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1 The problem

In connection with an uncertainty principle Boris Mityagin [2] formulated the
following problem. For given 0 < p < oo and d > 1, characterize those non-
empty subsets A, B of R? for which

f(-+a)—f() e LP(RY)  forall ac A, (1)

and
f()sin-,b) € LP(RY)  for all be B, (2)

imply f € LP?(R%) for any measurable function f on R¢ (here (z,b) denotes the
inner product of z and b). He showed (for p > 1) that if!

(i) A=aZ?and B = BZ%, or
(ii) A = {a} and B = {b} are singletons,

then (1) and (2) imply f € LP(RY) if and only if af3 is not an integer multiple
of 7 in case (i) and (a,b) is not an integer multiple of 7 in case of (ii). He has
also conjectured

Proposition 1 (1) and (2) imply f € LP(R?) for every measurable function f
on R? if and only if there are a € A and b € B such that (a,b) is not an integer
multiple of 7.

This paper is devoted to the proof of this proposition. A relatively simple
modification of the proofs shows that the claim is true also for L>(R%).

The sufficiency part of Proposition 1 easily follows from the method of [2]
(which fact was mentioned in that paper), but we follow a different and shorter
path.
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2 Sufficiency in Proposition 1

Let a € A and b € B be such that (a,b) & 7Z. If we multiply the function in (1)
by sin(-, b) and add the function in (2), then we obtain f(-+a)sin(-,b) € LP(RY
i.e. f(-)sin(- —a,b) € LP(R?), which is the same as f(-)|sin(- — a, b)| € LP(R?
Thus, fh € LP(R?), where

);
)-

h(z) = |sin{z, b)| + | sin(z — a, b)|.

On the line £ = Rb the function A (i.e. the function h(tb), t € R) is continuous,
non-zero (a zero would mean that for some ¢ both ¢(b,b) and t(b,b) — (a,b) —
and hence also (a, b) — belongs to wZ, which is not the case by the assumption)
and periodic with period wb/(b, b), hence it is bounded away from 0: h > ¢ > 0
on £. Since h is constant on any hyperplane of R? that is perpendicular to ¢, it
follows that h > & everywhere, and hence fh € LP(R?) implies f € LP(RY).

3 Necessity in Proposition 1
Suppose now that
(a,b) € 7Z foralla € Aand b € B. (3)

We are going to construct a measurable function f ¢ LP(R?) for which (1) and
(2) are true.

Let A be the additive group generated by A with vector addition in R? as
the group operation. Then

(a,b) € 7Z for all a € A and b € B, 4)

is also true, hence we may replace A by A. If A is the closure of A in the metric
of R%, then (4) remains true when A is replaced by A, so we may assume that A
is a closed subgroup of R%. We shall need the following description of A, which
is basically known (c.f. [1, M. 4.8], [3, Theorem 4.20]) and fairly easy to prove.
Since our formulation is somewhat more precise than what is in the literature,
for completeness we give a proof at the and of this note.

Lemma 2 (a) Let A be a closed additive subgroup of R:. Then there is a
subspace V of R% and a discrete subgroup G in its orthogonal complement V+
such that A=G+V.

(b) The discrete subgroups of RY are the free groups generated by linearly
independent elements.

(a) means that every a € A can be uniquely written in the form a = g +v
where ¢ € G and v € V. (b) means for the G in (a) that there are linearly



independent elements g¢1,...,¢, € G such that every ¢ € G can be uniquely
written in the form
g=ai(g)gr + -+ am(g)gm,

with some integers ay(g),. .., am(g). Set
alg) = max fo;(g)l,
and

Sk :={g € Glalg) = k}.

