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Abstract

Background

We hypothesized that L-alpha-glycerylphosphorylcholine (GPC), a deacylatedphosphatidyl-

choline derivative, can influence the mitochondrial respiratory activity and in this way, may

exert tissue protective effects.

Methods

Rat liver mitochondria were examined with high-resolution respirometry to analyze the

effects of GPC on the electron transport chain in normoxic and anoxic conditions. Besides,

Sprague-Dawley rats were subjected to sham operation or standardized liver ischemia-

reperfusion (IR), with or without GPC administration. The reduced glutathione (GSH) and

oxidized glutathione disulfide (GSSG), the tissue myeloperoxidase, xanthine oxidoreduc-

tase and NADPH oxidases activities were measured. Tissue malondialdehyde and nitrite/

nitrate formation, together with blood superoxide and hydrogen-peroxide production were

assessed.

Results

GPC increased the efficacy of complex I-linked mitochondrial oxygen consumption, with sig-

nificantly lower in vitro leak respiration. Mechanistically, liver IR injury was accompanied by

deteriorated mitochondrial respiration and enhanced ROS production and, as a conse-

quence, by significantly increased inflammatory enzyme activities. GPC administration

decreased the inflammatory activation in line with the reduced oxidative and nitrosative

stress markers.

Conclusion

GPC, by preserving the mitochondrial complex I function respiration, reduced the biochemi-

cal signs of oxidative stress after an IR episode. This suggests that GPC is a mitochondria-

targeted compound that indirectly suppresses the activity of major intracellular superoxide-

generating enzymes.
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Introduction

Ischemia-reperfusion (IR) injury is a common complication of inflow-controlled major surgi-

cal resections and organ transplantations. The prolonged lack of oxygen during ischemia is

accompanied by an inevitable decrease in ATP production and an increase in ATP hydrolysis,

while the overproduction of reactive oxygen and nitrogen species (ROS and RNS, respectively)

during the reoxygenation phase leads to oxidative and nitrosative stress and membrane func-

tion failure. In addition to these events, the IR-induced increased activity of the main lipolytic

enzymes also results in modified biomembrane structures, leading to a loss of essential mem-

brane-forming glycerophospholipids[1, 2].

These reactions can jointly influence the function of the inner mitochondrial membrane,

which embeds the four major respiratory chain complexes and the FOF1-ATP synthase (com-

plex V) of the electron transport chain (ETC) [3, 4]. Interestingly, mitochondrial inhibitors of

the oxidative phosphorylation (OxPhos) system can directly increase phosphatidylcholine

(PC) breakdown by activating phospholipase A2, leading to an increased concentration of met-

abolic products [5]. It has also been demonstrated that membrane PC is depleted after an IR

insult, and the liberated choline can play a protective role in the intracellular redox imbalance

[6]. Furthermore, it was also shown that hepatic concentrations of glycerylphosphocholine

(GPC) are significantly reduced after a period of hemorrhagic shock, with recovery to the base-

line only 48 h later [7]. L-alpha-GPC is a water-soluble deacylated metabolite of PC [8], a

source of choline and precursor of acetylcholine [9, 10]. Under physiological conditions, GPC

can be involved in the preservation of the structural integrity of the cellular membranes, prob-

ably through the stimulation of PC synthesis via the Kennedy pathway [11]. Earlier studies

from our laboratory have demonstrated that GPC administration can reduce several signs of

oxidative and inflammatory tissue damage in experimental IR models [12, 13]. The anti-

inflammatory action of a potentially parasympathomimetic compound is an interesting find-

ing, because that targets the inflammatory cascade without the confounding effects of media-

tors deriving from the metabolism of the lipid side-chains [14].

From therapeutic aspects, influencing mitochondrial damage is appropriate strategy in hyp-

oxia- or IR-related conditions, and the above indirect evidences all suggest that GPC may be

an active and efficient compound in this setting. Based on this hypothesis we designed in vitro
tests using intact liver mitochondria and high resolution respirometry to analyse the effects of

GPC on mitochondrial function and on hypoxia-induced dysfunction. Then, we investigated

the in vivo functional changes of the liver mitochondria in response to a standardized IR chal-

lenge. We also hypothesized that if the protective mechanism of GPC is linked to mitochon-

dria, this mechanism of action will interfere with the ETC dysfunction-caused ROS

generation, and influence the pro-inflammatory cellular activation as well.

