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The present study has examined the effects and the possible mechanisms of a single dose of simvastatin
on the severity of arrhythmias resulting from a 25 min occlusion and reperfusion of the left anterior
descending coronary artery in anaesthetized (chloralose and urethane) dogs. The control animals (n=16)
were given the solvent of simvastatin by slow (over 5 min) intracoronary (ic.) injection just prior to the
occlusion. Twenty-six dogs were treated with simvastatin (0.1 mg/kg) by the same route, both in the
absence (n=15) and in the presence (n=11) of L-NAME. This latter was administered (5 mg/kg, ic.) either
alone (n=12) or 10 min before the simvastatin treatment. The severity of ischaemia (epicardial ST-
segment, inhomogeneity) and ventricular arrhythmias (ventricular premature beats [VPBs], ventricular
tachycardia [VT] and fibrillation [VF]), plasma nitrite/nitrate levels, myocardial superoxide production
and eNOS activity were assessed. Compared with controls simvastatin significantly reduced the number
of VPBs (289 + 34 vs. 94 + 25) and the episodes of VT (5.6 + 1.3 vs. 0.3 + 0.2), the incidence of VT (88% vs.
20%) and VF (56% vs. 0%) during occlusion and increased survival (0% vs. 33%) on reperfusion. There were
also less marked ischaemic changes in the simvastatin-treated dogs than in the controls. Simvastatin
preserved eNOS activity and nitric oxide (NO) bioavailability during occlusion and attenuated superoxide
production following reperfusion. All these effects of simvastatin (except for the protection against VF)
were reversed by 1-NAME. We conclude that simvastatin given just prior to ischaemia/reperfusion
reduces the severity of arrhythmias. This effect involves both NO-dependent and NO-independent
mechanisms.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

proposed that these drugs might have cholesterol-independent,
pleiotropic effects as well (Calabro and Yeh, 2005; Liao and Laufs,

There is increasing experimental and clinical evidence that
statins, beyond their lipid lowering effects, are able to reduce the
incidence of fatal ventricular arrhythmias, which are the major
causes of mortality in various cardiovascular diseases (e.g. 4S
Group 1994; LIPID Study Group, 1998; Horwich et al., 2004;
Gould et al, 2007). Since cardioprotection by statins was also
observed under normocholesterolemic conditions (Lefer et al.,
1999, 2001; Chen et al.,, 2003; Adameova et al., 2009), it was
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2005). These include plaque stabilization and improvement in
vascular endothelial function (O'Driscoll et al., 1997), reduction in
oxidative stress-induced injury (Ceylan et al., 2003; Jones et al.,
2003; Bloom et al., 2010), inhibition of inflammatory (Shimizu et
al., 2003; Endres, 2006) and thrombogenic responses (Liao and
Laufs, 2005). Most of these effects are thought to play a role in the
anti-arrhythmic action of statins (Chen et al, 2003, 2010;
Kostapanos et al., 2007; Xing et al., 2007), and would explain the
observed reduction in cardiac death in patients with statin treat-
ment (De Sutter et al., 2000; Zhao et al., 2008). The salutary effects,
unrelated to the cholesterol lowering action of statins, are pro-
posed to involve both nitric oxide (NO)-dependent and NO-
independent mechanisms (Lefer et al., 2001; Wright and Lefer,
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2005). For example, statins have been found to increase the
generation of NO via eNOS activation (Laufs et al., 1997, Mital et
al., 2000; Landmesser et al.,, 2004), enhance the formation of
prostanoids (Birnbaum et al., 2005) and induce heme-oxygenase-1
(Lee et al., 2004).

Perhaps, the most likely mechanism by which statins provide
protection against ischaemia and reperfusion-induced arrhyth-
mias is their ability to increase NO synthesis (Mital et al., 2000;
Lefer et al., 2001; Atar et al. 2006). We have substantial previous
evidence that NO plays an essential role in both the early and
delayed anti-arrhythmic effects of preconditioning, induced either
by brief periods of coronary artery occlusion (Végh et al., 1992b),
cardiac pacing (Kis et al., 1999) or heavy physical exercise (Babai et
al., 2002). We hypothesized that these preconditioning stimuli, via
the activation of eNOS, enhance NO production and modify
myocardial function during ischaemia and reperfusion (Parratt
and Végh, 1996). More recently we showed that pacing induces an
immediate increase in eNOS activation and NO production, but it
also causes an up-regulation of eNOS gene and protein expressions
12 and 24 h later (Kovacs et al., 2013).

