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Gram-positive anaerobic cocci (GPAC) account for 24%e31% of the anaerobic bacteria isolated from
human clinical specimens. At present, GPAC are under-represented in the Biotyper MALDI-TOF MS
database. Profiles of new species have yet to be added. We present the optimization of the matrix-
assisted laser desorptioneionization time-of-flight mass spectrometry (MALDI-TOF MS) database for
the identification of GPAC. Main spectral profiles (MSPs) were created for 108 clinical GPAC isolates.
Identity was confirmed using 16S rRNA gene sequencing. Species identification was considered to be
reliable if the sequence similarity with its closest relative was �98.7%. The optimized database was
validated using 140 clinical isolates. The 16S rRNA sequencing identity was compared with the MALDI-
TOF MS result. MSPs were added from 17 species that were not yet represented in the MALDI-TOF MS
database or were under-represented (fewer than five MSPs). This resulted in an increase from 53.6% (75/
140) to 82.1% (115/140) of GPAC isolates that could be identified at the species level using MALDI-TOF MS.
An improved log score was obtained for 51.4% (72/140) of the strains. For strains with a sequence sim-
ilarity <98.7% with their closest relative (n ¼ 5) or with an inconclusive sequence identity (n ¼ 4), no
identification was obtained by MALDI-TOF MS or in the latter case an identity with one of its relatives. For
some species the MSP of the type strain was not part of the confined cluster of the corresponding clinical
isolates. Also, not all species formed a homogeneous cluster. It emphasizes the necessity of adding
sufficient MSPs of human clinical isolates. A.C.M. Veloo, CMI 2016;22:793
© 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd.

All rights reserved.
Introduction

The introduction of matrix-assisted laser desorptioneionization
time-of-flight mass spectrometry (MALDI-TOF MS) for the identi-
fication of bacteria isolated from human specimens has led to a
revolution in medical diagnostic microbiology laboratories [1]. This
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is especially relevant for bacteria for which the identification is
time consuming and technically challenging. Identification of
anaerobic bacteria by MALDI-TOF MS results in faster and more
reliable results [2e4]. The two main groups of anaerobic bacteria
encountered in human infections are the Bacteroides fragilis group
(43%) and Gram-positive anaerobic cocci (GPAC, 24%e31%) [5,6].
The performance of MALDI-TOF MS for the identification of
B. fragilis group species has already been validated with 94%e98%
identified to the species level [7,8]. The validation of MALDI-TOFMS
for the identification of GPAC has been limited until now, except for
the most prevalent GPAC species (Finegoldia magna, Parvimonas
blished by Elsevier Ltd. All rights reserved.
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micra and Peptoniphilus harei). At present, GPAC profiles are under-
represented in the MALDI-TOF MS database and profiles of new
species have yet to be added. Previous studies have shown that the
addition of reference spectra of clinical isolates of anaerobic bac-
teria results in an increase in the number of correct identifications
[9,10]. In this study we present the optimization of the Biotyper
MALDI-TOF MS database for the identification of GPAC by including
main spectral profiles (MSP) of 16S rRNA sequenced clinical iso-
lates. The primary goals were to have at least five MSPs [11] present
in the database for each species and also the addition of MSPs of
species not yet represented in the Biotyper MALDI-TOF MS
database.
Material and methods

Bacterial strains

A selection of 108 clinical isolates of GPAC, including six type
strains, were collected by laboratories associated with the Euro-
pean Network for the Rapid Identification of Anaerobes (ENRIA)
and sent to the University Medical Centre, Groningen (Table 1).
Upon arrival strains were cultured on Brucella Blood Agar
(Mediaproducts, Groningen, the Netherlands) supplemented with
Table 1
An overview of main spectral profiles (MSPs) of Gram-positive anaerobic cocci
(GPAC) species already present in the MALDI-TOF MS database and of MSPs added to
the database

