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1 The problem

In connection with an uncertainty principle Boris Mityagin [2] formulated the
following problem. For given 0 < p < ∞ and d ≥ 1, characterize those non-
empty subsets A,B of Rd for which

f(·+ a)− f(·) ∈ Lp(Rd) for all a ∈ A, (1)

and
f(·) sin〈·, b〉 ∈ Lp(Rd) for all b ∈ B, (2)

imply f ∈ Lp(Rd) for any measurable function f on Rd (here 〈x, b〉 denotes the
inner product of x and b). He showed (for p ≥ 1) that if1

(i) A = αZd and B = βZd, or

(ii) A = {a} and B = {b} are singletons,

then (1) and (2) imply f ∈ Lp(Rd) if and only if αβ is not an integer multiple
of π in case (i) and 〈a, b〉 is not an integer multiple of π in case of (ii). He has
also conjectured

Proposition 1 (1) and (2) imply f ∈ Lp(Rd) for every measurable function f
on Rd if and only if there are a ∈ A and b ∈ B such that 〈a, b〉 is not an integer
multiple of π.

This paper is devoted to the proof of this proposition. A relatively simple
modification of the proofs shows that the claim is true also for L∞(Rd).

The sufficiency part of Proposition 1 easily follows from the method of [2]
(which fact was mentioned in that paper), but we follow a different and shorter
path.
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1In what follows, Z denotes the set of integers
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2 Sufficiency in Proposition 1

Let a ∈ A and b ∈ B be such that 〈a, b〉 6∈ πZ. If we multiply the function in (1)
by sin〈·, b〉 and add the function in (2), then we obtain f(·+a) sin〈·, b〉 ∈ Lp(Rd),
i.e. f(·) sin〈· − a, b〉 ∈ Lp(Rd), which is the same as f(·)| sin〈· − a, b〉| ∈ Lp(Rd).
Thus, fh ∈ Lp(Rd), where

h(x) = | sin〈x, b〉|+ | sin〈x− a, b〉|.

On the line ℓ = Rb the function h (i.e. the function h(tb), t ∈ R) is continuous,
non-zero (a zero would mean that for some t both t〈b, b〉 and t〈b, b〉 − 〈a, b〉 —
and hence also 〈a, b〉 — belongs to πZ, which is not the case by the assumption)
and periodic with period πb/〈b, b〉, hence it is bounded away from 0: h ≥ δ > 0
on ℓ. Since h is constant on any hyperplane of Rd that is perpendicular to ℓ, it
follows that h ≥ δ everywhere, and hence fh ∈ Lp(Rd) implies f ∈ Lp(Rd).

3 Necessity in Proposition 1

Suppose now that

〈a, b〉 ∈ πZ for all a ∈ A and b ∈ B. (3)

We are going to construct a measurable function f 6∈ Lp(Rd) for which (1) and
(2) are true.

Let A be the additive group generated by A with vector addition in Rd as
the group operation. Then

〈a, b〉 ∈ πZ for all a ∈ A and b ∈ B, (4)

is also true, hence we may replace A by A. If A is the closure of A in the metric
of Rd, then (4) remains true when A is replaced by A, so we may assume that A
is a closed subgroup of Rd. We shall need the following description of A, which
is basically known (c.f. [1, M. 4.8], [3, Theorem 4.20]) and fairly easy to prove.
Since our formulation is somewhat more precise than what is in the literature,
for completeness we give a proof at the and of this note.

Lemma 2 (a) Let A be a closed additive subgroup of Rd. Then there is a
subspace V of Rd and a discrete subgroup G in its orthogonal complement V ⊥

such that A = G + V .
(b) The discrete subgroups of Rd are the free groups generated by linearly

independent elements.

(a) means that every a ∈ A can be uniquely written in the form a = g + v
where g ∈ G and v ∈ V . (b) means for the G in (a) that there are linearly
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independent elements g1, . . . , gm ∈ G such that every g ∈ G can be uniquely
written in the form

g = α1(g)g1 + · · ·+ αm(g)gm,

with some integers α1(g), . . . , αm(g). Set

α(g) := max
1≤j≤m

|αj(g)|,

and
Sk := {g ∈ G α(g) = k}.