So far, the proposals for mechanisms by which statins increase
eNOS activity come mainly from studies with long-term statin
treatment where there is sufficient time for eNOS up-regulation by
stabilizing eNOS mRNA (Laufs and Liao, 1998; Lefer et al., 2001).
There are, however, only a few studies which have attempted to
examine the acute effects of statins; these were related to the
assessment of infarct size (Tiefenbacher et al., 2003; Wolfrum et
al.,, 2004; Carnicka et al.,, 2011) and post-ischaemic contractile
dysfunction (Szarszoi et al., 2008). Taking these studies into
account and considering the fact that eNOS can rapidly be
activated by a preconditioning stimulus, we assumed that statins
may also have an acute effect on arrhythmias, which involves the
activation of eNOS. This was studied in our established canine
model of ischaemia and reperfusion by the application of a single
bolus injection of simvastatin.

2. Materials and methods
2.1. Animals and surgical preparation

Adult mongrel dogs of both sexes with a mean body weight of
23 4+ 1 kg were used. The origin and upkeep of these dogs were in
accord with Hungarian law (XXVIII, chapter IV, paragraph 31)
regarding large experimental animals which conforms with the
Guide for the Care and Use of Laboratory Animals published by the
US National Institutes of Health (NIH Publication No. 85-23,
revised 1996). Under light anaesthesia (30 mg/kg intravenous
sodium pentobarbitone, Sigma, St. Louis, MO, USA) the right
femoral artery was prepared and catheterized, through which
the dogs were further anaesthetized with a mixture of chloralose
and urethane (60 and 200 mg/kg, respectively; Sigma, St. Louis,
MO, USA) to maintain anaesthesia. The animals were then intu-
bated and ventilated with room air using a Harvard respirator
(Harvard Apparatus, Natick, MA, USA) at a rate and volume
sufficient to maintain arterial blood gases and pH within physio-
logical limits (Végh et al., 1992a). Body temperature was measured
from the mid-oesophagus and maintained by a heating pad at
37+0.5°C

Polyethylene catheters were inserted into the right femoral
artery for monitoring arterial blood pressure (systolic and diasto-
lic), and via the left carotid artery into the left ventricle (LV) for
the measurement of systolic (LVSP) and end-diastolic (LVEDP)
pressures. From the LV pressure curves changes in positive and
negative dP/dt,.x were calculated.

The chest was opened at the fifth intercostal space and the
anterior descending branch of the left coronary artery (LAD) was
prepared for occlusion just proximal to the first main diagonal
branch. Distal to the occlusion site a smaller side branch of the
same artery was also prepared and cannulated for the local
administration of drugs (simvastatin and .-NAME) and vehicle.
Another catheter was positioned through the right jugular vein
into the coronary sinus to obtain blood samples for the assessment
of plasma nitrate/nitrite (NOx) levels. In some dogs from each
group, the left circumflex (LCX) coronary artery was also prepared
to measure coronary blood flow (CBF; ml/min) by means of a
transit time Doppler flow probe (Hugo Sachs Electronics,
Germany).

The severity of myocardial ischaemia was evaluated by changes
in the epicardial ST-segment and in the degree of inhomogeneity
of electrical activation. These were measured by a composite
electrode (containing also four unipolar electrodes by which
changes in ST-segment [mV] were detected) positioned within
the potentially ischaemic area as described previously (Végh et al.,
1992a). The greatest delay in activation within the ischaemic area
following coronary artery occlusion was expressed in ms. All
parameters, together with a chest lead electrocardiogram, were
measured with a Plugsys Haemodynamic Apparatus (Hugo Sachs
Electronics, Germany) and recorded on a Graphtec Thermal Array
Recorder (Hugo Sachs Electronics, Germany).

Ventricular arrhythmias were assessed according to the Lam-
beth conventions (Walker et al., 1988) with that modification as
outlined previously (Végh et al., 1992a). In brief, the total number
of ventricular premature beats (VPBs), the incidence and the
number of episodes of ventricular tachycardia (VT; defined as a
run of four or more consecutive VPBs at a rate faster than the
resting heart rate), and the incidence of ventricular fibrillation (VF)
were assessed during the occlusion period. During reperfusion,
only the incidence of VF, which is a fatal event in this species, was
determined. Dogs that were alive 1-2 min after reperfusion were
considered to be survivors.

The risk area following coronary artery occlusion was assessed
by injecting Patent Blue V dye into the re-occluded artery using
the same method that has been described in detail elsewhere
(Végh et al., 1992a).

2.2. Measurement of plasma nitrate/nitrite (NOx) levels

These were performed as described previously (Kiss et al.,
2010). Plasma nitrate/nitrite (NO,) concentrations were deter-
mined by means of the Griess reaction in blood samples taken
from the coronary sinus at various time intervals as illustrated in
Fig. 1. After preparation of blood samples, the absorbance of the
azo compound was measured spectrophotometrically at a wave-
length of 540 nm and the total nitrate/nitrite (NOy) concentration
(umol/l) was determined using a standard calibration curve of
NaNO, and NaNOs (Sigma, St Louis, MO, USA).

