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Nonlinear optical methods have become ubiquitous in many scientific areas, from fundamental studies of time-
resolved electron dynamics to microscopy and spectroscopy applications. They are, however, often limited to a certain
range of parameters such as pulse energy and average power. Restrictions arise from, for example, the required field
intensity as well as from parasitic nonlinear effects and saturation mechanisms. Here, we identify a fundamental
principle of nonlinear light–matter interaction in gases and show that paraxial nonlinear wave equations are scale-
invariant if spatial dimensions, gas density, and laser pulse energy are scaled appropriately. As an example, we apply
this principle to high-order harmonic generation and provide a general method for increasing peak and average power
of attosecond sources. In addition, we experimentally demonstrate the implications for the compression of short
laser pulses. Our scaling principle extends well beyond those examples and includes many nonlinear processes with
applications in different areas of science. © 2016 Optical Society of America

OCIS codes: (190.0190) Nonlinear optics; (070.7345) Wave propagation; (320.7110) Ultrafast nonlinear optics; (190.2620) Harmonic

generation and mixing.
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1. INTRODUCTION

The field of nonlinear optics started directly after the invention of
the laser with the demonstration of frequency doubling in quartz
in 1961 [1]. Rapidly, it became essential in many scientific areas,
exploiting optical nonlinearities in a variety of media ranging from
crystals and fibers to liquids and gases [2]. Today, nonlinear inter-
actions of intense short laser pulses with gaseous media form the
basis behind a wealth of interesting phenomena such as multipho-
ton ionization [3] and plasma formation [4], spectral broadening
(which can be used for pulse compression [5–7]), harmonic gen-
eration and wave mixing [8], as well as the creation of attosecond
pulses [9] and the formation of electron or ion beams [10]. An
essential foundation of nonlinear optics is the understanding of
nonlinear wave propagation. Today, nonlinear wave equations,
which can be directly derived from Maxwell’s equations, are rou-
tinely used to describe the propagation of ultrashort laser pulses
and their linear and nonlinear interactions with matter. These
wave equations allow us to model even highly complex wave pro-
pagation phenomena, such as filamentation [11] or the guiding of
few-cycle pulses in photonic crystal fibers [12]. This is important
for understanding experimental measurements and for finding
optimum conditions, e.g., the laser power for maximizing the de-
sired output of a secondary radiation process or the best geometry
for phase-matched wave mixing.

While optimum conditions are often well explored experimen-
tally within rather narrow parameter ranges, the rapid advances
in femtosecond laser technology, driven by the desire to access,
e.g., faster times scales or to reach higher intensities [13–15], de-
mand the extension of nonlinear optical methods to unexplored
parameter regimes. However, to date, no general methodology
that allows transforming nonlinear optics phenomena into new
parameter regimes while preserving the essential characteristics
of the nonlinear processes involved has been put forward.

Here we present such a methodology and introduce a set of
general scaling laws for nonlinear light–matter interactions,
directly derived from basic paraxial propagation equations for
ultrashort laser pulses. We identify a fundamental principle of
nonlinear optics showing that even highly complex nonlinear
propagation phenomena in gases are scale-invariant, if appropriate
scaling relations are employed. We apply our model to two im-
portant examples of modern photonics, filamentation in gases
used, e.g., for laser pulse compression, and high-order harmonic
generation (HHG), which provides the basis for attosecond sci-
ence. We show how these processes can be invariantly scaled to
laser pulse energies well above the 100 mJ level, with no funda-
mental upper limit, and discuss the limitations arising at small
pulse energies. Moreover, we experimentally verify the invariant
scalability of pulse compression via filamentation within a driving

2334-2536/16/010075-07$15/0$15.00 © 2016 Optical Society of America

Research Article Vol. 3, No. 1 / January 2016 / Optica 75

http://dx.doi.org/10.1364/OPTICA.3.000075


laser pulse energy range exceeding 1 order of magnitude. Our scal-
ing formalism is simple and general, and opens up completely
new parameter regimes for nonlinear optics in gaseous media
and, more generally, for ultrafast science.