Materials and Methods

The experiments were carried out on male Sprague-Dawley rats (average weight: 300±20 g,

7–8 weeks old) housed in an environmentally controlled room with a 12-h light-dark cycle,

and kept on commercial rat chow (Standard rat chow LT/n; InnovoKft, Gödöllő, Hungary)

and tap water ad libitum. The experimental protocol was in accordance with EU directive

2010/63 for the protection of animals used for scientific purposes, and it was approved by the

National Scientific Ethical Committee on Animal Experimentation (National Competent

Authority) with the license number V./148/2013. This study also complied with the criteria of

the US National Institutes of Health Guidelines for the Care and Use of Laboratory Animals.
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In vitro experimental protocol

We have performed in vitro experiments to detect the changes in the respiratoryactivity of

liver mitochondria in response to 30-min anoxia, with or without GPC administration, using

high-resolution respirometry (Oxygraph-2k, Oroboros Instruments, Innsbruck, Austria). In

this experimental series, the animals were anesthetized for sample taking using sodium pento-

barbital (45 mg/kg ip). The liver biopsy samples were homogenized in 1 ml of MitOx respira-

tion medium [15] with a glass Potter homogenizer. Subsequently, the homogenates were

weighed into the detection chambers, 50 μl in each, which were calibrated to 200 nmol/ml oxy-

gen concentration in room air. In order to determine the effective GPC concentration range,

series of GPC solutions from 1 nM to 800 mM were used. The steady-state basal oxygen con-

sumption of the homogenates (respiratory flux) were measured. The complex II-linked state II

respiration rate was then determined with 10 mM succinate after the addition of 0.5 μM com-

plex I inhibitor rotenone. Then the complex II-linked (state III respiration) maximum respira-

tory capacity was estimated by adding saturating concentration of ADP to the medium.

Subsequently, anoxia was applied and, at the end of the 30-min anoxic period, the chambers

were opened to recover the mitochondria at 200 nmol/ml oxygen concentration.

In vivo experimental protocol

In the in vivo experimental series, the animals were anesthetized with sodium pentobarbital

(45 mg/kg ip), and the trachea was cannulated to facilitate respiration. The right jugular vein

and carotid artery were cannulated for fluid and drug administration, respectively. Further

small supplementary doses of pentobarbital were given intravenously when necessary. The ani-

mals were placed in a supine position on a heating pad to maintain the body temperature

between 36 and 37˚C, and Ringer’s lactate was infused at a rate of 10 ml/kg/h during the exper-

iments. After midline laparotomy and bilateral subcostal incisions, the liver was carefully

mobilized from all ligamentous attachments, and complete ischemia of the median and left

hepatic lobes was achieved by clamping the left lateral branches of the hepatic artery and of the

portal vein with a microsurgical clip for 60 min [16, 17]. In this model ischemia involves

approx. 70% of the liver, while the circulation of the right liver lobe remains intact, providing

blood flow towards the heart and thus avoiding hepatic congestion. After ischemia, the clips

were removed and the wound was temporarily covered with non-water-permeable foil during

the 60-min reperfusion period. At the end of the experiments the animals were over-anesthe-

tized with a single overdose of pentobarbital.

The animals were randomly assigned to four groups. In the vehicle-treated IR group

(n = 6), the rats were subjected to a 60-min complete ischemia followed by a 60-min reperfu-

sion; in the IR+GPC group a 16.56 mg/kg bw GPC (MW: 257.2, Lipoid GmbH, Ludwigshafen,

Germany; dissolved in 0.5 ml of sterile saline solution at 0.064 mM concentration) was injected

intravenously and the same protocol was used [12], 5 min before the end of ischemia. The

sham-operated, vehicle-treated animals (SHAM group, n = 6) underwent the same surgical

procedure without liver ischemia, while another control group (SHAM+GPC group, n = 6)

received GPC in the same time-frame as the IR+GPC group.