Since the different elements kg1+α2g2+ · · ·αmgm with −k ≤ αj ≤ k all belong
to Sk, we have |Sk| ≥ (2k + 1)m−1. On the other hand, every element of Sk

belongs to one of the sets {g αj(g) = ±k,−k ≤ αi(g) ≤ k if i 6= j}, 1 ≤ j ≤ m.
Each of these sets has 2(2k + 1)m−1 elements, hence |Sk| ≤ 2m(2k + 1)m−1.
Thus, if P ∼ Q means that P/Q lies in between two positive constants, then we
have |Sk| ∼ (k + 1)m−1 for all k. As a consequence we obtain that if M > 0 is
any number, then for ε ≥ 0

∑

a∈G

1

(α(a) +M)m+ε
< ∞ ⇔ ε > 0. (5)

Indeed, this is immediate since

∑

a∈G

1

(α(a) +M)m+ε
=

∞
∑

k=0

∑

a∈Sk

1

(α(a) +M)m+ε
=

∞
∑

k=0

|Sk|

(k +M)m+ε

∼

∞
∑

k=0

(k + 1)m−1

(k +M)m+ε
,

and it is clear that the last sum diverges (terms are ∼ 1/k) if ε = 0, and
converges (terms are ∼ 1/k1+ε) if ε > 0.

In the proof of the necessity we distinguish two cases.

Case I: A is discrete. Thus, in this case V = {0} and A = G. Since A is
discrete, there is an M such that the distance in between different elements of
A is at least 2/M1/d (just note that if there were different elements arbitrarily
close to each other, then their difference would be non-zero and arbitrarily close
to 0, contradicting the discrete character of A).

Assume first that the number m in the description of G is bigger than 0. For
a ∈ A let Ba be the (closed) ball of radius 1/(α(a) +M)m/d with center at a,
and set f = χ∪a∈ABa

, where χE denotes the characteristic function of the set
E. Since the balls Ba are disjoint by the choice of M , and the d-dimensional
volume of a ball of radius r is θdr

d with some number θd, it follows that the L1

norm of fp is

θd
∑

a∈A

1

(α(a) +M)m
= ∞
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by (5), so f 6∈ Lp(Rd). On the other hand, below we show that (1) and (2) are
true, and that will complete the proof of the necessity in the case when A is
discrete and m ≥ 1.

It is sufficient to prove (1) for the generators gj , j = 1, . . . ,m. Choose such
a gj , and consider the set

Fj = {x f(x+ gj)− f(x) 6= 0}.

Since f(x+gj)−f(x) takes only the values 0,±1, if we show that meas(Fj) < ∞,
then (1) follows. But x ∈ Fj means that either x ∈ Ba0

for some a0 ∈ A and
x+ gj 6∈ ∪a∈ABa, or the other way around (i.e. x+ gj ∈ Ba0

and x 6∈ ∪a∈ABa).
These two cases are similar (just replace x by x+gj and gj by −gj), so consider
the first one. Let Br(z) denote the (closed) ball about z and of radius r. Since
x+ gj 6∈ ∪a∈ABa, we have in particular

x+ gj 6∈ Ba0+gj = B(α(a0+gj)+M)−m/d(a0 + gj),

which is the same as
x 6∈ B(α(a0+gj)+M)−m/d(a0).

Therefore, by the assumption

x ∈ B(α(a0)+M)−m/d(a0) \B(α(a0+gj)+M)−m/d(a0). (6)

This is possible only if α(a0 + gj) > α(a0). But in any case, the definition of
the function α shows that α(a0+ gj) ≤ α(a0)+1, so we must have α(a0+ gj) =
α(a0) + 1. But then from (6) it follows that

meas(Fj ∩ Ba0
) ≤ 2 meas

(

B(α(a0)+M)−m/d(a0 + gj) \B(α(a0+gj)+M)−m/d(a0 + gj)
)

= 2θd

(

1

(α(a0) +M)m
−

1

(α(a0) + 1 +M)m

)

∼
1

(α(a0) +M)m+1
,

and so
meas(Fj) =

∑

a0∈A

meas(Fj ∩ Ba0
) < ∞

in view of (5). This proves (1).

Now consider property (2). Let b ∈ B. Since 〈a, b〉 ≡ 0 (mod π) for all
a ∈ A, it follows that if x ∈ Ba, then (in what follows |x| denotes the Euclidean
norm of x ∈ Rd)

| sin〈x, b〉| = | sin〈x− a, b〉| ≤ |x− a||b| ≤
|b|

(α(a) +M)m/d
,

and so
∫

Ba

|f(x) sin〈x, b〉|pdx ≤

(

|b|

(α(a) +M)m/d

)p

meas(Ba) = |b|p
θd

(α(a) +M)m+mp/d
.
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Therefore, (5) implies
∫

|f(x) sin〈x, b〉|pdx =
∑

a∈A

∫

Ba

|f(x) sin〈x, b〉|pdx =
∑

a∈A

|b|p
θd

(α(a) +M)m+mp/d
< ∞.