2.3. Determination of eNOS phosphorylation by western blot

Freshly excised tissue samples from the ischaemic and non-
ischaemic regions of the left ventricular myocardial wall were
immediately frozen in liquid nitrogen and stored at —80 °C. The
samples were prepared as described previously (Gonczi et al,
2012; Kovacs et al., 2013). In brief, 100 pg of protein extracts
were resolved using 8% sodium dodecyl sulphate-polyacrylamide
gel electrophoresis and blotted on polyvinylidene fluoride
membranes. The blots were immunolabeled overnight with a
monoclonal mouse anti-eNOS primary antibody (pS1177, BD Bios-
ciences) diluted to 1:2500, followed by 1h incubation with an
HRP-conjugated anti-mouse rabbit secondary antibody (Dako,
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Fig. 1. Experimental protocol. Four groups of dogs were used. After 20 min
recovery from surgery the control dogs (n=16) were received the solvent of
simvastatin in slow (over 5 min) intracoronary (ic.) bolus injection just prior to a
25 min occlusion of the left anterior descending (LAD) coronary artery. In 26 dogs
activated simvastatin was administered in a dose of 0.1 mg/kg by the same route. In
11 out of these 26 animals the NOS inhibitor .-NAME (5 mg/kg, ic.) was also
administered 10 min before the simvastatin treatment. In another group of dogs
(n=12) only .-NAME was given. All these dogs were subjected to LAD occlusion
with or without (n=5 or 6 dogs in each group) a subsequent rapid reperfusion.
During the experiments blood samples (BS) were taken at various time intervals
(indicated by arrows) from the coronary sinus to determine plasma nitrite/nitrate
(NOy) levels. Myocardial tissue samples (TS) were also collected at the end of the
ischaemic period or 5 min after reperfusion for further biochemical analyses.

Danmark) in a dilution of 1:8000. Band densities were detected
with the ECL Plus kit (GE Healthcare, Buckinghamshire, UK) and
developed on Amersham Hyperfilm™ (GE Healthcare, Buckin-
ghamshire, UK). Pixel intensities of each band were measured
using Image] software (NIH). Three parallel Western blots were
performed for the statistical analysis using Bonferroni correction.
For the verification of equal loading, PVDF membranes were
labelled with Coomassie Blue. The amount of phosphorylated
eNOS (peNOS) in all groups was compared to the amount of
peNOS obtained in the sham-operated controls.

2.4. Determination of the functional activity of eNOS by radio
immunoassay

This was performed using a NOS activity assay kit (Cayman
Chemical, Ann Arbor, MI, USA) based on the biochemical conver-
sion of [H] L-arginine to [>H] L-citrulline by NOS. From the tissue
samples (100 mg) membrane proteins were isolated, homogenized
in ice-cold homogenization buffer (Cayman Chemical, Ann Arbor,
MI, USA), and centrifuged at 2000 g for 15 min. The supernatant
was then ultra-centrifuged at 50,000 g for 45 min and the pellet
(membrane fraction) was re-suspended in the homogenization
buffer. A liquid scintillation counter was used to determine eNOS
activity by measuring the amount of the radio-labelled citrulline
formed during the reaction, and expressed as the percentage of
the total counts corrected with the background counts per minute.

2.5. Assessment of superoxide production

This was determined by dihydroethidium (DHE; Sigma-
Aldrich) fluorescence staining as described previously (Kiss et al.,
2010). Briefly, tissue blocks, excised from the ischaemic myocardial
wall were embedded in optimal cutting temperature compounds.
Cryosections (20 um) were produced, stained with DHE (1 umol/l,
dissolved in pH 7.4 phosphate buffer solution), and incubated at
37 °C for 30 min in a dark humidified chamber. A negative control
was obtained by blocking the reaction with N-acetyl-L-cysteine
(NAC, 100 mmol/l, Sigma-Aldrich). Both from the stained and the
negative control samples 10 to 15 serial images were captured
by a confocal laser scanning microscope (Olympus FV1000).

The intensity of the fluorescent signals were analysed by Image]
software (NIH) and expressed in arbitrary units.

2.6. Preparation of simvastatin solution

Before the application of simvastatin (Sigma, St Louis, MO, USA)
it has to be converted into an active form. A stock solution
containing 25 mg simvastatin, dissolved in 625 ul ethanol and
937.5 ul 0.1 N NaOH, was prepared and incubated at 50 °C for 2 h.
Then the pH of the solution was adjusted to 7.0 with 1 N HCI and
stored at —20 °C until use. Immediately prior to the experiments
an aliquot was taken and diluted in distilled water to obtain the
appropriate dose.