Species No. of MSPs

Present Added Total

Peptostreptococcus stomatis 0 5 5
Peptostreptococcus anaerobius 4 3 7
Peptostreptococcus canis 0 2 2
Peptococcus niger 1 5 6
Finegoldia magna 11 0 11
Murdochiella asaccharolytica 0 3 3
Parvimonas micra 7 0 7
Anaerococcus murdochii 1 8 9
Anaerococcus degenerii a 0 2b 2
Anaerococcus lactolyticus 1 4 5
Anaerococcus tetradius 2 4 6
Anaerococcus prevotii 2 2 4
Anaerococcus vaginalis 1 12 13
Anaerococcus hydrogenalis 3 0 3
Anaerococcus senegalensis a 0 1 1
Anaerococcus obesiensis a 0 1 1
Anaerococcus octavius 2 0 2
Anaerococcus provenciensis a 0 2 2
Anaerococcus nagyae a 0 3b 3
Peptoniphilus grossensis a 0 6 6
Peptoniphilus tyrelliae 0 1b 1
Peptoniphilus rhinitidis a 0 3 3
Peptoniphilus harei 4 7 11
Peptoniphilus gorbachii 1 5 6
Peptoniphilus timonensis a 0 1 1
Peptoniphilus olsenii 0 4b 4
Peptoniphilus lacrimalis 0 5 5
Peptoniphilus koenoeneniae 0 2b 2
Peptoniphilus duerdenii 0 6b 6
Peptoniphilus indolicus 2 0 2
Peptoniphilus asaccharolyticus 1 0 1
Peptoniphilus ivorii 1 3 4
Peptoniphilus coxii 0 8 8

GPAC, Gram-positive anaerobic cocci; MALDI-TOF, matrix-assisted laser desorp-
tioneionization time-of-flight mass spectrometry; MSP, main spectral profiles.

a These species are not validly published.
b The type strains of these species were also included; Anaerococcus degenerii

DSM29674, Anaerococcus nagyae DSM101193, Peptoniphilus tyrelliae CCUG59621,
Peptoniphilus olsenii CCUG53342, Peptoniphilus koenoeneniae CCUG56067 and Pep-
toniphilus duerdenii CCUG56065.
haemin and vitamin K1 and incubated at 37�C in an anaerobic at-
mosphere (80% N2, 10% CO2, 10% H2) for 48 h. After repeated sub-
culturing on Brucella Blood Agar, strains were stored on
microbank™ beads (Pro-Lab Diagnostics, Bromborough, UK)
at �80�C and ethanol suspensions were made as described previ-
ously [12], which were stored at �20�C until use.

Identification using 16S rRNA sequencing

All strains were identified with 16S rRNA gene sequencing. DNA
of the strains was isolated as described previously [13]. The PCR
was performed using universal primers targeting the 16S rRNA
gene [14]. The identity of the strains was determined by comparing
either the sequence obtained with the forward primer and/or
reverse primer or in the case of consensus the complete sequence
of the 16S rRNA gene with sequences available in GenBank (http://
www.ncbi.nlm.nih.gov/genbank/) using BLASTn (https://blast.ncbi.
nlm.nih.gov). Identification at the species level was considered
reliable if the sequence similarity between the unknown strain and
its closest relative was �98.7% [15]. Only strains that could be
identified at the species level were included in the MALDI-TOF MS
database.

Identification using MALDI-TOF MS

Strains were identified using MALDI-TOF MS as described pre-
viously [12]. Briefly, after 48 h of incubation, fresh colonies were
spotted twice on to a stainless steel target using a toothpick. One
spot was overlaid with 1 mL HCCA matrix (a-cyano-4-hydroxycin-
namic acid in 50% acetonitrile/2.5% trifluoroacetic acid) and left to
dry at ambient temperature. An on-target extraction was per-
formed on the second spot by overlaying the bacteria with 1 mL 70%
formic acid. After drying at ambient temperature the spot was
immediately covered with 1 mL HCCA matrix. Measurements were
performed using the Microflex (Bruker Daltonik GmbH, Bremen,
Germany). Spectra were obtained by summing shot steps of 40,
with a minimum laser power of 30% and amaximum laser power of
40%, until 240 satisfactory shots were obtained.

