS, SEM, ED, 

TEM, cyclic voltammetry, photovoltammetry, EIS, etc. The relative enhancement of the 

photocurrent was demonstrated as a function of the nanoparticle size and loading. For mass-

specific surface activity the smallest nanoparticles (2.0 and 4.8 nm) showed the best 

performance. After de-convoluting the trivial geometrical effects (stemming from the 

variation of Pt particle size and thus the electroactive surface area), however, the intermediate 

particle sizes (4.8 and 7.2 nm) were found to be optimal. Under optimized conditions, a 

twenty-fold increase in the photocurrent (and thus the H2 evolution rates) was observed for 

the nanostructured Pt/NiO composite, compared to the benchmark nanoparticulate NiO film. 
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Introduction 

With the rapidly increasing global renewable energy harvesting capacities there is a 

rising interest for energy storage solutions, to overcome the intermittent nature of the various 

renewable energy sources. Photoelectrochemical (PEC) H2 evolution reaction (HER) and CO2 

conversion are both promising avenues to generate solar fuels and thus store the energy of 

sunlight in the form of chemical bonds.1,2 One of such PEC procedures is the direct reduction 

of H+ ions at the interface of a p-type semiconductor (SC) photocathode and a liquid 

electrolyte. Alternatively, when irradiating an n-type SC, water oxidation occurs at the 

SC/electrolyte interface, while HER can proceed on the counterelectrode. A range of 

photocathodes has been screened during the past decades,3–6 and reasonable solar to hydrogen 

conversion efficiencies have been achieved employing complex electrode assemblies.7,8 At 

the same time, there are still several open questions to be answered before high activity, 

stability, and selectivity could be achieved at the same time.9  

Recent studies indicated that the use of nanostructured photoelectrodes may help to 

enhance electron transfer rates to levels which make practical significance.10,11 While the high 

specific area (i.e., roughness factor) is a key advantage in electrocatalysis, the picture is much 

murkier in the photo-electrocatalytic scenario, because nanostructuring of photoelectrodes has 

both benefits and drawbacks. For example, charge carrier recombination due to both surface 

traps and the necessity of hopping from one particle to another, certainly decreases the 

achievable solar to chemical conversion efficiencies. Interconnected nanostructures may help 

to circumvent this issue, by eliminating the need of interparticle charge transfer. Different 

examples can be cited, ranging from mesoporous TiO2 vs. TiO2 nanotubes,12,13 

nanoparticulate and nanoporous WO3,
14,15 and so forth. 

NiO has been increasingly studied as a photocathode material, recently. NiO may also 

have practical significance in p-type DSSCs, in an inverted configuration compared to its 
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TiO2-based counterpart.16–18 Interestingly, although the NiO is long known to be capable of 

both evolving H2 and reducing CO2 (based on its conduction band edge position)19, its solar 

fuel generation ability has not been extensively studied. There are a few examples, where NiO 

was studied in conjunction with either a solid state or molecular co-catalyst, in HER and CO2 

ER. For example, a NiO/Cu2O heterojunction was employed as both light absorber and H2-

evolution catalyst.20 In another study, NiO was decorated with a Ru-dye and Ni catalyst to 

achieve visible light driven PEC H2-evolution.21 PEC CO2 conversion to CO was 

demonstrated in combination with a Ru(II)-Re(I) containing supramolecular catalyst.22 With 

respect to morphological questions, the PEC behavior of a nanoparticulate NiO film was 

compared with compact NiO recently, with special focus on their characterization with 

surface photovoltage spectroscopy.23 On the other hand, there is only one single report on the 

PEC properties of interconnected NiO nanostructures.24 The versatility of NiO is reflected in 

the fact that it has been also studied as protective coating for Si photoanodes, in solar fuel 

generation processes.25,26 

Combination of a SC light absorber with a metal electrocatalyst is a promising avenue 

to further enhance the solar to chemical conversion efficiency, because the light absorption 

and charge transfer is decoupled. Consequently, by intimately linking an electrocatalyst to the 

SC surface a Schottky-junction can be formed, which in turn facilitates the rapid charge 

carrier extraction from the SC to the metal co-catalyst.27,28 PEC H2-evolution takes place in 

the next step, on the surface of the metal nanoparticle co-catalyst. While various co-catalysts 

have been examined,29 Pt is still considered as the state-of-the-art electrocatalyst for the EC 

hydrogen evolution. 

The effect of Pt size was studied in different electrocatalytic processes. For example, 

in oxygen reduction reaction (ORR) the mass specific activity was increased sharply in the 

range of 1.2 – 2.2 nm Pt particles and slightly decreased for even larger particle sizes (>2.5 
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nm).30 In another study CO electrooxidation was studied on Pt nanoparticles ranging from 1-

30 nm, and the importance of particle shape and specific adsorption was also highlighted.31 