The Substrate-Uncoupler-Inhibitor Titration (SUIT) protocol. To measure the respira-

tory activity of the liver mitochondria, tissue samples were homogenized in mitochondrial res-

piration medium and then subjected to high-resolution respirometry. The SUIT protocol was

employed to explore the relative contribution of complex I (C-I) and complex II (C-II) to the

electron transport system. Glutamate (2 mM) and malate (10 mM) were used in combination

to induce C-I-linked respiration, saturating ADP (2.5 mM final concentration) was added in

order to stimulate respiration to the level of OxPhos capacity. By adding succinate (10 mM),
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the C-I+C-II OxPhos capacity was detected, then the uncoupler carbonyl cyanide m-chloro-

phenyl hydrazine (CCCP) (C; 0.5 μM per step) was titrated. Finally, C-I was inhibited by rote-

none (0.5 μM) and C-III by antimycinA (2.5 μM).

The Leak protocol. In order to determine the leak respiration, liver samples were homog-

enized in 1 ml of MitOx medium, then 50 μl of homogenates were weighed into the detection

chambers. The complex II-linked state II respiration rate was then determined with 10 mM

succinate, after the addition of 0.5 μM complex I inhibitor rotenone. To determine the com-

plex II-linked stateIII respiration, 2.5 mM ADP was added to each chamber. Finally, the leak

respiration is measured in the leak state by inhibition of ATP synthase by adding 0.5 μMoligo-

mycin to the medium (state IV respiration).

Tissue xanthine oxidoreductase (XOR) activity. Liver biopsies were homogenized in

phosphate buffer (pH 7.4) containing 50 mMTris-HCl, 0.1 mM EDTA, 0.5 mMdithiotreitol,

1 mM phenylmethylsulfonyl fluoride, 10 μg ml−1 soybean trypsin inhibitor, and 10 μg ml−1

leupeptin. The homogenate was centrifuged at 4˚C for 20 min at 24.000 g, and the supernatant

was loaded into centrifugal concentrator tubes. The activity of XOR was determined in the

ultrafiltered supernatant by a fluorometric kinetic assay based on the conversion of pterine to

isoxanthopterine in the presence (total XOR) or absence (XO activity) of the electron acceptor

methylene blue [18].

NADPH oxidase activity. The NADPH oxidase activity of the liver homogenates was

determined by a modified chemiluminometric method of Bencsik et al. [19]. The Liver sam-

ples were homogenized in 2 ml MitOx medium, then 50 μl of resuspended homogenate was

added in Dulbecco’s solution containing lucigenin (10 mM), EGTA (10 mM) and saccharose

(900 mM). The NADPH oxidase activity was determined via the NADPH-dependent increase

in luminescence elicited by adding 1 mM NADPH (in 20 μl), measured with an FB12 Single

Tube Luminometer(Berthold Detection Systems GmbH, Bad Wildbad, Germany). Samples

incubated in the presence of nitrobluetetrazolium served as controls. The measurements were

performed intriplicates and were normalized for protein content. The protein content of the

samples was determined with Lowry’s method.

Reduced glutathione and oxidized glutathione disulfide (GSH/GSSG) ratio in liver

homogenates. The reduced glutathione (GSH) and oxidized glutathione disulfide (GSSG)

ratio was determined by using a FluorimetricGluthatione Assay Kit (Sigma Aldrich, Budapest,

Hungary). The GSH content of the sample can be determined by quantifying the thiol concen-

tration in biological samples by reacting with the thiol groups they contain. The adduct can be

detected with fluorimetry at 478 nm. The GSSG content of the sample was calculated following

the recommendations of the manufacturer.

Tissue myeloperoxidase (MPO) activity. The MPO activity was measured in liver biop-

sies by the method of Kuebler et al [20]. Briefly, the tissue was homogenized with Tris-HCl

buffer (0.1 M, pH 7.4) containing 0.1 M polymethylsulfonyl fluoride to block tissue proteases,

and then centrifuged at 4˚C for 20 min at 24.000 g. The MPO activities of the samples were

measured at 450 nm (UV-1601 spectrophotometer; Shimadzu, Japan), and the data were

referred to the protein content.