Main spectral profiles

A full extraction was performed on the bacterial ethanol sus-
pensions as described previously [12]. Briefly, the suspension was
centrifuged at 13 000 g for 2 min and the supernatant was dis-
regarded. The centrifugation step was repeated and the remaining
supernatant was carefully removed by pipetting. The pellet was
resuspended in 30 mL 70% formic acid and an equal volume of
acetonitrile. After centrifugation at 13,000 g for 2 min, 1 mL of the
supernatant was spotted on the stainless steel target 12 times.
Immediately after drying at ambient temperature, 1 mL HCCA ma-
trix was added to the spot and left to dry at ambient temperature.
From each spot, three spectra were obtained using the Microflex.
Before each measurement, the MALDI-TOF MS system was cali-
brated using a bacterial test standard (Bruker Daltonik). For each
spectrum, 240 satisfactory shots were summed in shot steps of 40,
with a minimum laser power of 30% and amaximum laser power of
40%.

Obtained spectra were manually evaluated in FLEXANALYSIS

3.3.80.0. For each spectrum the appropriate method was chosen,
MBT_standard, smoothing and baseline subtraction were per-
formed. The set of spectra derived from one strainwere checked for
peak shifts, which should not exceed 500 ppm (the peak shift
should not exceed 2 Da for a peak at 4000 Da). Flat liners, outliers
and spectra that differ remarkably from the rest were removed
from the data set. An MSP from the remaining spectra, comprising

http://www.ncbi.nlm.nih.gov/genbank/
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https://blast.ncbi.nlm.nih.gov
https://blast.ncbi.nlm.nih.gov


A.C.M. Veloo et al. / Clinical Microbiology and Infection 22 (2016) 793e798 795
at least 20 spectra of good quality, was calculated using BIOTYPER 3.0.
Dendrograms of the created MSPs and the MSPs already present in
the MALDI-TOF MS database were calculated in BIOTYPER 3.0.

Validation

The performance of the optimized database was validated using
a total of 140 clinical isolates of GPAC, which were consecutively
isolated from a variety of human clinical specimens. To evaluate
also the MSPs of species less commonly encountered in clinical
specimens, a minority of the strains (n ¼ 11) were from a different
period. The identity of strains was established using 16S rRNA gene
sequencing as described above and compared with the identity
obtained using MALDI-TOF MS.

Only strains belonging to the genera mostly encountered in
human infectionsdPeptoniphilus, Anaerococcus, Peptostreptococcus,
Parvimonas, Finegoldia, Peptococcus and Murdochielladwere used.
Spectra obtained were compared with the current Bruker database
(db5627) and with the optimized Bruker database augmented with
GPAC MSPs of the ENRIA strains. Obtained log scores were inter-
preted as recommended by the manufacturer. Log scores �2 as a
high confidence identification, log score >1.7 and <2 as a low
confidence identification and log score �1.7 as no reliable
identification.

Results

Optimization of the MALDI-TOF MS database

MSPs of strains that were not represented by five or more pro-
files and MSPs of species that were not present in the Bruker
database were created and added (Table 1). The obtained dendro-
grams are shown in Figs. 1 and 2. The species in the genera
405006007008009001000

Fig. 1. Dendrogram of main spectral profiles created of strains b
Peptococcus, Murdochiella and Peptostreptococcus each form a
confined cluster, without obvious intra-species variation. For some
species of the genus Anaerococcus intra-species variation is
observed. This phenomenon was observed for Anaerococcus mur-
dochii, Anaerococcus lactolyticus, Anaerococcus prevotii and Anae-
rococcus tetradius. The MSPs of the type strains of Anaerococcus
vaginalis, Anaerococcus lactolyticus and P. harei, which were already
present in the Bruker database, are not part of the confined cluster
of MSPs of the clinical isolates of these three species. This phe-
nomenon was not observed for all species of which MSPs were
added to the database.
Validation