Similarly, Pt has been heavily studied and utilized as (co-)catalyst in both thermally- and 

photo-activated heterogeneous catalysis. The effect of Pt nanoparticle size (diameter of 1-10 

nm) on their heterogeneous catalytic activity was studied for both gas and liquid phase 

reactions. For example, in the case of alcohol oxidation, larger particles had higher activity 

towards the formation of aldehydes, ketones, and carbon-dioxide.32–34 For benzene and 

toluene hydrogenation, ~2-3 nm sized Pt nanoparticles had outstanding activity compared to 

both smaller and larger nanoparticles.35 In photocatalytic hydrogen evolution (using oxalic 

acid as sacrificial e- donor) over TiO2 supported Pt nanoparticles, 3 nm sized particles showed 

the best activity compared to both smaller and bigger particles.36 Photodriven CO2 reduction 

was performed on TiO2/Pt composites, containing photodeposited ultrasmall Pt nanoparticles 

(below 2 nm).37 The particle size and density on the PEC performance was also studied for 

Pt/Si samples, involving relatively large Pt particles (40-300 nm) on flat Si electrodes.38 

Taking all the above listed precedencies as a whole, it is clear that there is 

considerable scope for the nanoscale engineering of both the light absorber and the co-catalyst 

in metal/SC composite electrodes. In this paper we report on high PEC H2 generation rates on 

optimized Pt/NiO nanostructures. We studied the effect of the NiO nanostructure as well as 

the Pt co-catalyst size (and loading), where we found that there is an optimal particle size and 

loading. Under properly adjusted conditions, a twenty-fold increase in the photocurrent (and 

thus the H2 evolution rates) was observed compared to the benchmark nanoparticulate NiO 

film. Finally, we verified that particle size of the co-catalyst in a PEC configuration is equally 

important as it was in the previously studied electrocatalytic and photocatalytic scenarios.30–35 

Experimental Section 

Materials  
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For the anodization experiments Ni foils (99.9+%, 0.125 mm thick), NH4F (≥99%), 

ethylene glycol (≥99%) were all purchased from Sigma-Aldrich, and KOH (≥86% in water) 

from Fluka. For cleaning the metal foils ethanol (Chromanorm) 2-propanol (Chromanorm), 

and acetone (Rectapur) were purchased from VWR. For the electrochemical measurements 

Na2SO4 (99%, Alfa Aesar) was used, along with N2 gas (99.995%, Messer, Budapest, 

Hungary). All solutions were prepared with ultrapure water (Milli-Q, ρ=18.2 MΩ cm). All 

chemical reagents were used without further purification. 

Anodization of the Ni foil  

Prior to anodization, the Ni foils were mechanically polished to mirror finish using 

silicon carbide sandpaper with successively finer roughness. To ensure the removal of any 

attached organic contaminants three subsequent steps (5 min) of ultrasonication in acetone, 2-

propanol, and finally ultrapure water were performed. The anodization was carried out in a 

standard two-electrode setup, where the Ni foil acted as the anode and a Pt foil as the cathode. 

The Ni foil was pressed between two O-rings, leaving 2.27 cm2 exposed to the electrolyte, 

while the electric contact was located on the back of the sample. The anodization was carried 

out at different voltages using a programmable DC power supply (Voltcraft PSP 1803), while 

the procedure was monitored by a digital multimeter (Keithley 2000). Both instruments were 

controlled by custom-written LabVIEW software. Immediately after the anodization, the 

samples were carefully washed with ultrapure water and dried in N2 stream. To obtain the 

desired crystalline phase of NiO, the anodized samples were annealed for 4 h at 500 °C, with 

a heating ramp of 10 °C min−1 (Thermo Scientific Heraeus K114 Furnace). 

Three different electrolyte compositions were used (the first two were adopted from the 

literature) 24,39 to perform the anodization:  

(i) aqueous solution consisting of 0.5 M NH4F dissolved in 85 wt% H3PO4, with an 

anodization voltage of 6 V - 10 V, for 10 min.39 
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(ii) organic media consisting of 0.5 wt% KOH, 5 wt% H2O, and 94,5 wt% ethylene 

glycol with an anodization voltage of 40 V-60 V and duration of 1 hour.24 

(iii) a combined electrolyte consisting of an ethylene glycol solution containing 0.15 M 

KOH, 0.1 M NH4F, and 3 V/V% H2O. During these syntheses the voltage was 

held at 30 V for 1 hour. 

Preparation of Pt nanoparticles  

Pt nanoparticles with various sizes were synthesized as described in the Supporting 

Information.34 Briefly, NaOH and polyvinylpyrrolidone (Mw = 29,000) were dissolved in 

ethylene glycol together with the platinum precursor (H2PtCl6·xH2O or platinum(II) 

acetylacetonate). Subsequently, the mixture was heated to 160-200 °C in an oil bath and held 

at that temperature between 10 min and 2 h under Argon atmosphere. Pt nanoparticles in five 

different sizes were synthesized, with a diameter of 2.0±0.4, 4.8±0.7, 7.2±0.8, 8.6±1.3, and 

12.3±1.4 nm. The resulting Pt nanoparticles were precipitated with acetone, centrifuged and 

dispersed in ethanol. Finally, the nanoparticles were repeatedly washed with hexane, 

centrifuged, and re-dispersed in ethanol before use. The exact concentration of the Pt 

suspensions was determined by ICP-MS measurements (Agilent 7700x type ICP-MS 

spectrometer). 