2.7. Experimental protocol

Dogs were randomly selected to form four experimental groups
(Fig. 1). Control dogs (n=16) were administered the solvent of
simvastatin (0.5 ml/min) in intracoronary injection (over 5 min)
and subjected to a 25 min occlusion and then reperfusion of the
descending branch of the left coronary artery (LAD). Fifteen dogs
were received activated simvastatin in a dose of 0.1 mg/kg by the
same route, 5 min prior to the onset of the occlusion. In another
two groups, .-NAME (Sigma) was given in a dose of 5 mg/kg also in
slow intracoronary injection, 15 min before the solvent (.-NAME;
n=12) and the simvastatin (n=11) administration. At the end of
the experiments the hearts were stopped by an excess of the
anaesthetic, and myocardial tissue samples were collected from
both the ischaemic and the non-ischaemic regions of the left
ventricular wall for further analyses. In at least 5 dogs of each
group sample taking was performed at the end of the 25 min
occlusion period, whereas in dogs that had been subjected to
reperfusion, tissue samples were collected either 5 min after
reperfusion (these animals were considered as survivors) or at
the time when the fibrillation was observed.

2.8. Statistical analysis

All data are expressed as means + S.E.M. and the differences
between means were compared by ANOVA for repeated measures
and by the one-way ANOVA as appropriate, using the Fisher post
hoc test. VPBs and episodes of VT were compared using the
Kruskal-Wallis test. The incidences of arrhythmias (such as VT
and VF) and survival from the combined ischaemia and reperfu-
sion insult were compared by the Fisher's exact test. Differences
between groups were considered significant at P < 0.05.

3. Results

3.1. Haemodynamic changes following the administration of solvent,
simvastatin and 1-NAME, as well as after coronary artery occlusion

These are summarized in Table 1 and Table 2. Local intracor-
onary injection of simvastatin and the solvent of simvastatin did
not substantially modify the haemodynamic parameters and blood
flow, measured on the LCX coronary artery. In contrast, the
administration of L-NAME significantly elevated arterial blood
pressure and reduced heart rate without substantially modifying
the other haemodynamic parameters (Table 1). These haemody-
namic changes in the .-NAME treated dogs were still present
before the onset of the LAD occlusion.

Occlusion of the LAD resulted in significant reductions in
arterial blood pressure, LVSP, positive and negative dP/dt;,.x and
an increase in LVEDP, whereas the HR remained substantially
unchanged. These alterations were almost similar in all the
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Table 1

Haemodynamic changes following the administration of solvent, simvastatin and .-NAME.

Solvent Simvastatin L-NAME

Baseline Change Baseline Change Baseline Change
SABP (mmHg) 140 + 10 3+3 148 +8 —-4+2 149+7 19 +5°
DABP (mmHg) 105+6 0+5 101 +5 242 10445 29 +5°%
MABP (mmHg) 117+6 1+4 117+6 —342 119+5 25+ 4%
LVSP (mmHg) 154+ 8 3+3 158 +8 0+2 164 +7 13+4°
LVEDP (mmHg) 46+0.7 02+03 5.6+ 0.4 0+03 51+0.7 04+03
+dP/dt (mmHg/s) 2316 + 225 99 + 61 2795 + 219 -67 +118 2444 +242 —124 4189
—dP/dt (mmHg/s) 2092 + 260 91 + 103 2415 + 183 -107 + 81 2172 + 122 —43 +43
HR (beats/min) 166 +9 5+2 173+5 -3+1 181+8 -15+3
mean CBF;cx (ml/min) 3041 1+1 3042 2+1 3242 342

Data are means + S.E.M. calculated from n=11-16 experiments. Data, presented as changes, were determined 5 min after starting the infusion of the solvent, simvastatin and .-NAME.

2 P<0.05 compared to baseline value. SABP, systolic arterial blood pressure; DABP, diastolic arterial blood pressure; MABP, mean arterial blood pressure; LVSP, left
ventricular systolic pressure; LVEDP, left ventricular end-diastolic pressure; HR, heart rate; CBF, coronary blood flow.

Table 2
Haemodynamic changes during a 25 min occlusion of the LAD.

Solvent Simvastatin L.-NAME 1-NAME + Simvastatin

Baseline Max.change Baseline Max. change Baseline Max.change Baseline Max.change
SABP (mmHg) 143 + 10 —1142° 145+ 6 —-10+2 166 +5 —-8+2° 163+ 8 —-10+ 3
DABP (mmHg) 104 +6 —-11+37 99+3 —-7+2° 133+4 —-8+3° 129+7 -11+3°
MABP (mmHg) 117 +6 -12437 114+ 4 -7+27 144 +5 —-8+3° 142+ 8 —-11+2°
LVSP (mmHg) 144+ 11 -10+ 3 145+ 7 —-9+2° 177+5 —-9+2° 180 + 11 —14+5°
LVEDP (mmHg) 4.7+0.7 9.2+ 157 55403 8.5+ 1.0° 55+0.7 10.0+2.1° 50405 9.0 + 1.0°
+dP/dt (mmHg/s) 2236 +212 —568 +99° 2670 + 164 —499 + 1377 2252 +174 —553 4+ 1657 2526 + 317 —566 + 109*
—dP/dt (mmHg/s) 2183 + 253 —338+161° 2349 + 145 —378 + 68* 2197 + 174 —491 + 125 2317 + 205 —350 + 767
HR (beats/min) 171+9 5+5 170+ 4 5+3 166 +9 3+4 174+ 11 7+2
mean CBF;cx (ml/min) 31+2 9+2 30+2 10+2 29+1 9+1 30+2 8+2

Data are means + S.E.M. calculated from n=11-16 experiments.