The results of the validation of the optimized database are
summarized in Table 2. The MSPs of P. micra and F. magnawere not
added since these species were already represented in the current
database with five or more profiles. One F. magna strain repeatedly
failed to produce any peaks. Peptostreptococcus stomatis, Murdo-
chiella asaccharolytica, Peptoniphilus lacrimalis, Peptoniphilus gor-
bachii, Peptoniphilus grossensis, Peptoniphilus duerdenii,
Peptoniphilus olsenii, Peptoniphilus coxii, A. vaginalis and Anaero-
coccus senegalensis all provided useful MSPs and clinical isolates
could be identifiedwith high confidence. Even though oneMSPwas
added of Anaerococcus obesiensis, this species could not be identi-
fied using the optimized database. Anaerococcus hydrogenalis could
only be identified with low confidence, even though three MSPs
were already present in the database. In general, the log score of
clinical isolates belonging to species of which MSPs were added
increased. This was especially observed within the species P. harei,
A. vaginalis, Peptostreptococcus anaerobius, Peptoniphilus ivorii,
A. lactolyticus and A. tetradius. After optimization of the Bruker
database, the proportion of species identified with high confidence
01002003000
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Fig. 2. Dendrogram of main spectral profiles created of strains belonging to the genera Anaerococcus, Murdochiella, Peptococcus, Finegoldia and Parvimonas.

Table 2
MALDI-TOF MS identification results of GPAC clinical isolates (n ¼ 140) compared with the Bruker database and with the Bruker database supplemented with MSPs of well-
characterized GPAC species

Species ID Bruker database Bruker database þ ENRIA GPAC database

Score �2 Score >1.7 to <2 Score �1.7 Score �2 Score >1.7 to <2 Score �1.7 No. of strains of which the
log score increased

Peptoniphilus harei (n ¼ 28) 19 8 1 28 0 0 26
Finegoldia magna (n ¼ 25)a 16 8 1 16 8 1 0
Parvimonas micra (n ¼ 27)a 25 2 0 25 2 0 0
Anaerococcus vaginalis (n ¼ 8) 0 2 6 8 0 0 8
Anaerococcus murdochii (n ¼ 5) 4 1e 0 5 0 0 1
Anaerococcus hydrogenalis (n ¼ 2) 0 0 2 0 2e 0 2
Anaerococcus obesiensis (n ¼ 2)b 0 0 2 0 0 2 0
Peptostreptococcus anaerobius (n ¼ 8) 7 1 0 8 0 0 8
Peptostreptococcus stomatis (n ¼ 2)b 0 0 2 1 1 0 2
Murdochiella asaccharolytica (n ¼ 3)b 0 0 3 3 0 0 3
Peptoniphilus coxii (n ¼ 6)b 0 0 6 5 1 0 6
Peptoniphilus lacrimalis (n ¼ 3)b 0 0 3 3 0 0 3
Peptoniphilus grossensis (n ¼ 2) b 0 1 1 1 1 0 2
Peptoniphilus lactolyticus (n ¼ 2) 1 0 1 2 0 0 1
Peptoniphilus gorbachii (n ¼ 2)b 1 0 1 2 0 0 2
Peptoniphilus duerdenii (n ¼ 2)b 0 0 2 2 0 0 2
Different GPAC species (n ¼ 4)c 0 0 4 4 0 0 4
GPAC (n ¼ 9)d 2 0 7 2 1 6 2
Total (n) 75 23 42 115 16 9 72
% of all strains 53.6% 16.4% 30.0% 82.1% 11.4% 6.4% 51.4%

GPAC, Gram-positive anaerobic cocci; MALDI-TOF MS, matrix-assisted laser desorptioneionization time-of-flight mass spectrometry; MSP, main spectral profile.
a No additional reference spectra were added to the MALDI-TOF MS database.
b Species was not present in the MALDI-TOF MS database.
c This group consisted of Peptoniphilus olsenii, Anaerococcus senegalensis, Anaerococcus degenerii and Anaerococcus tetradius. Species indicated in bold were already

represented in the original Bruker database.
d Strains could not be identified at the species level using 16S rRNA gene sequencing. It contains possible new species and strains of which the sequence could not

differentiate between two species. Two strains identified by sequencing as Anaerococcus murdochii/degenerii and Anaerococcus vaginalis/obesiensis were identified by MALDI-
TOF MS as Anaerococcus murdochii (log score >2) and Anaerococcus vaginalis (log score >2), respectively.

e The obtained log score indicated the correct genus, but the wrong species name.
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(log score�2) increased from 53.6% (75/140) to 82.1% (115/140) and
the number of strains that could not be identified (log score <1.7)
decreased from 30.0% (42/140) to 6.4% (9/140). Almost half of the
strains (51.4%, 72/140) yielded a higher log score.