Drop-casting of Pt on the NiO films  

First the NiO samples were cut into four pieces with equivalent geometric areas of 

0.57 cm2 to minimize the possible error arising from the use of different samples. One piece 

was always kept as an internal reference and every normalization was carried out with respect 

to this. The suspension of different sized Pt nanoparticles was prepared in ethanol (sonicated 

for 60 min) and was then drop-casted on the surface of the NiO samples (preheated on a 

hotplate at 65 °C). Investigations were carried out with different Pt loadings (0.5 – 4.0 µg cm-

2). To improve the adherence between the Pt nanoparticles and the NiO scaffold, and to 
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remove the capping polyvinylpyrrolidone from the Pt surface, the as prepared NiO/Pt 

composites were annealed in air at 300 °C for 2 hours with a heating ramp of 5 °C min-1. 

Physical characterization  

The X-ray diffraction (XRD) patterns were recorded with a Rigaku MiniFlex II 

benchtop instrument with Cu Kα X-ray source (λ = 1.5406 Å), in the 20 - 80° range, with a 2° 

min-1 scan rate. Raman spectra were recorded with a Thermo ScientificTM DXRTM Raman 

microscope at an excitation wavelength of 532 nm, applying 10 mW laser power, and 

averaging 20 spectra with an exposition time of 6 seconds. Scanning electron microscopic 

(SEM) images were captured using a Hitachi S4700 FE-SEM instrument. Transmission 

electron microscopic (TEM) investigation and electron diffraction analysis were performed 

using a FEI TecnaiTM G2 20 X-Twin type instrument, operating at an acceleration voltage of 

200 kV. The Pt containing ethanol based suspensions were drop-casted on carbon film coated 

copper grids. In the case of the NiO samples, a small part of the surface of the electrode 

materials was scratched into a tiny jar filled with ethanol before ultrasonication. X-ray 

photoelectron spectra were recorded with a SPECS instrument equipped with a PHOIBOS 

150 MCD 9 hemispherical analyzer. The analyzer was operated in the fixed analyzer 

transmission (FAT) mode with 20 eV pass energy. The Al Kα radiation (hν = 1486.6 eV) of a 

dual anode X-ray gun was used as an excitation source. The gun was operated at 210 W 

power (14 kV, 15 mA). The binding energy scale was corrected by fixing the main C 1s 

component to 285.0 eV, corresponding to the adventitious carbon. For spectrum acquisition 

and evaluation both manufacturers (SpecsLab2) and commercial (CasaXPS, Origin) software 

packages were used. 

Electrochemical measurements  

All electrochemical measurements were performed using an Autolab PGSTAT302N 

instrument equipped with an FRA32M module. The measurements were carried out in a 

Page 8 of 34

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



9 

 

standard three electrode setup, where the studied Pt/NiO acted as working electrode, a 

platinum foil and Ag/AgCl (satd. NaCl) electrode were used as the counter and the reference 

electrodes, respectively. The electrolyte was purged with N2 gas for 20 min before each 

measurement.  

 Photoelectrochemical measurements were carried out in a sealed two compartment, 

quartz cell where 0.1 M Na2SO4 solution was used as the electrolyte. Linear sweep 

voltammograms were recorded from 0.0 V to -1.0 V with a sweep rate of 2 mV s-1 under 

periodically chopped illumination (0.1 Hz). The light source was a 300 W Hg-Xe arc lamp 

(Hamamatsu L8251). The radiation source was placed 3 cm away from the working electrode 

surface. When performing the long-term PEC measurements, the potential was held at E= -0.8 

V, the solution was stirred continuously, and the solution temperature was kept constant at 

25 °C. In these experiments the gas phase products were detected with a gas chromatograph 

(Shimadzu GC-2010 Plus equipped with a barrier ionization discharge (BID) detector). 

 For the electrochemical impedance spectroscopy (EIS) measurements a closed 

electrochemical cell was employed, where 1.0 M Na2SO4 solution was used as the electrolyte. 

Prior to each EIS measurement, five cyclic voltammetry (CV) scans were recorded in the 

range of -0.8 V to 1.0 V with a 50 mV s-1 sweep rate to ensure proper wetting of the porous 

electrodes and to estimate the electroactive surface area of the Pt nanoparticles. All 

impedance spectra were recorded at two different potential values (E= 0.0 V and E= -0.6 V), 

in the 10 Hz to 0.1 MHz frequency range, using a sinusoidal excitation signal (10 mV RMS 

amplitude). 

 Incident photon-to-electron conversion efficiency (IPCE) measurements were 

performed on a Newport Quantum Efficiency Measurement System (QEPVSI-B) in a single-

compartment, three electrode quartz electrochemical cell. The wavelength range was 250-400 
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nm (∆λ = 10 nm step size). The IPCE profiles were recorded in a 0.2 M Na2SO4 solution at E 

= -0.8 V bias potential.  