2 P<0.05 compared to baseline value. SABP, systolic arterial blood pressure; DABP, diastolic arterial blood pressure; MABP, mean arterial blood pressure; LVSP, left
ventricular systolic pressure; LVEDP, left ventricular end-diastolic pressure; HR, heart rate; CBF, coronary blood flow.

examined groups. The compensatory blood flow changes, occur-
ring on the LCX when the LAD was occluded, were not significantly
modified by the administration of simvastatin and 1-NAME
(Table 2).

3.2. The severity of ventricular arrhythmias during a 25 min
occlusion of the LAD

This is shown in Fig. 2. In control dogs, occlusion of the LAD
resulted in a high number of ventricular premature beats (VPBs:
289 + 34) and episodes of ventricular tachycardia (VT: 5.6 + 1.3)
that occurred in 88% of these dogs. Furthermore, 56% of the dogs
fibrillated during occlusion and no control dog survived reperfu-
sion. Local administration of simvastatin, just prior to the occlu-
sion, significantly reduced these arrhythmia types (VPBs: 94 + 25,
episodes of VT: 0.3 + 0.2, incidence of VT: 20%, VF: 0%; P < 0.05
compared with controls) during occlusion and increased survival
(33% vs. 0% in the controls) from the combined ischaemia and
reperfusion insult. Inhibition of the r-arginine-NO pathway with
.-NAME did not substantially modify arrhythmia severity occur-
ring during ischaemia and reperfusion, but it significantly attenu-
ated the antiarrhythmic effect of simvastatin. Thus in the presence
of .-NAME the number of VPBs (438 + 49), the incidence (100%)
and number of episodes of VT (6.8 + 2.9) were again increased in
the simvastatin treated dogs, and as in the control group, no dogs
survived the combined ischaemia and reperfusion insult. Interest-
ingly, .-NAME, however, did not affect the protective effect of
simvastatin against the occlusion-induced ventricular fibrillation;
i.e. as with simvastatin alone, no dog fibrillated during occlusion in
the .-NAME + simvastatin group.
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Fig. 2. The severity of ventricular arrhythmias during a 25 min occlusion and
reperfusion of the LAD in control (C) and simvastatin (S) treated dogs, and also in
animals given .-NAME alone or together with simvastatin (.-NAME+S). A single
bolus injection of simvastatin markedly reduced the numbers of ventricular
premature beats (VPBs), and episodes of ventricular tachycardia (VT), the inci-
dences of VT and ventricular fibrillation (VF) during occlusion and increased
survival from the combined ischaemia and reperfusion insult. These effects of
simvastatin, except for the protection against the occlusion-induced VF, were
abolished by the prior administration of .--NAME. The administration of .-NAME
itself did not substantially influence the severity of arrhythmias resulted from
coronary artery occlusion and reperfusion. Values are means + S.E.M. *P < 0.05
compared to the controls.

3.3. Changes in the degree of inhomogeneity of electrical activation
and in epicardial ST-segment during coronary artery occlusion

These were used to assess the ischaemia severity during
coronary artery occlusion. In control dogs, occlusion of the LAD
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Fig. 3. Changes in epicardial ST-segment (A) and in the degree of inhomogeneity
of electrical activation (B) during a 25 min occlusion of the LAD. Compared to
the controls simvastatin significantly reduced these indices of ischaemia severity.
These effects were attenuated by the administration of -NAME. Values are
means + S.E.M. *P < 0.05 compared to the controls.

resulted in immediate and significant increases both in the
epicardial ST-segment (Fig. 3A) and the degree of inhomogeneity
of electrical activation (Fig. 3B). These changes were less pro-
nounced in dogs treated with simvastatin. Although 1-NAME itself
did not modify these indices of ischaemia severity, it abolished the
anti-ischaemic effects of simvastatin.