Since the different elements kg; + aags + - - - mgm With —k < a; < k all belong
to Sk, we have |Sk| > (2k + 1)™~1. On the other hand, every element of Sy
belongs to one of the sets {g|a;(g) = £k, —k < a;(g) <k if i # j}, 1 <j<m.
Each of these sets has 2(2k + 1)™~! elements, hence |Sy| < 2m(2k + 1)~ L.
Thus, if P ~ @ means that P/Q lies in between two positive constants, then we
have |Sk| ~ (k +1)™~ for all k. As a consequence we obtain that if M > 0 is
any number, then for € > 0

1
(;g—(a(a)+M)m+€<oo & >0 (5)

Indeed, this is immediate since

1 3 N~ ISk
D D) M e e M

a€g k= OaGSk
e (k+1)m—1
m-+te’
kzzo (k+ M)m+e

and it is clear that the last sum diverges (terms are ~ 1/k) if ¢ = 0, and
converges (terms are ~ 1/k'T¢) if e > 0.

In the proof of the necessity we distinguish two cases.

Case I: A is discrete. Thus, in this case V = {0} and A = G. Since A is
discrete, there is an M such that the distance in between different elements of
A is at least 2/M'/¢ (just note that if there were different elements arbitrarily
close to each other, then their difference would be non-zero and arbitrarily close
to 0, contradicting the discrete character of A).

Assume first that the number m in the description of G is bigger than 0. For
a € Alet B, be the (closed) ball of radius 1/(a(a) + M)™/¢ with center at a,
and set f = Xu,..B., Where xg denotes the characteristic function of the set
E. Since the balls B, are disjoint by the choice of M, and the d-dimensional
volume of a ball of radius r is 647 with some number 64, it follows that the L’

norm of fP is
04 Z T M — =00
ae.A



by (5), so f ¢ LP(R%). On the other hand, below we show that (1) and (2) are
true, and that will complete the proof of the necessity in the case when A is
discrete and m > 1.

It is sufficient to prove (1) for the generators g;, j =1,...,m. Choose such
a g;, and consider the set

Fy ={z|f(z+g;) — f(z) # 0}.

Since f(x+g;)— f(x) takes only the values 0, £1, if we show that meas(F}) < oo,
then (1) follows. But & € F; means that either x € B,, for some ay € A and
x4+ gj & UaeaBa, or the other way around (i.e. z +g; € Bg, and & € UgeaBa).
These two cases are similar (just replace « by + g; and g; by —g;), so consider
the first one. Let B,.(z) denote the (closed) ball about z and of radius r. Since
Z + gj & UgeaBq, we have in particular

T+ 9gj ¢ Ba0+gj = B(C’t(a0+gj)+M)7"'L/d(a0 + gj),

which is the same as
T & Bla(ag+g;)+m)-m/a(ao)-
Therefore, by the assumption

T € B(a(ag)+m)-m/4(a0) \ B(a(agtg,)+M)-m/d(@0)- (6)

This is possible only if a(ag + g;) > a(ap). But in any case, the definition of
the function « shows that a(ag+g;) < a(ag)+1, so we must have a(ap+g;) =
a(ap) + 1. But then from (6) it follows that

meas(F; N Bq,) < 2 meas (B(a(ao)+M)—m/d(ao +95) \ Bla(ao+g;)+ar)-msalao + gj))

1 1

20 — ~ :
’ (<a<ao> + M) (afag) +1+ M)m) (a(ao) + M)+
and so
meas(F;) = Z meas(F; N Bg,) < 0o

ap€A

in view of (5). This proves (1).
Now consider property (2). Let b € B. Since (a,b) = 0 (mod =) for all

a € A, it follows that if z € B,, then (in what follows |x| denotes the Euclidean
norm of x € R%)

0]

‘Sil’l<f1}',b>| = |Sin<f£—a7b>‘ S |fL' _a||b| S W,

and so

[ 1@ty <

a

04
(a(a) + M)m+mp/d’

[b] ’ »
WWI) meas(B,) = |b|



Therefore, (5) implies

/|f(z)sin<z,b>|pdx _ Z

acA

) o » 0q
/Ba |f(z) sinfa, b)[Pd = > |b] () T Ay

acA

This is property (2), and the proof is complete when A is discrete and m > 1.