Results and Discussion 

Anodization of Ni foils 

As described in the Experimental Section, anodization of Ni foils was carried out in 

three different complexing agent containing media. The first method employed F- ions, 

dissolved in concentrated H3PO4 media.39 Different anodization voltages were used, and by 

increasing the applied voltage, the gradual increase of the steady-state current was observed 

(Figure S1). This trend is related to the rate of the dissolution of the metal-oxide layer24, and 

also affects the pore size of the obtained porous electrodes.40 The samples prepared at 6 V 

showed a compact morphology, whereas the presence of nanopores was observed at higher 

anodization voltages (see SEM images in Figure S2). Unfortunately, this method led to F and 

P-impurities in the structure (see further discussion and EDX data in Figure S3A), which 

deleteriously affected the PEC response of the prepared electrodes (Figure S3B). To prevent 

the incorporation of the phosphate impurity, our attention shifted to a method employing a 

glycerol based media with KOH as the complexing agent.24 In this case however, the high 

etching rate of the formed NiO layer was observed (hindering morphology control), which 

eventually lead to the complete dissolution of the Ni foils. To combat both the phosphate 

inclusion and the fast dissolution of the formed NiO, a complex media was employed. The 

optimized synthesis media consisted of ethylene glycol as the solvent, which contained 0.15 

M KOH, 0.1 M NH4F, and 3 V/V% H2O. 

The use of organic solvent necessitated higher anodization voltages compared to the 

aqueous synthesis (because of higher solution resistance). As the anodization voltage was 

increased, faster NiO etching was observed (Figure 1A). Another typical feature of the 

anodization curves was the appearance of a distinct current density maximum.41,42 This can be 

attributed to the increasing electrode surface area caused by the extensive pore formation. 
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When the two competing reactions (oxide formation and dissolution) reach a steady state level 

however, near-constant current densities stabilized at the later stages of anodization. 

SEM images were recorded to probe the morphology of the NiO films obtained at 

different anodization voltages. The nanoporous morphology was witnessed for all samples, 

but the pore size was found to be dependent from the anodization voltage (Figure 1B and 

Figure S5). On the high magnification SEM image, the interconnected nanoporous structure 

can be observed (Figure 1B). The size of the obtained pores fall into the range of 15±5 

nanometers (see pore size distribution in Figure 1C), while the grain size was slightly larger 

(~ 20 nm, see also TEM images later in Figure 7). These morphological features show close 

resemblance to the porous NiO electrodes prepared in fluoride containing electrolytes (1. 

method). We note here that in the case of the glycerol-based alkaline method the formation of 

macroporous structures were reported.24 In all further experiments the samples prepared at 

U=30 V for 1 h anodization time were used. 

 

Figure 1. A: The effect of applied voltage on the anodization traces recorded in 0.15 M KOH, 
0.1 M NH4F, and 3 V/V% H2O containing ethylene glycol. B: SEM image of the heat treated 
(T=500 °C, 1h) NiO sample obtained at U= 30 V, 1 h. C: Pore size distribution of a typical 
NiO sample (U = 30 V, 1 h) annealed at T= 500°C for 1 h. 
 

Electrochemical anodization usually results in the formation of amorphous oxides 

materials, thus a subsequent heat treatment step is often necessary. To investigate the effect of 

heat treatment (300-600 oC) on the crystallinity of the samples, XRD measurements were 

carried out (Figure 2A). XRD profiles of the pristine NiO and a commercial NiO powder were 

also included as reference. The pristine anodized sample exhibited no reflections attributable 
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to NiO, only sharp reflections of the Ni foil underneath the amorphous layer were observed 

(marked with an asterisk). By employing a heat treatment above 500 °C, the development of 

the most intense reflections of NiO (JCPDS #47-1049) was observed. The average size of the 

crystalline domains was estimated using the Scherrer equation for the most intensive (111), 

diffraction. A d= 22 nm value was obtained, very similar to the grain size obtained from the 

SEM images, which in turn confirms that the samples are fairly crystalline. 

To further investigate the structural features of the formed NiO layers Raman 

measurements were carried out (Figure 2B). The reference NiO powder exhibits three 

distinguishable Raman active vibration modes, which correspond to one-phonon LO modes 

(at ~513 cm−1), two-phonon TO + LO (at ~851 cm−1) and 2LO (at ~1048 cm−1) modes, 

respectively. These values are in close agreement with the reported values in the literature.43 

Furthermore, increasing heat treatment temperature, the gradual evolution of the LO mode 

was observed. While this vibrational mode is missing in the case of the unannealed (as is) 

sample, it is immediately observable even after a heat treatment at 300 °C. Based on the 

results from XRD and Raman spectroscopic measurements a heat treatment temperature of 

500 °C was chosen for future studies. EDX measurements (Figure S4), however detected 

some residual carbon in the samples annealed for 1 h, thus the heat treatment step was 

extended to 4h. 
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Figure 2. A: XRD patterns recorded for the anodized NiO samples (U= 30 V, 1 h) heat 
treated at different temperatures for 1 h and the reference NiO powder. B: Raman spectra 
recorded for the nanoporous NiO samples (U= 30 V, 1 h) heat treated at different 
temperatures and the reference NiO powder. 
 