3.4. Changes in NOy levels during coronary artery occlusion and
reperfusion

These are shown in Fig. 4. A single bolus injection of simvas-
tatin alone or together with .-NAME, as well as the solvent of
simvastatin, did not affect the plasma NO, levels prior to the
occlusion. In contrast, the administration of .-NAME caused a
slight decrease in the NO, level, which was further declined during
the occlusion. In control dogs, occlusion of the LAD resulted in a
transient elevation in the plasma NO, levels (occurring around
7 min of the ischaemia), after which they started to decrease and
became significantly lower than the initial baseline values. In
contrast, the administration of simvastatin elevated NO, levels
almost over the entire occlusion period. This effect was completely
abolished by the prior administration of .-NAME. Reperfusion of
the ischaemic myocardium evoked similar increases in NOy levels
in all groups.

3.5. Determination of eNOS activity

This was assessed by two ways; i.e. by the measurement of the
amount of the phosphorylated form of eNOS using Western blot
analysis (Fig.5A) and by the determination of the functional
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Fig. 4. Changes in plasma nitrite/nitrate (NOy) levels in the blood of the coronary
sinus. In control dogs the concentration of NO metabolites, after a transient
elevation around 7 min of ischaemia, was significantly reduced up to end of the
occlusion. In contrast, NO, levels were maintained or even increased throughout
the occlusion in the simvastatin treated dogs. .-NAME itself resulted in a decrease
in the concentration of NO metabolites, and abolished the effect of simvastatin.
Reperfusion caused almost similar increases of NOy in all groups. Values are
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Fig. 5. Changes in the amount of phosphorylated eNOS, determined by Western
blot (A) and in the functional activity of eNOS enzyme, assessed by RIA (B) in
control (C) and simvastatin (S) treated dogs, and in dogs given .-NAME alone or
together with simvastatin (.-NAME+S). Compared to a group of sham-operated
dogs (SO, n=5), a 25 min ischaemia resulted in marked decreases in eNOS activity,
which was preserved or even increased in animals given a single bolus injection of
simvastatin. .-NAME itself inhibited the function of eNOS (to produce NO), and
abrogated the effect of simvastatin to enhance NO formation, without influencing
the simvastatin-induced phosphorylation of eNOS. Simvastatin also facilitated the
restoration of eNOS function during reperfusion, which effect seemed to be also
L-NAME sensitive. Values are means + S.E.M. *P < 0.05 compared to the SO group,
#P<0.05 compared to the control group, and 'P<0.05 compared to the
simvastatin group.
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activity of eNOS using radio immunoassay (Fig. 5B). Compared to
the sham-operated controls (n=5), occlusion of the LAD signifi-
cantly reduced the activity of eNOS, determined at the end of the
25 min occlusion period. In contrast, simvastatin preserved or even
increased both the phosphorylation and the functional activity of
this enzyme during occlusion. Although 1-NAME given alone did
not modify the ischaemia-induced reduction in eNOS activity, it
inhibited the simvastatin evoked enhancement of the NO forming
activity of this enzyme (Fig. 5B) without influencing the
simvastatin-induced phosphorylation of eNOS (Fig. 5A), which
pathway seems to be .-NAME insensitive. After such a period of
ischaemia the function of eNOS was rapidly regained in the control
dogs, remained elevated in the simvastatin treated animals, but it
was still inhibited in dogs which were given .-NAME.

3.6. Changes in myocardial superoxide production following
reperfusion

These are shown in Fig. 6. Compared with the sham controls, in
dogs subjected to ischaemia and reperfusion a marked increase in
superoxide production occurred soon after the reopening of the
coronary artery. This ischaemia and reperfusion-induced genera-
tion of superoxide was significantly suppressed by the adminis-
tration of simvastatin; an effect which was reversed by .-NAME.

3.7. Changes in QTc interval following coronary artery occlusion

This was measured in order to assess the potential direct
electrophysiological effects of simvastatin. The results are illu-
strated in Fig. 7. In control dogs a marked increase developed in
QTc interval within 5 min of the occlusion and this was maintained
during the whole ischaemic period. Such a prolongation of the QTc
interval was abrogated with simvastatin no matter whether
1.-NAME was present or not.
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Fig. 6. Tissue superoxide production following a 25 min occlusion and reperfusion
of the LAD in sham-operated (SO), in ischaemic control (C) and simvastatin
(S) treated dogs, as well as in dogs given .-NAME alone or together with simvastatin
(.-NAME+S). Compared to the SO dogs, in dogs subjected to occlusion/reperfusion
a significant increase in superoxide production occurred following reperfusion. This
increase was markedly attenuated by the administration of simvastatin. .-NAME
given alone did not modify the formation of superoxide, but it abolished the
reducing effect of simvastatin. Values are means + S.E.M. *P < 0.05 compared to the
SO group and #P < 0.05 compared to the control (C) group.
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Fig. 7. Changes in the QTc interval determined prior to and during a 25 min
occlusion of the LAD. In control dogs occlusion of the LAD resulted in a significant
increase in the QTc interval, which was completely inhibited by the administration
of simvastatin. .-NAME did not influence either the ischaemia-induced prolonga-
tion of QTc interval or the inhibitory effect of simvastatin. Values are means + S.E.M.
*P < 0.05 compared to the initial baseline values, and P < 0.05 compared to the
control group.