This is property (2), and the proof is complete when A is discrete and m ≥ 1.
If A is discrete but m = 0, then A = A = {0}, so (1) is automatic for all

f , and to get the necessity just set f(x) = |x|−d/p(1 + |x|)−2 which function is
not in Lp(Rd), but f(·)| · | ∈ Lp(Rd) (which relation is needed only around 0)
implying (2).

Case II: A is not discrete. In this case, V 6= {0}. Let l ≥ 1 be the dimension
of V , and assume first again that G 6= {0}, i.e. m ≥ 1. Since G is discrete, there
is an M > 0 such that different elements of G are of distance > 2/M (m+l)/(d−l).
This implies that any two elements of g + V and g′ + V are of distance >
2/M (m+l)/(d−l) if g, g′ ∈ G are different (note that G lies in V ⊥).

Let D be the (closed) unit ball in V ⊥. It is of dimension d− l > 0 (note that
V cannot be the whole Rd because m ≥ 1), and for a y ∈ V and g ∈ G let

Dy,g = y + g +D · (|y|+ α(g) +M)−(m+l)/(d−l),

which is a d−l dimensional ball about g+y of radius (|y|+α(g)+M)−(m+l)/(d−l).
Set

Eg = ∪y∈V Dy,g

and f = χ∪g∈GEg
. According to what we have just said, the different Eg’s are

disjoint (since any element of Eg is of distance ≤ 1/(α(g) + M)(m+l)/(d−l) ≤
1/M (m+l)/(d−l) from g + V ). It is easy to see that each Eg is closed, so f is
measurable. Using Fubini’s theorem we obtain that

meas(Eg) =

∫

V

θd−l
1

(|y|+ α(g) +M)m+l
dy ∼

1

(α(g) +M)m
, (7)

where we used that for τ ≥ 0
∫

V

1

(|y|+ L)m+l+τ
dy ∼

1

Lm+τ
(8)

uniformly in L > 0. Indeed, this is immediate if we make the substitution
y = Ly′ in the integral.

In view of (7) and (5)

meas (∪g∈GEg) ∼
∑

g∈G

1

(α(g) +M)m
= ∞,

and hence f 6∈ Lp(Rd). To complete the proof we shall show that, on the other
hand, f satisfies both (1) and (2).
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It is enough to prove (1) for all a = v, v ∈ V and for all generators a = gj
of G. This second one is similar to what we did in the discrete case. Indeed, let
again

Fj = {x f(x+ gj)− f(x) 6= 0},

and it is sufficient to show that meas(Fj) < ∞. Now x ∈ Fj means that either
x ∈ Dy,a0

for some y ∈ V and a0 ∈ G and x + gj 6∈ ∪g∈GEg, or the other way
around, and we may consider the first case. Then

x ∈ y + a0 +D · (|y|+ α(a0) +M)−(m+l)/(d−l)

but
x+ gj 6∈ y + a0 + gj +D · (|y|+ α(a0 + gj) +M)−(m+l)/(d−l),

i.e.
x 6∈ y + a0 +D · (|y|+ α(a0 + gj) +M)−(m+l)/(d−l),

and so

x ∈ y+a0+

(

D

(|y|+ α(a0) +M)(m+l)/(d−l)
\

D

(|y|+ α(a0 + gj) +M)(m+l)/(d−l)

)

.

(9)
As in the discrete case this is possible only if α(a0 + gj) = α(a0) + 1, and then
it follows that the (d − l)-dimensional measure of Fj ∩ (Ea0

∩ (y + V ⊥)) is at
most twice the difference

θd−l

(|y|+ α(a0) +M)m+l
−

θd−l

(|y|+ α(a0) + 1 +M)m+l
∼

1

(|y|+ α(a0) +M)m+l+1
.

If we integrate this with respect to y ∈ V , then we obtain from (8) that the
measure of Fj ∩Ea0

is at most a constant times (α(a0) +M)−(m+1), and hence

meas(Fj) =
∑

a0∈G

meas(Fj ∩ Ea0
) ≤ C

∑

a0∈G

1

(α(a0) +M)m+1
< ∞,

where we used again (5).

Consider now (1) for a = v ∈ V . This time set

F ∗
v = {x f(x+ v)− f(x) 6= 0}.

Now x ∈ F ∗
v means that either x ∈ Dy,a0

for some y ∈ V and a0 ∈ G and
x + v 6∈ ∪g∈GEg, or the other way around, and consider again the first case.
Then

x ∈ y + a0 +D · (|y|+ α(a0) +M)−(m+l)/(d−l)

but
x+ v 6∈ y + v + a0 +D · (|y + v|+ α(a0) +M)−(m+l)/(d−l),
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i.e.
x 6∈ y + a0 +D · (|y + v|+ α(a0) +M)−(m+l)/(d−l).