2. SCALING PRINCIPLES

We illustrate our scale-invariant nonlinear optics framework using
general wave equations. Nonlinear pulse propagation in gases (in-
cluding generation of new frequencies) is usually treated using
wave equations in scalar and paraxial approximation, which can
be directly derived from Maxwell’s equations. Such wave equa-
tions describe electromagnetic waves propagating in one direc-
tion, exhibiting only small angles relative to the optical axis.
Without any limitation of the spectral bandwidth and thus of the
minimum pulse duration, the propagation equation for the elec-
trical field in frequency representation Ê�r; z;ω� � R∞

−∞ exp�iωt�
E�r; z; t�dt, usually referred to as the forward Maxwell equa-
tion [16], can be written as�

∂
∂z

−
i

2k�ω; ρ�Δ⊥ − ik�ω; ρ�
�
Ê � iω2

2k�ω; ρ�c2ε0
P̂NL: (1)

Here, k�ω; ρ� � n�ω; ρ�ω∕c denotes the wave number with an-
gular frequency ω, refractive index n � n�ω; ρ�, and c is the speed
of light in vacuum. ρ is the gas density, P̂NL is the frequency rep-
resentation of the nonlinear polarization induced by the electric
field E , and ε0 is the vacuum permittivity. For short pulse propa-
gation, exact knowledge of the refractive index n, e.g., in the form
of a Sellmeier equation, is required. For pulse propagation in the
visible and near-infrared spectral region, k�ω; ρ� is usually real-
valued, but linear absorption can easily be included by a complex
wave number. For the sake of simplicity, we consider linear polari-
zation and rotational symmetry and, thus, a single radial coordinate
r, although our formalism does not require these simplifications.
The transverse Laplace operator in Eq. (1) then becomes Δ⊥ �
∂2∕∂r2 � 1∕r · ∂∕∂r. Via the nonlinear polarization, a large num-
ber of nonlinear interactions can be considered, such as self-fo-
cusing, self-phase modulation, field ionization, harmonic
generation, and plasma defocusing.

For propagation in vacuum, the right-hand side of Eq. (1) van-
ishes and k�ω; ρ� → k�ω; 0� � ω∕c. We now introduce the field
Ê ≡ Ê exp�−iωz∕c� and rewrite Eq. (1):�

∂
∂z

−
ic
2ω

Δ⊥

�
Ê � 0: (2)

The change of fields from Ê to Ê formally corresponds to a trans-
formation of Eq. (1) from the laboratory frame to a frame moving
at the vacuum speed of light c [17]. It should be noted that Ê is
an electric field, not an envelope. No envelope approximations
and thus no restrictions on the spectral bandwidth are made.
Equation (2) is invariant under the following transformations:
r → ηr and z → η2z (see Table 1), where η is a scaling parameter.
If Ê�r; z� is a solution to the wave equation, Ê�r∕η; z∕η2� is a
solution, as well. For monochromatic waves, one prominent sol-
ution of Eq. (2) is the Gaussian beam. The scaling is obvious for
the characteristic spatial parameters of the Gaussian beam, i.e., the
beam radius W 0 and the Rayleigh length zR : W 0 → ηW 0 and
zR → η2zR . While the Gaussian beam is just one possible solu-
tion to Eq. (2), more generally, any kind of beam that can be
described by this wave equation is scale-invariant under the above
specified transformation.

These basic scaling principles can be generalized to ultrashort
laser pulse propagation in gases and a wide range of nonlinear in-
teractions, if the medium density and the input laser pulse energy
εin are included as scaling parameters. By introducing Ê and
P̂NL ≡ P̂NL exp�−iωz∕c� into Eq. (1), we obtain�

∂
∂z

−
i

2k�ω; ρ�Δ⊥ − iK �ω; ρ�
�
Ê � iω2

2k�ω; ρ�c2ε0
P̂NL�ρ�; (3)

where K �ω; ρ� � k�ω; ρ� − k�ω; 0� is proportional to ρ and de-
scribes pulse dispersion (see Supplement 1). By neglecting the
weak pressure dependence of k�ω; ρ� in the denominator of
the diffraction term, the left-hand side of Eq. (3) is invariant
under the above transverse and longitudinal scaling transforma-
tions, if simultaneously the gas density is scaled, i.e., ρ → ρ∕η2.
Similarly, the nonlinear polarization and, consequently, the right-
hand side of Eq. (3) are proportional to gas pressure p for a wide
range of nonlinear interactions (throughout the paper, we assume
p ∝ ρ, taking into account a constant temperature). Finally, the
input energy εin, proportional to the radial (and temporal) integral
of the absolute square of the input field, needs to be scaled as
εin → η2εin, to ensure that the field amplitude, which affects
P̂NL, is kept constant under the scaling transformation. The out-
put pulse energy εout, proportional to the integral of the absolute
square of the field at the end of the medium, follows the same
scaling: εout → η2εout. This scaling applies, as well, to the gener-
ation of new frequencies, as shown for the case of HHG below. In
practice, geometrical scaling can be achieved by changing the fo-
cusing geometry (focal length and/or beam diameter before focus-
ing) as well as the medium length. It should be noted that the
transformation to the moving frame, leading to Eq. (3), was per-
formed to illustrate the scaling principles, but does not constitute
a general limitation of the formalism. The scaling itself is inde-
pendent from the reference frame.

According to the above relations (see also Table 1), any spa-
tiotemporal modifications of the field induced by diffraction,
dispersion, or a nonlinear process that is proportional to pressure
are scale invariant. In practice, an optical process in a gas medium,
defined by a nonlinear effect and certain input parameters (pulse
energy, gas pressure, focusing geometry), can be up- or down-
scaled to different pulse energies without changing its general
characteristics. Furthermore, our scaling formalism preserves the
carrier-envelope phase (CEP), which changes only because of

Table 1. Scaling Relations Derived in This Worka

Parameter Scaled Parameter

Input Parameters

Dimensions z η2z
r ηr

Other parameters ρ ρ∕η2
εin η2εin

Output Parameters
General εout η2εout

Filamentation pcr η2pcr
zcr η2zcr

HHG εq η2εq
Γq Γq

apcr and zcr denote the critical power and the distance, respectively, at which an
initially collimated beam collapses due to self-focusing. εq and Γq , respectively,
denote the harmonic pulse energy and the conversion efficiency into harmonic
order q.
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linear and nonlinear (e.g., self-phase modulation) propagation ef-
fects, both of which are scale invariant. This implies that strongly
CEP-dependent processes such as single attosecond pulse gener-
ation can be invariantly scaled. The scaling principle is illustrated
in Fig. 1 using the example of temporal reshaping under the in-
fluence of nonlinear propagation, and is applied below to filamen-
tation and attosecond pulse generation.

3. SCALING FILAMENTATION

A prominent example in which several nonlinear propagation ef-
fects play a critical role is filamentation [18] that occurs when self-
focusing due to the Kerr effect balances defocusing caused by
diffraction and plasma generation. In addition, self-phase modu-
lation and self-compression may take place, resulting, possibly
after further compression, in ultrashort pulses close to the funda-
mental limit of a single cycle [19]. Forming a filament requires a
certain power, known as the critical power for self-focusing [20,21].
At slightly higher power, limitations arise and multiple filaments
are created [22]. Different approaches were suggested to increase
the output energy [19,23–27]. However, pulse compression using
filaments (or similarly hollow fibers) is still limited to pulse ener-
gies of typically a few millijoules [28,29], which is approximately
2 to 3 orders of magnitude below the maximum pulse energies
available from today’s femtosecond laser sources.

The validity of our scaling model for filamentation can be illus-
trated by looking at the scaling of characteristic parameters for
filamentation. The critical power for self-focusing is given by
pcr � N crλ

2∕4πn0n2. Here, N cr is a constant depending on the
spatial beam shape (N cr � 1.896 for a Gaussian transverse profile
[21]), λ is the laser wavelength, n0 the refractive index at the cen-
tral frequency, and n2 the nonlinear refractive index. Since n2 is,
to very good approximation, proportional to the gas density,
pcr → η2pcr, thus following the same scaling relation as εin,

i.e., the critical power increases linearly with laser pulse energy.
It can also be shown that the distance zcr at which an initially
collimated laser beam collapses due to self-focusing, scales quad-
ratically with the initial beam size (i.e., zcr → η2zcr) [20], con-
firming that the scaling transformations remain valid under
nonlinear propagation conditions.