3.8. Area at risk

There were no significant differences in the area at risk among
the groups. Thus the risk area was 38 + 2% in the controls, 40 + 3%
in the simvastatin, 37 + 3% in the 1-NAME and 39 + 2% in the
L.-NAME + simvastatin groups.

4. Discussion

The present study was designed to examine in an in vivo large
animal model whether a single bolus injection of simvastatin is
able to influence the severity of ventricular arrhythmias resulting
from sudden coronary artery occlusion and reperfusion, and if so,
whether this effect involves the activation of eNOS. We raised this
question because the evidence that statins may reduce arrhyth-
mias and prevent sudden cardiac death, comes mainly from
studies with chronic statin treatment (e.g. Chen et al., 2003,
2010); there is much less information, apart from a few clinical
studies (Kayikcioglu et al., 2003; Fonarow et al., 2005), how these
drugs administered acutely would affect the consequences of
ischaemia and reperfusion, including the life threatening ventri-
cular arrhythmias (e.g. Xing et al., 2007; Carnicka et al., 2011).
Furthermore, since many of the beneficial effects of statins are
thought to be mediated via the synthesis of nitric oxide (Laufs et
al., 1997; Laufs and Liao, 1998), and since we have a number of
previous evidence that NO plays an essential role in the protection
against the ischaemia-induced early arrhythmias (e.g. Végh et al.,
1992b; Kis et al., 1999), we have now also examined whether the
effect of simvastatin on arrhythmias involves the activation of
eNOS and the subsequent increase in NO formation.

The results show that in anaesthetized dogs the administration
of a single dose of simvastatin markedly reduced the number of
VPBs and episodes of VT, the incidence of VT and VF that resulted
from a 25 min occlusion of the LAD and, compared with controls,
increased survival from the combined ischaemia and reperfusion
insult. This protection against arrhythmias was similar to that we
have obtained previously in the same model with ischaemic
preconditioning (Végh et al., 1992a), and with the administration
of NO donors (Gyorgy et al., 2000; Gonczi et al., 2009; Kiss et al.,
2010). Furthermore, the present study confirmed the role of eNOS
activation in the antiarrhythmic effect of simvastatin, since both
the phosphorylation of eNOS (determined by Western blot) and
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the functional activity of this enzyme (determined by RIA) were
significantly higher during ischaemia and reperfusion in the
simvastatin treated dogs than in the solvent treated controls
(Fig. 5). This activation of eNOS by simvastatin certainly led to an
increased generation of NO during occlusion (Fig. 4) and also to a
decrease in superoxide production following reperfusion (Fig. 6).
We have previous evidence that the preservation of NO bioavail-
ability during coronary artery occlusion by preconditioning or by
donating NO attenuates the reperfusion-induced marked increases
of superoxide production (Kiss et al., 2010). Furthermore, the fact
that .-NAME prevented the simvastatin activated enzyme to form
NO (inhibits the L-arginine-NO pathway without affecting enzyme
phosphorylation) and attenuated or even abolished most of the
salutary effects of simvastatin, supports the hypothesis that the
eNOS activated NO formation plays a crucial role in the protective
effect of simvastatin against arrhythmias.

There is still ongoing debate as to whether the reduction in
tachyarrhythmias (VT and VF) that are responsible in most instances
for sudden cardiac death, is due to the anti-ischaemic effects of
statins, or there might be a more direct electrophysiological action
of these drugs, which would explain their antiarrhythmic proper-
ties. A recent review from Beri et al. (2010) has addressed this
question by collecting and systematically evaluating data published
over a 13-year period on the reduction of VT and VF events, as well
as sudden cardiac death in patients suffering from various cardio-
vascular diseases and treated with statins. They concluded that the
anti-arrhythmic/anti-fibrillatory effects of statins most probably
result from an anti-ischaemic rather than a direct anti-arrhythmic
effect, since a definitive reduction in sudden cardiac death occurred
only in patients with ischaemic-type cardiovascular diseases, such
as coronary artery disease or ischaemic cardiomyopathy (Beri et al.,
2010). These anti-ischaemic effects of statins are supposed to
mediate through nitric oxide and can indirectly influence the
generation of arrhythmias (Beri et al., 2010).