Electrochemical measurements 

To evaluate the electrochemical behavior of the prepared nanoporous NiO electrodes 

cyclic voltammograms were recorded (Figure 3A). As reference measurements, NiO powder 

spray-coated on a glassy carbon electrode (Figure 3B) and a compact NiO layer (Figure 3C) 

(obtained by replacing the complexing agents in the anodization media with Na2SO4) were 

also studied. NiO usually exhibits two distinct redox peak pairs.44 The first oxidation peak at 

E= 0.3 V is attributed to the oxidation of Ni(OH)2 to various NiO(OH) phases (Equation 1).44 

The exact reaction however, involves different phases of NiO(OH) as described by the Bode-

model.45 The second oxidation peak starting at E> 0.75 V is related to the oxidation of Ni(II) 

to Ni(III) (Equation 2).23 

 ��(��)� → ���(��) + �
 + �� (1) 
 2��� + ��� → ����� + 2�


 + 2�� (2) 

In our case, only one broad anodic redox wave was seen centered at E~ 0.4 V, 

attributed to the redox transformation of Ni(OH)2 to various NiO(OH) phases. By determining 

the charge capacitance values, it was found that the nanoporous NiO sample surpasses both 

the spray-coated NiO nanopowder (3-fold increase) and the NiO compact layer (27-fold 

increase) in term of electroactivity. This enhanced behavior can be mainly attributed to the 

superior surface area (vs. the compact layer) and the interconnected structure (vs. 

nanoparticulate films) of the anodized NiO samples. These observations already projected that 

the nanoporous NiO films will be a viable platform for future PEC studies. 
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Figure 3. Cyclic voltammograms recorded in 0.2 M Na2SO4 with 50 mV s-1 sweep rate for: 
A: nanoporous NiO sample (prepared at U= 30 V, 1 h; heat treated at T= 500 °C, 4 h). B: NiO 
powder on glassy carbon electrode. C: compact NiO layer (prepared at U= 30 V, no 
complexing agent, 1 h; heat treated at T= 500 °C, 4 h). 

 

Photoelectrochemical measurements 

To evaluate the photoresponse of the anodized NiO electrodes linear sweep 

photovoltammetry measurements were carried out (Figure 4). During illumination, the 

measured cathodic currents indicated a p-type semiconductor behavior of all studied samples. 

In these cases, no electron scavenger species was added, thus the photoresponse can be 

mainly ascribed to the photoreduction of water. Compared to the anodized and heat treated 

NiO layer (Figure 4A), both the spray-coated NiO nanopowder (Figure 4B) and the compact 

NiO layer (Figure 4C) showed inferior photoactivity (note the difference in the scale bar of 

the current density). In the latter two cases this may be the result of inadequate charge carrier 

extraction. As for the powdered sample, extensive charge carrier recombination may occur on 

the surfaces of the nanoparticles, which ultimately limits the photoresponse of this material. 

The case for the compact sample is somewhat different. Although the interfaces between 

particles are absent, the photogenerated carriers on the surface of the layer cannot be extracted 

through the bulk of the oxide (note the low conductivity of NiO). Thus, it can be concluded 

that the anodized sample exhibits superior PEC performance because of its interconnected 

nanoporous structure.  

A further decisive parameter dictating the photoresponse of a material is its 

crystallinity. In Figure 4A the photoresponse of the anodized NiO samples heat treated at two 
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different temperatures are compared. The sample annealed at 300 °C, which exhibited no 

crystalline features, showed negligible photocurrents, while the sample heat treated at 500 °C 

showed jph= -80 µA cm-2 at E= -0.7 V. 

 
Figure 4. Linear sweep photovoltammograms recorded in 0.2 M Na2SO4 with 2 mV s-1 sweep 
rate for: A: nanoporous NiO sample (prepared at U= 30 V, 1 h; heat treated at T= 500 °C and 
300°C, 4 h). B: NiO powder on glassy carbon electrode. C: compact NiO layer (prepared at 
U= 30 V, 1 h; heat treated at T= 500 °C, 4 h). 
 
Pt decoration of the NiO electrodes 

Pt nanoparticles with controlled size were synthesized in ethylene glycol by the polyol 

method using different Pt-based precursors and polyvinylpyrrolidone (PVP) as a capping 

agent (for more details see Supporting Information). The as-prepared Pt nanoparticles have 

narrow size distribution with an average diameter of 2.0 ± 0.4 nm, 4.8 ± 0.7 nm, 7.2 ± 0.8 nm, 

8.6 ± 1.3 nm, 12.3 ± 1.4 nm (Figure 5). This allowed to cover the 1.5 to 16 nm size regime, 

which is typically employed in most catalytic studies. The nanoparticles mostly have spherical 

shape, however octahedron type particles can also be observed in samples with larger 

nanoparticles. 
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Figure 5 TEM images of the different sized Pt nanoparticles (A-E), together with the 
comparison of their size distributions (F). 

 

To investigate the morphology of the Pt/NiO electrodes SEM and TEM images were 

recorded. SEM image of a Pt/NiO electrode (7.2 nm average Pt diameter) is compared to the 

corresponding bare NiO in Figure 6. Even at high magnifications, the 7.2 nm Pt nanoparticles 

are too small to be observed directly, however there are some distinguishable changes, which 

indicate the presence of Pt on the NiO surface. First, the surface is smoother before drop-

casting of Pt, than afterwards. Furthermore, upon drop-casting, the pore structure also altered: 

the diameter of the pores decreased and some were even clogged. The pore size distribution 

was also determined before and after decoration with Pt (Figure 6C). Most importantly, the 

fraction of the large pores decreased notably, due to the incorporation of Pt nanoparticles. The 

amount of the small pores increased in parallel as expected. These observations together 

indicate that a high amount of Pt nanoparticles accumulated in the pores, close to the top of 

the NiO layer. 
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Figure 6. SEM images of A: an anodized NiO film, B: a Pt/NiO composite (7.2 nm Pt). C: 
pore size distribution before and after anchoring Pt (determined from SEM images in A and 
B). 
 