We performed a more rigorous verification of our scaling
model by numerically simulating filamentation with a state-of-
the-art pulse propagation code (see Supplement 1). Figures 2(a)
and 2(b) illustrate filamentation in Ar, using a 20 fs input pulse
centered at 800 nm and two different parameter sets, where
parameter set (b) corresponds to the up-scaled parameters (η � 8)
of parameter set (a). In Figs. 2(a) and 2(b), the spatiotemporal
intensity distribution is shown for three positions along the op-
tical axis. In both cases, typical filamentation characteristics like
conical emission and temporal self-compression [18] can be ob-
served. Despite the very different pulse energies [η2 � 64 times
larger for parameter set (b)] and transverse scales (η � 8 times
larger), only minor differences are visible, which demonstrates
the validity of the scaling model for filamentation. Figure 2(c)
illustrates how experimental parameters like input energy, gas
pressure, and filament length (defined here as the propagation
length over which the intensity on the optical axis exceeds
5 · 1013 W∕cm2) scale with η.

Figure 2(d) shows a numerically extracted relative scaling error,
representing the deviation from perfect scalability for output in-
tensity (dots) and fluence (circles) as a function of εin. For each
pulse energy, the error was calculated by comparing the output
intensity (or fluence) to that obtained with 4 times larger pulse
energy. While the scaling error is negligibly small for pulse ener-
gies well above 1 mJ, thus indicating no fundamental upper
scaling limit, a clear deviation from perfect scaling appears for
small pulse energies. These deviations can be mainly attributed
to avalanche ionization (see Supplement 1).

Fig. 1. Illustration of scale-invariant nonlinear optics: a laser pulse is focused (with focal length f ) into a gas medium with length L and density ρ.
Nonlinear propagation effects lead to a modification of the spatiotemporal pulse profile. Identical spatiotemporal modifications can be expected if a more
intense laser pulse is focused more weakly (with f → ηf to reach the same intensity) into a larger medium with length η2L and lower density ρ∕η2. Note
that the beam diameter before focusing is kept constant in this illustration.
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4. SCALING ATTOSECOND PULSE GENERATION

Our second example pertains to HHG, which occurs when in-
tense short laser pulses interact with a gas of atoms or molecules
at an intensity of ∼1014 W∕cm2. This process leads to the for-
mation of attosecond light pulses [30], which can be used for
pump–probe studies of ultrafast electron dynamics [9]. A major
limitation of attosecond science is the low photon flux available
[31]. Since the early days, a strong effort has been devoted to op-
timizing and upscaling HHG [32–35], aiming for an efficient
conversion of high laser pulse energies into the extreme ultraviolet
(XUV). In spite of this effort, propagation effects and geometrical
considerations have limited the useful input laser pulse energy and
only a few groups have employed pulse energies exceeding 10 mJ
[35–39]. In the opposite direction, progress in laser technology

now enables the generation of laser pulses with microjoule energies
at megahertz repetition rates [40]. In this regime, macroscopic
phase-matching issues have limited the conversion efficiency into
the XUV, and only recent attempts point toward a solution of this
problem [41,42].