Our study confirms the pronounced anti-ischaemic effect of
simvastatin; the increases in the epicardial ST-segment and in the
degree of inhomogeneity during occlusion were significantly less
marked in the simvastatin treated dogs than in the controls.
Further, this effect of simvastatin was .-NAME sensitive, since both
these indices of ischaemia severity were again increased in the
presence of -NAME. However, the inhibition of eNOS only
partially reversed the protective effects of simvastatin against
arrhythmias. Whereas the number of VPBs and episodes of VT
were significantly higher in the .-NAME + simvastatin treated dogs,
the protective effect of simvastatin against the occlusion-induced
VF was not affected by the administration of .-NAME. Thus similar
to dogs given simvastatin alone no dog fibrillated in the .-NAME-
+simvastatin group. .-NAME, however, abolished the protective
effect of simvastatin against the reperfusion-induced VF. The
explanations for this dichotomy could be many and varied,
including differences in the underlying mechanisms of the various
arrhythmia types induced by the acute ischaemia (e.g. Wit and
Janse, 1992; Zipes and Wellens, 1998), as well as differences in the
local and systemic regulatory influences of NO on arrhythmia
mechanisms. These latter may involve, for example, the modula-
tion of the effect of autonomic tone on the myocardium (e.g.
Schwartz et al.,, 1995) and of gap junction function (Gonczi et al.,
2009), as well as the regulation of free radical formation by NO
(e.g. Iwase et al., 2007; Kiss et al., 2010).

The fact that .-NAME in the present study did not influence the
protective effect of simvastatin against the occlusion-induced VF
suggests an NO-independent and, perhaps, a more direct electro-
physiological mechanism in the anti-fibrillatory effect of a single
bolus injection of simvastatin. This assumption is supported by the
results of the QTc interval measurements. These show that
simvastatin almost completely inhibited the ischaemia-induced

prolongation of the QTc interval, and this effect was not abolished
by the administration of .-NAME. Although we cannot ascertain
the precise mechanism of this phenomenon only from the mea-
surement of QTc intervals, recent electrophysiological studies,
however, suggest that statins influence impulse conduction,
improve cardiac repolarization (Tang et al., 2007; Tekin et al,
2008), suppress cardiac excitability (Sicouri et al., 2011) perhaps by
directly and selectively affecting ion channels in cardiomyocytes
(e.g. Kv4.3; Su et al., 2012). Certainly, long-term statin treatment
by modulating the lipid portions of the sarcolemma, which contain
the ion channel regulatory proteins and signalling molecules (lipid
rafts), influence the ion channel conduction and ion transport
(Maguy et al., 2006; Vyas et al., 2006), but it is not known whether
such a mechanism would also account for the acute administration
of statins. Nevertheless, considering that polyunsaturated fatty
acids, which alter the structure of the sarcolemmal phospholipids,
were able to evoke immediate antiarrhythmic effect (Billman et al.,
1994; Kang and Leaf, 2000; Leaf et al., 2003), we may speculate
that statins perhaps also possess such acute modulator properties
on the lipid portions of the membrane. This, by causing favourable
changes in ion transport or by stabilizing the membrane, would
lead to arrhythmia suppression during ischaemia.

In contrast, the fact that .-NAME abrogated the protective effect
of simvastatin against the reperfusion-induced VF suggests that this
action depends more on NO bioavailability than the ischaemia-
induced VF (discussed this by Gonczi et al., 2009). Considering the
electrophysiological differences between the ischaemia-induced
and the reperfusion-induced arrhythmias (Wit and Janse, 2001),
and that, in this latter, the products of the oxidative stress and the
calcium overload (Opie and Coetzee, 1988) play a mandatory role, it
seems more than likely that simvastatin through an NO-dependent
way (Di Napoli et al, 2001) reduces superoxide production and
hence the occurrence of VF during reperfusion. Consequently, this
protection disappears by inhibiting the formation of NO.

In summary, the present study provides evidence that even a
single bolus injection of simvastatin results in marked protection
against those severe, often fatal ventricular arrhythmias that occur
during the acute phase of the coronary artery occlusion and
reperfusion in the canine. We suggest that this protection may
result from both NO-dependent and NO-independent mechanisms.
First, it seems that simvastatin prevents the ischaemia-induced
reduction of eNOS activation; i.e. compared with controls, in dogs
given simvastatin the activity of this enzyme is well preserved or
even increased during a 25 min coronary artery occlusion and
reperfusion. This would result in an enhanced NO synthesis and
bioavailability during ischaemia and subsequently a reduced free
radical formation during reperfusion. These NO-dependent
mechanisms largely contribute to the anti-ischaemic and anti-
arrhythmic effects of simvastatin, since most of these beneficial
effects are attenuated or abolished if the r-arginine-NO synthesis
pathway was inhibited by -NAME. Second, the fact that the
protective effect of simvastatin against the occlusion-induced ven-
tricular fibrillation was not .-NAME sensitive has raised the possi-
bility of a direct and presumably NO-independent mechanism in
the anti-arrhythmic effect of simvastatin. The measurement of QTc
intervals confirms this assumption, but it does not allow speculating
on mechanisms through which this direct anti-arrhythmic (anti-
fibrillatory) effect of simvastatin would attain. This certainly war-
rants further cellular electrophysiological investigations.
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