Hence

x ∈ y+a0+

(

D

(|y|+ α(a0) +M)(m+l)/(d−l)
\

D

(|y|+ |v|+ α(a0) +M)(m+l)/(d−l)

)

.

It follows that the (d − l)-dimensional measure of F ∗
v ∩ (Ea0

∩ (y + V ⊥)) is at
most twice the difference

θd−l

(|y|+ α(a0) +M)m+l
−

θd−l

(|y|+ |v|+ α(a0) +M)m+l
∼

1

(|y|+ α(a0) +M)m+l+1

(in this very last step the ∼ depends on |v| but not on y or a0). If we integrate
this with respect to y ∈ V , then we obtain from (8) that the measure of F ∗

v ∩Ea0

is at most a constant times (α(a0) +M)−(m+1), and hence

meas(F ∗
v ) =

∑

a0∈G

meas(F ∗
v ∩ Ea0

) ≤ C
∑

a0∈G

1

(α(a0) +M)m+1
< ∞,

because of (5). This finishes the proof of (1).

Next, consider property (2). Let b ∈ B. Since 〈a, b〉 ≡ 0 (mod π) for all
a ∈ A, it follows that if x ∈ By,g then

| sin〈x, b〉| = | sin〈x− g − y, b〉| ≤ |x− g − y||b| ≤
|b|

(|y|+ α(a) +M)(m+l)/(d−l)
,

and so
∫

By,g

|f(x) sin〈x, b〉|pdx ≤

(

|b|

(|y|+ α(a) +M)(m+l)/(d−l)

)p

θd−l(radius of By,g)
d−l

= |b|pθd−l
1

(|y|+ α(a) +M)m+l+(m+l)p/(d−l)
.

If we integrate this for y ∈ V then (8) implies

∫

Eg

|f(x) sin〈x, b〉|pdx ≤

∫

V

|b|pθd−l
1

(|y|+ α(a) +M)m+l+(m+l)p/(d−l)
dy

∼
1

(|y|+ α(a) +M)m+(m+l)p/(d−l)
.

Therefore, we obtain from (5)

∫

|f(x) sin〈x, b〉|pdx =
∑

g∈G

∫

Eg

|f(x) sin〈x, b〉|pdx ∼
∑

g∈G

1

(α(a) +M)m+(m+l)p/(d−l)
< ∞,
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and the proof of the necessity is complete when m ≥ 1.

If m = 0 (i.e. G = {0}) but V 6= Rd, then do the preceding proof with
m = 0 with the modification that now instead of (8) we use

∫

V

1

(|y|+ L)l
dy = ∞.

However, in the m = 0 case it is now possible that V = Rd. In that case
necessarily B = {0}, so (2) is automatic, and to have the necessity just pick a
function f on Rd which is not in Lp but for which (1) holds for all a ∈ Rd (for
example, set f(x) = (|x|+ 1)−d/p.)

4 Proof of Lemma 2

For part (b) see [3, Theorem 4.20]. To prove part (a), let A ⊂ Rd be the closed
group in question. Let V ⊂ Rd be the largest subspace of Rd that lies in A
(since the sum of two subspaces lying in A also lies in A, there is such a largest
subspace), and let V ⊥ be the orthogonal complement of V . We claim that there
is a δ > 0 such that all a ∈ A \ V lies of distance ≥ δ from V . Indeed, if this
is not the case, then for every n there are an ∈ A that lie outside V such that
their distance from V is < 1/n. Let vn ∈ V be the closest element of V to an.
Then an − vn ∈ V ⊥. By compactness, the sequence {(an − vn)/|an − vn|} has
a convergent subsequence, and we may assume that (an − vn)/|an − vn| → u.
Then u is a unit vector lying in V ⊥. If λ > 0, then (an− vn)[λ/|an− vn|] → λu,
where [·] denotes integral part, and since each (an − vn)[λ/|an − vn|] belongs
to A, we obtain that λu ∈ A for all λ > 0, and hence for all λ ∈ R. But this
means that all vectors v+λu, v ∈ V , λ ∈ R, lie in A, which is impossible by the
maximality of V . As a corollary it follows that G := A∩ V ⊥ is a discrete group
(if we had different elements a, a′ ∈ A∩V ⊥ arbitrarily close to each other, then
their difference a−a′ would be in V ⊥ and hence would lie outside V , but would
lie close to zero, and hence to V , which is not possible).

Every a ∈ A has a unique representation a = aV ⊥ + aV with aV ⊥ ∈ V ⊥ and
aV ∈ V . Since aV ∈ V ⊂ A, it follows that aV ⊥ ∈ A. Therefore, G := {aV ⊥} =
A ∩ V ⊥, so this is a subgroup, and part (a) follows.
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