If A is discrete but m = 0, then A = A = {0}, so (1) is automatic for all
f, and to get the necessity just set f(x) = |z|~%P?(1 + |z|)~2 which function is
not in LP?(R), but f(-)| - | € LP(R?) (which relation is needed only around 0)
implying (2).

Case II: A is not discrete. In this case, V' # {0}. Let [ > 1 be the dimension
of V, and assume first again that G # {0}, i.e. m > 1. Since G is discrete, there
is an M > 0 such that different elements of G are of distance > Z/M(m“)/(d’l).
This implies that any two elements of g + V and ¢’ + V are of distance >
2/MmHD/(d=1) if g o' € G are different (note that G lies in V1).

Let D be the (closed) unit ball in V4. It is of dimension d —1 > 0 (note that
V cannot be the whole R? because m > 1), and foray € V and g € G let

Dyy=y+9+D-(yl+alg)+ M)~ m+/(d=D,

which is a d—1 dimensional ball about g+ of radius (|y|+a(g)+M)~m+D/(d=1),
Set

Ey =UyevDy,q
and f = xyu,cqE,- According to what we have just said, the different E,’s are
disjoint (since any element of E, is of distance < 1/(a(g) 4+ M)m+0/(d= <
1/MmFD/A=D from g + V). Tt is easy to see that each E, is closed, so f is
measurable. Using Fubini’s theorem we obtain that

1 1
meas(E,) = / 041 dy ~ , 7
Eo) = ), bl T et + a1 Y Y g a0
where we used that for 7 > 0
1 1
dy ~ 8
‘/"/ (‘y| + L)m+l+7’ Y L m+T ( )

uniformly in L > 0. Indeed, this is immediate if we make the substitution
y = Ly’ in the integral.
In view of (7) and (5)

1 j—
(ag) + M)™

oo,

meas (Ugeg£g) ~ Z
gegG

and hence f ¢ LP(R?). To complete the proof we shall show that, on the other
hand, f satisfies both (1) and (2).

< 00.



It is enough to prove (1) for all @ = v, v € V and for all generators a = g,
of G. This second one is similar to what we did in the discrete case. Indeed, let
again

Fy ={z[f(z+g;) — f(z) # 0},

and it is sufficient to show that meas(F;) < co. Now x € F; means that either
x € Dy, for some y € V and ap € G and = + g; € UgegE)y, or the other way
around, and we may consider the first case. Then

7 € y+ a0+ D+ (ly| + alag) + M)~/

but
z+g; €y+ao+g;+D-(Jyl +alag + g;) + M)~ (/=D
i.e.
zdy+ao+D-(lyl + alag+ g;) + M)~ (m+D/d=0,
and so
€ y+ao+ b \ D
TEYTOT (yl + alag) + Mm@ (y + alag + g;) + M)m+D/E@=D ) *
(9)

As in the discrete case this is possible only if a(ag + g;) = a(ag) + 1, and then
it follows that the (d — I)-dimensional measure of F; N (E,, N (y + V1)) is at
most twice the difference

a1 Oa—1 1
(Iyl + a(ao) + M)™+  (|y| + a(ao) + L+ M)+ (Jy| + a(ag) + M)m+i+1-

If we integrate this with respect to y € V, then we obtain from (8) that the

measure of F; N E,, is at most a constant times (a(ag) + M)~ (™*1 and hence
meas(F. ZmeasFﬂan <C’Z a(a) +Mm+1<oo,
ao€G ag Eg

where we used again (5).