HHG in an extended nonlinear medium can be described in
two steps: first, the laser pulse propagates through the nonlinear
medium, inducing a polarization P̂q � 2dqρ, at multiple odd-
order harmonic frequencies, where dq is the single atom nonlinear
dipole moment. Second, the harmonic field Êq is generated from
the induced polarization. The propagation of Êq � Êq exp�−iωz∕c�,
where ω now denotes the harmonic frequency, can be described
by equation Eq. (3), with P̂NL being replaced by P̂q. Although
both attosecond pulse trains and isolated attosecond pulses are

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Scaling filamentation and HHG. (a), (b) Simulated spatiotemporal intensity distributions (normalized individually) in a focused laser beam in
Ar for three different positions along the propagation axis and two input parameter sets, scaled according to the presented scaling relations: (a) τ � 20 fs,
εin � 2 mJ, p � 1.2 bar, W 0 � 40 μm; (b) τ � 20 fs, εin � 128 mJ, p � 18.75 mbar, W 0 � 320 μm). (e), (f ) Simulated spatiotemporal intensity
distributions for high-harmonic emission (above 31.5 eV) in Ar [same color scale as used for (a) and (b)] at three positions within the nonlinear medium:
(e) τ � 10 fs, εin � 62.5 μJ, p � 256 mbar, W 0 � 10.6 μm, L � 2 mm; (f ) τ � 10 fs, εin � 16 mJ, p � 1 mbar, W 0 � 169.6 μm, L � 0.51 m.
For both filamentation and HHG, the longitudinal position is specified with respect to the position of the geometrical focus; in (a) and (b) in units of the
respective Rayleigh lengths, and in (e) and (f ) in units of the length of the generation medium L. (c) Characteristic length, i.e., filament and gas cell length,
respectively (blue, left axis) and gas pressure (red, right axis) as a function of η and εin. η was arbitrarily set to unity for εin � 1 mJ. (d) Integrated relative
scaling error for the filament scaling presented in (a) and (b) for intensity (dots) and fluence (circles) (see Supplement 1).
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easily encompassed in our scaling model, for simplicity we con-
centrate on pulse trains. HHG is known to be very sensitive to
macroscopic propagation effects and in particular, to phase
matching, i.e., to possible phase offsets between the HHG radi-
ation emitted from different atoms within the nonlinear medium.
Such phase offsets can arise due to differences in the phase veloc-
ities of the driving laser field and the generated harmonic radia-
tion, as well as due to an intrinsic intensity dependent phase, the
so-called dipole phase. As both the fundamental and the har-
monic fields follow scale-invariant propagation equations, the
phase velocity offset is scalable. Further, the scale invariance of
the fundamental field propagation ensures that the intensity dis-
tribution and, thus, the dipole phase contribution do not change
upon scaling. Furthermore, reabsorption of the generated har-
monic radiation in the medium does not change as an increased
medium length is compensated by a decreased density. HHG is
thus invariant under the scaling transformations. Consequently
the harmonic output pulse energy εq follows the same scaling
as the input pulse energy εq → η2εq. This implies that the con-
version efficiency Γq � εq∕εin is scale-invariant. In other words,
the same conversion efficiency can be expected for HHG driven
by intense laser pulses with a loose focusing geometry, as well as
by much weaker laser pulses with tight focusing geometry, as re-
cently discussed in Refs. [41,42].

We verified the scalability by simulating HHG in Ar, using a
simulation code that includes both laser and XUV field propaga-
tion effects (see Supplement 1). The dipole response was calcu-
lated using the strong field approximation [43]. Figures 2(e) and
2(f ) illustrate HHG using 10 fs laser pulses centered at 800 nm.
Similar to Figs. 2(a) and 2(b), spatiotemporal intensity maps are
displayed that show the evolution of the total field build-up along
the nonlinear medium for two parameter sets, differing by η � 16
(a factor 256 in input energy!). The total field above 31.5 eV (i.e.,
from the 21st harmonic) is represented. It exhibits a train of ultra-
short attosecond pulses. The generation parameters led to strong
pulse reshaping effects due to plasma formation, implying that the
generation conditions were not optimized for efficient HHG. The
high intensity leads to divergent, ring-like emission, except at the

rising edge of the laser pulse. Again, an almost perfect scaling
behavior can be observed, confirming εq → 256εq.