Nine clinical isolates could not be identified by 16S rRNA gene
sequencing. This was either because the sequence similarity with
two different close relatives was highly similar. Therefore, no dif-
ferentiation could be made between the two species. This was the
case for four strains of which for two a MALDI-TOF MS identifica-
tion was obtained with a log score �2 with one of its closest rela-
tives. Five strains yielded a sequence similarity <98.7% with their
closest relative and could not be identified using MALDI-TOF MS.
These strains may represent new species.

Discussion

The aim of the ENRIA project is to optimize and validate the
BiotyperMALDI-TOFMS database for the identification of anaerobic
bacteria. The GPAC are a clinically important group of anaerobic
bacteria comprising several genera. They are a phylogenetically
heterogeneous group of organisms [16]. TheMALDI-TOFMS spectra
used for identification represent the mass range of 2e20 kDa and
consist predominantly of ribosomal and housekeeping proteins
that have taxonomic relevance [17]. The heterogeneity encountered
in phylogenetic analyses based on 16S rRNA is therefore also ex-
pected while creating MSPs for database optimization.

It was observed that certain species in the genus Anaerococcus
do not form a confined cluster. Also multiple clusters are observed
for the species A. murdochii and A. lactolyticus. Phylogenetic ana-
lyses showed that Anaerococcus degenerii is closely related to
A. murdochii and A. lactolyticus [18]. F. magna tends to give log
scores <2, probably because it possesses a very hard cell wall that
hampers the release of proteins. As it is the only species present in
the genus Finegoldia, accepting a log score >1.8 for high confidence
identification is justified.

For some GPAC species the type strain yielded a different MSP
compared with the clinical isolates of that species. This was also
observed for P. harei in a previous study by Veloo et al. [9], in which
a different MALDI-TOF MS system and database were optimized for
the identification of GPAC. In the present study this observationwas
confirmed for this and other species. This emphasizes the necessity
of adding new MSPs of well-characterized clinical isolates to the
database of the MALDI-TOF MS system. The fact that A. obesiensis
and A. hydrogenalis cannot be identified even though one and two
MSPs are present, demonstrates the necessity to have sufficient
MSPs present in the database. Due to the addition of GPAC MSPs of
108 clinical isolates, the rate of reliable species identification
increased from 53.6% (75/140) to 82.1% (115/140). For 51.4% (72/
140) of the tested strains a higher log score was obtained after
addition of the new MSPs. This is, in part, due to the fact that MSPs
of 17 species that were not yet represented in the database were
added, and partly due to the addition of MSPs of species that were
under-represented in the database. In the optimized database, 33
GPAC species are represented, of which 18 species are still under-
represented (fewer than five MSPs) [11].

Four strains with a 16S rRNA sequence similarity insufficient to
differentiate between species were either identified as one of its
closest relatives or could not be identified at all. For example, one
strain had similar sequence similarities with A. vaginalis and
A. obesiensis and was identified with MALDI-TOF MS as A. vaginalis.
Five strains with a sequence similarity <98.7% could not be iden-
tified at all. Three of these unidentified strains had similar sequence
results (data not shown) and may represent a new species. One
strain has just been described as being a new species, Anaerococcus
nagyae [19].
We conclude that the addition of further new MSPs of well-
characterized clinical isolates, permits more GPAC isolates
encountered in a medical microbiology laboratory to be identified
to species level. This seems especially valuable for species with a
high intra-species variation. The addition of species that were not
present in the database enhances the ability of MALDI-TOF MS to
comprehensively identify a broader range of clinical isolates, which
may allow us to better clarify their clinical relevance.
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