 
 

Figure 7. A: Typical TEM images of a heat treated porous NiO and B: a Pt/NiO sample 
containing 7.2 nm average diameter Pt nanoparticles with a surface concentration of 5 
µg/cm2. C, D: electron diffraction patterns of the respective materials shown in A and B. 
 

TEM images of the debris of porous NiO films were scrutinized, and the presence of a 

mesoporous structure was witnessed. The average diameter of the joined building blocks were 

around 20 nm (Figure 7A). Note that this value is in perfect agreement with the previously 

shown XRD and SEM data. As for the Pt/NiO sample (containing 7.2 nm Pt), individual Pt 

nanoparticles can be spotted on the image (Figure 7B). The electron diffraction study of the 

nanoporous nickel oxide reveals NiO (111), Ni (200), NiO (200), NiO (220), NiO (311) and 

NiO (222) crystallite planes characteristic for face-centered cubic (fcc) nickel(II) oxide 
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(Figure 7C.). For Pt-decorated NiO, crystallite planes of Pt (111), Pt (200) and Pt (311) 

showed the presence of metallic face-centered cubic (fcc) platinum (Figure 7D).  

HR-TEM images were also recorded for a composite sample with higher Pt loading 

(10 µg cm-2, Figure 8 and Figure S6). The most important message of this TEM images is that 

nanosized Pt particles can be spotted anchored to the interconnected porous structure of NiO. 

In addition, clear lattice fringes corresponding to the (111) facets of Pt as well as the (111) 

facets of NiO were observed (Fig. 8). 

 

Figure 8. High-Resolution TEM images of 7.2 nm Pt nanoparticles anchored onto the surface 
of nanoporous NiO. 

 

XPS measurements 

To evaluate the surface chemical characteristics of the NiO electrodes and the drop-

casted Pt nanoparticles, XPS measurements were carried out. NiO-based materials exhibit 

complex surface chemistry because of non-stoichiometry and hydration under ambient 

conditions.46
 The presence of different Ni-oxide/hydroxide species can make the quantitative 

evaluation of the XP spectra problematic and should be only attempted in the presence of high 

quality standards.46–48 In this vein, we focused on the qualitative evaluation of the surface 

characteristics. In Figure 9 regions corresponding to Ni 3p (A), Ni 2p (B) and O 1s (C) are 
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shown for a NiO sample decorated with 8.6 nm average diameter Pt nanoparticles. Because of 

the extensive overlap between the Ni 3p and the Pt 4f signals, deconvolution of the Ni 3p 

components was not attempted. Judging from the position of the asymmetric Pt 4f7/2 

component (71.2 eV), together with the Pt 4d5/2 peak positions (Figure S8) however, the zero 

valence of the drop-casted Pt can be confirmed in all cases (Figure 9A).49,50 Notably, a small 

amount of surface oxide (PtO) was only detected in the case of the smallest Pt nanoparticles 

(Figure S8). The main Ni 2p3/2 line was modeled with three components: (i) NiO (853.7 eV), 

(ii) Ni(OH)2 (855.2 eV) and NiOOH (856.4 eV) which are consistent with literature data.46 

The addition of NiOOH into the model was dictated by the chemical nature of the samples, 

because its formation is characteristic of electrochemically grown NiO layers.24,51 In the O 1s 

region (Figure 9C) similar chemical entities were distinguished in accordance with previous 

literature data. 46 When fitting the spectrum the contribution from oxygens of NiO (529.2 eV), 

Ni(OH)2 (530.7 eV), NiOOH (532.1 eV), and physisorbed H2O (532.9 eV) were all taken into 

account. 

 
Figure 9. A: Pt 4f / Ni 3p XP spectrum, B: Ni 2p3/2 XP spectrum, C: and O 1s XP spectrum 
of the NiO sample decorated with 8.6 nm Pt nanoparticles. Resolved curves are added only to 
guide the eye to changes in spectral shape and do not represent sufficient component analysis. 