5. EXPERIMENTAL VERIFICATION

To verify the scaling experimentally, we performed pulse com-
pression experiments via filamentation in gases with 20 fs input
pulses (FWHM) centered at 800 nm. The pulse energy was varied
in the range of εin � 0.12 − 2.7 mJ and spherical mirrors with
focal lengths f � 0.5–2.5 m were used to focus into an ar-
gon-filled tube with a length approximately twice the respective
focal length. We scale the pulse energy by a factor of 25, the
highest energy being limited by laboratory space constraints.
The pulses emerging from the filament were compressed with
chirped mirrors and fused silica wedges and characterized using
the dispersion-scan technique [44] (see also Supplement 1).
Figures 3(a) and 3(b) show temporal intensity as well as spectral
amplitude and phase for six different input pulse energies. For the
shortest focal lengths (lowest pulse energy), gas pressure and pulse
energy were optimized for maximum spectral broadening and
good compressibility, while avoiding multiple filamentation.
For all other measurement points, focal length and gas pressure
were adjusted according to the scaling relations, while the pulse
energy was used as a free parameter to optimize the output spec-
trum, resulting in input pulse energies very close to the scaling
prediction. All employed experimental parameters together with
fits visualizing the expected scaling trend are displayed in
Fig. 3(c). The post-compressed pulse duration and the overall
characteristics are very similar for all six cases, indicating very
good scalability of all relevant linear and nonlinear propagation
processes within the employed parameter range.

Up- (and even down-) scaling HHG has been investigated pre-
viously [33,41,42], albeit in a phenomenological way, and in
many cases without changing consistently all relevant parameters
included in our scaling formalism. To make use of high input
energies, loose focusing geometries have been implemented since
the early days. Although it was often realized that, in these con-
ditions, the use of long media (and low pressures) led to higher

(a) (b) (c)

Fig. 3. Experimental filament scaling. (a), (b) Measured temporal intensity profiles as well as spectral power [(b) solid lines] and phase [(b) dashed lines]
for six different parameter sets, shown in (c). For better visualization, the plotted datasets are vertically offset from each other. The measurement was
performed by selecting the broadband radiation on the optical axis more than a focal length distance behind the filament. For reference, the input
spectrum (gray shaded area) is shown in (b). The solid lines in (c) represent fits to the experimental data points, as defined by the presented scaling
relations, indicating the expected scaling performance for input laser pulse energies within and beyond the measured parameter range. The gray data
points in (c) visualize the extrapolated parameters shown in Table 2.
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XUV pulse energies, to our knowledge, no rigorous understand-
ing for this experimental observation has been put forward. In the
other direction, tight focusing geometries, necessary for HHG
with laser systems with low input energy (down to a few micro-
joules), have been implemented and found to be detrimental for
phase matching, and thus for the conversion efficiency. A recent
experiment using a short medium at high pressure [42], however,
shows a similar conversion efficiency as with loose focusing, in
perfect agreement with our scaling predictions.

6. DISCUSSION AND GENERALITY OF THE
SCALING PRINCIPLE

We illustrate the scaling possibilities and experimental challenges
for the two phenomena discussed in Table 2. Starting from typical
experimental parameters corresponding to εin ∼ 1 mJ, we apply
our scaling relations both for filamentation and HHG up to εin �
500 mJ and, for HHG, down to εin � 10 μJ, and calculate the
expected values for output pulse energy, gas pressure, and focal
length. In the case of filamentation, we use the parameters of
the experiment presented above and assume that εout � 0.1εin
for the central compressed part of the filament. In the case of
HHG, we start from values close to those reported in [45] with
a conversion efficiency in Ar equal to 10−5 (see also [35]). These
examples illustrate the feasibility of both up- and down-scaling.
Even though long geometries need to be implemented, few-cycle
laser pulses and attosecond XUV pulses with unprecedented en-
ergies are within reach. Conversely, high gas densities and very
tight focusing geometries are required for the efficient generation
of attosecond pulses at megahertz repetition rates [42].