Consider now (1) for a = v € V. This time set

Fy ={z|f(x+v) - f(z) # 0}

Now z € F;; means that either x € D, ,, for some y € V and ap € G and
z+ v &€ UgegEy, or the other way around, and consider again the first case.
Then

7 € y-+ao+ D (lyl + aas) + M)~/

but
t4+vey4+v4ao+D-(Jy+ov|+ ala) + M)~ mFH/d=D,



i.e.
z&y+ao+D-(ly+v|+alag) + M)~ mHD/d=0),

Hence

D D
. .
eyt ( (9] & (ao) AT ([T T o] + alag) + M)(m“)/(d”)

It follows that the (d — [)-dimensional measure of Fi* N (E,, N (y + V1)) is at
most twice the difference

Oa—1 B Oa—1 N 1
(lyl + alao) + M)y™+1 - (jy| + o] + a(ao) + M)™ ! (Jy| + afag) + M)+

(in this very last step the ~ depends on |v| but not on y or ag). If we integrate
this with respect to y € V, then we obtain from (8) that the measure of F;'NE,,
is at most a constant times (a(ag) + M)~ (™*1 and hence

meas(Fy) ZmeasF N Eay) <CZ
ap€G ao eg

a(ao) —I—Mm+1 =00

because of (5). This finishes the proof of (1).

Next, consider property (2). Let b € B. Since {a,b) = 0 (mod ) for all
a € A, it follows that if x € B, 4 then
14
(1 + ala) + MY 07D

| sin(z, b)| = |sin{z — g —y,b)| < |z — g —yl|b] <

and so

d—l

N

P
)(m+l)/(dl)) 04— (radius of By 4)

1
(|y| + a(a) + M)m+l+(m+l)p/(d—l)‘

R o
/B @) sngr s < ( —

= [0]P0a—i

If we integrate this for y € V then (8) implies
1
; P p
[ @sinrar < [ WP G
1

(Jyl + ala) + M)+ o@D

Therefore, we obtain from (5)

1
/|f sin(x, b)|Pdx = Z/ )sin(z, b)|Pdz ~ Z (a(a) + M)m+(mtDp/(d=1) <0

geg geg




and the proof of the necessity is complete when m > 1.

If m =0 (ie. G ={0}) but V # RY, then do the preceding proof with
m = 0 with the modification that now instead of (8) we use

/ 1 d 00
——_dy = 0.
v (lyl + L)

However, in the m = 0 case it is now possible that V = RY. In that case
necessarily B = {0}, so (2) is automatic, and to have the necessity just pick a
function f on R which is not in L? but for which (1) holds for all a € R? (for
example, set f(z) = (|| 4 1)=%/P.)

|

4 Proof of Lemma 2

For part (b) see [3, Theorem 4.20]. To prove part (a), let A C R? be the closed
group in question. Let V C R¢ be the largest subspace of R? that lies in A
(since the sum of two subspaces lying in A also lies in A, there is such a largest
subspace), and let V+ be the orthogonal complement of V. We claim that there
is a 0 > 0 such that all a € A\ V lies of distance > § from V. Indeed, if this
is not the case, then for every n there are a,, € A that lie outside V' such that
their distance from V' is < 1/n. Let v, € V be the closest element of V' to a,,.
Then a,, — v, € V1. By compactness, the sequence {(a, — v,)/|an — vn|} has
a convergent subsequence, and we may assume that (a,, — v,)/|a, — vn| — w.
Then v is a unit vector lying in V1. If A > 0, then (a, —v,)[N/|an —va|] = Au,
where [] denotes integral part, and since each (a, — vp)[A/|an — vy|] belongs
to A, we obtain that Au € A for all A\ > 0, and hence for all A € R. But this
means that all vectors v+ Au, v € V, A € R, lie in A, which is impossible by the
maximality of V. As a corollary it follows that G := ANV is a discrete group
(if we had different elements a,a’ € AN VL arbitrarily close to each other, then
their difference a —a’ would be in V+ and hence would lie outside V', but would
lie close to zero, and hence to V', which is not possible).

Every a € A has a unique representation a = ay 1 + ay with ay. € V4 and
ay € V. Since ay € V C A, it follows that ay . € A. Therefore, G := {ay 1} =
ANV, so this is a subgroup, and part (a) follows.
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