 

Electrochemical and photoelectrochemical characterization 

To assess the dark electrochemical behavior of the Pt/NiO nanocomposites, cyclic 

voltammograms (CVs) were recorded (Figure 10A). Two main trends were immediately 

observed upon the addition of Pt: (i) a dark current developed in the range of E= -1.0 V - -0.4 

V (arising from direct water reduction on the Pt nanoparticles) and (ii) a change in the overall 
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electroactivity of the electrodes. For pristine NiO, negligible dark current flow was observed 

at the cathodic end of the potential window (E= -1.0 V - -0.4 V). When the surface of the NiO 

electrodes is decorated with Pt nanoparticles, however the gradual evolution of a dark current 

was witnessed. The onset potential of this process is located at E= -0.2 V regardless of the 

size of the Pt nanoparticles. This observation indicates that the size of the nanoparticles 

predominantly affects the kinetic aspects of the dark water reduction process. In the positive 

potential regime (E> 0.0 V) higher electrochemical activity was observed for the Pt loaded 

NiO samples compared to their pristine NiO counterpart. Although the electrochemical 

transformation of NiO and Pt overlap in this potential regime, the increased electroactivity 

can be attributed to the presence of Pt related redox peaks.31,52 Among all the studied samples 

the one decorated with 2.0 nm Pt nanoparticles exhibited the highest electrochemical activity, 

and the relative enhancement decreased with the increasing Pt particle size. These data served 

as the basis of normalization of the PEC performance (see below), where the actual surface 

area of the co-catalyst may play a key role in the overall performance. 

 
Figure 10. A: Cyclic voltammograms of NiO and Pt/NiO composites 2 µg cm-2. B: Linear 
photovoltammogram of Pt/NiO 2.0 nm, with different Pt loading in 0.2 M Na2SO4, saturated 
with N2 gas. 

 

To characterize the PEC behavior of the Pt/NiO composites, linear sweep 

photovoltammetry measurements were carried out with a slow sweep rate (2 mV s-1) in 0.2 M 

Na2SO4. The illumination was periodically interrupted (0.1 Hz) to record the response of the 
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electrodes under both dark and illuminated conditions. In almost all the cases (except for the 

largest Pt size), the cathodic photocurrents of the Pt-decorated NiO samples surpassed their 

pristine NiO counterparts. This superior behavior could be attributed to the more efficient 

electron-hole separation in the prepared nanocomposites.23 By increasing the Pt loading, 

higher photocurrents were achieved until an optimal composition was reached. After this 

maximum, the optical shielding effect of the Pt nanoparticles on the surface resulted in a 

decrease in the photocurrents. For the largest particle this shielding effect seemed to be 

deleterious even at moderate loadings. To strip the measured photocurrent enhancements from 

possible uncertainty arising from the use of different NiO electrodes, the photocurrents were 

normalized by the photocurrent measured for the respective pristine NiO electrodes (Figure 

S7). To find the optimal composition and particle size, these normalized photocurrent values 

were determined of each Pt decorated sample (Figure 11A, and Figure S7). It is apparent that 

the largest increase in the photocurrent value was achieved in the case of 2.0 nm and 4.8 nm 

sized Pt nanoparticles.  

 
Figure 11. A: Particle size dependence of the photocurrent enhancement for the Pt/NiO 
samples (2 µg cm-2 loading). The error bar represents measurements carried out for three 
different sample for each particle size. Lines connecting the measured data serve as guides for 
the eye only. B: Nyquist plots of the electrochemical impedance spectroscopy data, recorded 
for the bare and different Pt-decorated samples, at E = 0.0V in the 10 Hz to 0.1 MHz 
frequency range, in 1.0 M Na2SO4 solution. The inset shows the magnified region of the 
semicircles.  
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The origin of this photocurrent enhancement however, is complex and convoluted. 

First of all, the surface area difference of the various sized Pt nanoparticles can be reflected in 

these increased values. To exclude this factor and to shed light on possible other, more 

sophisticated size-effects, further normalization of the data was carried out. The extra redox 

peak observed for the Pt-decorated samples during CV measurements is a direct indicator of 

the electroactive surface area of the Pt nanoparticles. As the first step, the charge capacitance 

of the bare NiO was subtracted from that of the Pt-decorated samples. Subsequently, the 

normalization of the photocurrent enhancement with respect of the electrochemically active 

surface area of the Pt nanoparticles was carried out. When the trivial surface area effect was 

stripped from the data the maximum photocurrent increase was obtained for the samples 

decorated with 4.8 nm and 7.2 nm sized Pt nanoparticles.  

This observation is indeed interesting, because in earlier studies the highest 

heterogeneous/electro-catalytic activity was typically observed for even smaller particles 

(mostly because of the larger number of active sites).30–35 In our case however, the 

compatibility of the NiO and Pt has to be also considered. As the average pore size of the 

optimized NiO samples was 15±5 nanometers (see also pore size distribution in Figure 1C), 

the large sized Pt particles simply don’t infiltrate into the deeper regions of the nanoporous 

NiO film, but rather remain on its top. Such architecture is obviously not favorable 

considering the low contact area between NiO and Pt, and the possible optical shielding 

effect. On the other hand, the smallest (2 nm) Pt particles are likely to penetrate to the bottom 

region of the anodized NiO layer. As the light penetration is limited in the deeper regions, the 

co-catalytic effect of these deeply embedded Pt particles cannot be fully harnessed. Finally, 

the intermediate sized (4.8 nm and 7.2 nm) Pt particles may partially penetrate, resulting in a 

beneficial Pt/NiO nanoarchitectures. This hypothesis is qualitatively supported by XPS data, 

where the surface concentration of the Pt nanoparticles was estimated. It was found that the 
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high specific surface area of the small sized Pt nanoparticles is not reflected in the surface 

Pt/Ni ratio, most likely because it is compensated by their increased penetration into the NiO 

layer (where they are invisible for XPS). 