Our scaling model does not indicate any fundamental limita-
tion for up-scaling. However, it should be noted that limitations
induced because of, for example, nonlinear instabilities may arise
when high-power laser systems with reduced laser pulse quality
are employed. For down-scaling, several effects leading to devia-
tions from perfect scalability can be identified. First, nonparaxial
propagation effects arise at very tight focusing geometries (typi-
cally at numerical apertures ≳ 0.3). Second, the not perfectly lin-
ear dependence of K �ω; ρ� and possibly P̂NL on the gas density
[see Eq. (3)] as well as the weak dependence of 1∕k�ω; ρ� on the
density contribute to increasing deviations from perfect scaling.
At high ionization levels and high densities, avalanche ionization,
a process that critically depends on plasma dynamics and that
is not scalable according to our model, can set strict limitations

(see Supplement 1). In extreme conditions, the generated plasma
can become opaque (for p ≳ 70 bar at 800 nm and room temper-
ature, assuming a totally singly ionized medium). However, we
estimate that these effects do not play a major role within the
parameter ranges typically employed, for example, for HHG in
gases and for filamentation [see also Fig. 2(d)]. Finally, processes
like HHG [46], and, as recent results indicate, even simple
ionization phenomena [47], might be affected by the presence
of neighboring atoms, especially at high densities. Such many-
body interactions could lead to deviations from perfect scaling.
Scaling deviations may thus provide an approach to probe such
many-body effects, which have so far often been neglected.

The presented scaling framework is very general and applies
to other processes involving linear or nonlinear electromagnetic
wave propagation in gases. The key condition determining if a non-
linear process is scale-invariant is the proportionality P̂NL ∝ ρ.
Nonlinear processes that critically depend on plasma dynamics
such as avalanche ionization or the acceleration of electrons in
relativistic light fields [10] are thus not fully scalable according to
our formalism. Furthermore, for processes that make use of the
plasma as a source of secondary emission, the frequency depend-
ence of the secondary radiation upon gas density induces a non-
negligible departure from P̂NL ∝ ρ and thus from scale-invariance.
Nonlinear interactions that are scalable to a very good approxima-
tion include self-focusing, self-phase modulation, and wave mix-
ing, as well as field ionization, plasma defocusing, and processes
involving stimulated Raman scattering. Similar scaling principles
can also be applied for pulse propagation in waveguides such as
hollow capillaries [48].

We expect our results to be of great interest for ultrafast science
and beyond as we show how to extend different nonlinear
methods to the new parameter regimes provided by today’s
state-of-the-art femtosecond laser technology. Our findings are
currently being applied to the design of an up-scaled, next-
generation attosecond source, for the European facility Extreme
Light Infrastructure—Attosecond Light Pulse Source (ELI-ALPS).

Funding. European Research Council (ERC); Knut och Alice
Wallenberg Foundation; Swedish Research Council; Marie Curie
ITN MEDEA; European Union (EU); European Regional
Development Fund (GOP-1.1.1-12/B-2012-0001); Hungarian
Scientific Research Fund (OTKA project NN107235); ELI-
NP (E02/2014); UEFISCDI (PN-II-ID-PCE-2012-4-0342).

Acknowledgment. We thank P. Rudawski, B.Manschwetus,
S. Maclot, and P. Johnsson for the experimental verification of
the numerical HHG code and their contribution to discussing
the scaling of HHG, as well as M. Gisselbrecht for fruitful
discussions.

See Supplement 1 for supporting content.

REFERENCES

1. P. Franken, A. Hill, C. Peters, and G. Weinreich, “Generation of optical
harmonics,” Phys. Rev. Lett. 7, 118–120 (1961).

2. N. Bloembergen, “From nanosecond to femtosecond science,” Rev.
Mod. Phys. 71, S283–S287 (1999).

3. G. Mainfray and G. Manus, “Multiphoton ionization of atoms,” Rep. Prog.
Phys. 54, 1333–1372 (1991).

4. H. Conrads and M. Schmidt, “Plasma generation and plasma sources,”
Plasma Sources Sci. Technol. 9, 441–454 (2000).

Table 2. Extrapolation of Typical Parameters for
Filamentation and HHGa

εin εout;εq p f

Filamentation (mJ) (mJ) (mbar) (m)
Typical 1 0.1 980 1.5
Up-scaled 500 50 1.96 33.5
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taken into account for filamentation and 40 fs for HHG, with Ar as the
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