Electrochemical Impedance Spectroscopy (EIS) measurements were carried out to 

characterize the electrical properties of the Pt decorated NiO electrodes. The Nyquist-plots of 

the samples are presented in Figure 11B. Qualitatively, one may notice that the impedance 

spectra exhibit a depressed semicircle at high frequencies. It is also apparent that all Pt 

containing samples possess lower charge transfer resistance (the decrease in the endpoint of 

the semicircle) compared to the bare NiO electrodes. Overall, the lowest charge transfer 

resistance was obtained for the sample with the smallest Pt size, but all Pt-decorated 

electrodes have much smaller Rct, compared to the bare NiO. This trend suggest that the 

photocurrent increase is rooted in the improved charge transfer at the electrode/electrolyte 

interface. Further details, including the fitting of EIS data and the employed equivalent circuit 

are shown in the Supporting Information (Figure S10 and Figure S11). 

To further study the origin of the photocurrent enhancement, photoaction spectra were 

recorded. Figure S9 shows the photoaction spectra of the pristine and 2.0 nm sized Pt 

decorated NiO electrodes in 0.2 M Na2SO4 recorded at a constant bias potential of E= -0.8V. 

The bandgap of the materials was estimated by fitting the cut-off region of the photoaction 

spectra with a straight line segment and extrapolating it to the wavelength axis. For both the 

pristine and Pt decorated samples a similar bandgap value of Ebg = 3.55 eV was found. This is 

in good agreement with the 3.5 eV value reported for NiO in the literature,23 and our own 

optical data obtained via diffuse reflectance UV-Vis spectroscopy (3.50 ± 0.1 eV, raw data 

not shown here).  The decoration of the NiO electrodes with Pt nanoparticles leaves the 

bandgap of the oxide hybrids intact. Therefore, confirming our previous conclusion, the 
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improvement in the PEC behavior of the Pt decorated samples can be attributed to better 

charge separation rather than increased optical absorption. 

Long-term photoelectrochemical measurements 

Long term photoelectrolysis, combined with in-situ gas phase analysis, was performed 

to monitor the formation of H2 gas (Figure 12). At the initial stage of the photoelectrolysis 

some dark current was detected, most likely because of the reduction of some minority Ni(III) 

species in the sample (see also XPS data above). The measured photocurrents slowly 

decreased during the electrolysis, partly because of the leaching of Pt nanoparticles to the 

solution (as confirmed by comparing the XPS data before and after photoelectrolysis). After 

half an hour, there was a detectable amount of H2 in the gas phase. The H2 concentration 

increased linearly with the transferred charge. The Faradaic efficiency of this process was 

around 70%, most likely because of minor leaking of the electrochemical cell. Long-term 

measurements for other Pt/ NiO electrodes (with different Pt sizes) were also conducted (not 

shown here), where a similar pattern was found. XPS investigations taken after the long-term 

measurements revealed that the chemical state of Pt and NiO was not altered during the 

process. 

 
Figure 12. A: Long-term photoelectrolysis on a Pt/NiO electrode (7.2 nm sized Pt) at E= -0.8 
V potential in 0.2 M Na2SO4. B: The amount of evolved H2 during the long-term 
measurement shown in A. 

Conclusions 
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In this study, we carried out the simultaneous optimization of nanoporous NiO and Pt 

nanoparticles to assemble Pt/NiO composite photoelectrodes with improved PEC 

performance. This system served as a model for photoelectrodes encompassing a 

semiconductor light absorber and a metal nanoparticle co-catalyst. As the first step a new 

anodization protocol was developed, which allowed the formation of pure NiO, with 

controlled morphological attributes. In the second step, Pt nanoparticles were synthesized 

with precise size control (5 sizes between 2.0 and 12.3 nm average diameter) and narrow size 

distribution. Finally, the Pt nanoparticles were anchored on the NiO surface with different 

loadings. All the hybrid samples showed enhanced cathodic photocurrents compared to the 

bare NiO film, although to notably different extents. It was shown that the enhanced PEC 

activity is rooted in the lower charge carrier recombination rate in the case of the composite 

samples (i.e., Pt acted as a co-catalyst in the H2 evolution reaction). Comparing the relative 

enhancements in the photocurrents upon the addition of different sized Pt particles, it was 

found that the two smallest (2.0 and 4.8 nm) have the most beneficial effect. After peeling off 

the trivial surface area effect (performed by normalizing the photocurrent enhancement with 

the electrochemically active surface area of Pt) the two intermediate particle sizes (4.8 and 7.2 

nm) were found to be significantly better than both the smaller and larger particles. The main 

outcome of this study is that the size of the co-catalyst exert an important role in the overall 

performance, similarly to the electrocatalytic and photocatalytic scenarios.30–35 The complete 

picture however, is even more complicated because light absorption, charge carrier transport, 

and surface chemical reactions have to be considered at the same time. We have demonstrated 

that in the case of nanocomposite photoelectrodes (e.g., light absorber + co-catalyst) the 

nanoscale structure of the components has to be optimized simultaneously, to achieve 

reasonable PEC activity. The conclusions of this study may lead to new design concepts of 

photoelectrode assemblies, and such endeavors are in progress in our laboratories. 
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