Liver nitrite/nitrate (NOx) levels. The levels of NOx, the stable end products of NO, in

the tissues were measured using the Griess reaction. This assay is based on the enzymatic

reduction of nitrate to nitrite, which is then converted into a coloured azo compound, which is

detected spectrophotometrically at 540 nm [21].

Tissue malondialdehyde (MDA) assay. The degree of lipid peroxidation was estimated

via the amount of MDA, a marker of oxidative damage of lipid membranes. The MDA level

was measured by the reaction with thiobarbituric acid, and the values were corrected for the

tissue protein content [22].
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Superoxide and hydrogen peroxide production in whole blood. A 10 μl sample of whole

blood and 50 μlzymosan were added to 1 ml Hank’s solution (PAA Cell Culture, Westborough,

MA, USA) and the mixture was incubated at 37˚C for 30 min, until assay [23]. The chemilumi-

nometric response was measured with a Lumat LB9507 luminometer (Berthold Technologies,

Wildbad, Germany) during a 30-min period after the addition of 100 μl of lucigenin and lumi-

nol reagent.

In vivo histology. In a separate series fluorescence confocal laser scanning endomicro-

scopy (CLSEM, Five1, Optiscan Pty. Ltd., Melbourne, Victoria, Australia, excitation wave-

length 488 nm; emission detected at 505–585 nm) developed for in vivo histology was

employed to detect the extent of tissue injury in the left liver lobe. The treatments (n = 6, each

group) were identical to the previous in vivo protocol.

The microvascular structure was recorded after the iv administration of fluorescein isothio-

cyanate-dextran (FITC-dextran, 150 KDa, Sigma-Aldrich, Budapest, Hungary, 10 mg/ml solu-

tion dissolved in saline). For the in vivo staining of liver cells, 0.01% acriflavine (Sigma-

Aldrich, Budapest, Hungary) was injected into the jugular vein [24]. The objective of the

device was placed onto the liver surface, and confocal imaging was performed 5 min after dye

administration (1 scan/image, 1024 x 512 pixels and 475 x 475 μm per image).

The analysis was performed twice separately by the same investigator (PH) using a semi-

quantitative histology score (S0-S4) based on hepatocyte swelling, shrinkage, loss of integrity

of cellular and nuclear membranes, or nuclear alterations, as described previously [24, 25].

Statistical analysis. Data analysis was performed with SigmaStat statistical software (Jan-

del Corporation, San Rafael, CA, USA). Changes in variables within and between groups were

analysed by two-way repeated measures ANOVA, followed by the Bonferroni test. One-way

ANOVA followed by the Holm-Sidak test was applied in the assay of tissue MDA, XOR activ-

ity, MPO activity, NADPH-oxidase activity, tissue nitrite/nitrate, reduced and oxidized gluta-

thione (GSH/GSSG) ratio on liver tissue, hydrogen peroxide level and superoxide level. Data

were expressed as means ± SEM. Values of P< 0.05 were considered statistically significant.

Results

In vitro experiments

Firstly, in vitro experiments were conducted in order to analyse the dose-response effects of

GPC on the respiratory activity of rat liver mitochondria in normoxia or anoxicconditions.

GPC had an increasing effect on mitochondrial oxygen consumption in the 100–200 mM con-

centration ranges (Fig 1A). The ETC and OxPhos capacity of mitochondria was influenced sig-

nificantly when GPC was applied at 200 mM concentration (Fig 1B). In addition, GPC

significantly attenuated the deleterious effects of 30-min anoxia on the oxygen consumption of

mitochondria (Fig 1C).

In vivo experiments

Mitochondrial respiration detected by the SUIT and Leak protocols. The SUIT proto-

col provides an opportunity to analyse the activity of different mitochondrial complexes, while

the Leak protocol observes the proton leak in mitochondria. In the SUIT protocol (Fig 2A),

the state III oxygen consumption was significantly lower in IR compared to the sham-operated

animals. Additionally, the maximum respiratory capacity was also significantly lower in

response to the IR stress. In contrast, treatment with GPC enhanced the efficacy of oxygen

consumption. These effects were basically linked to the complex I, rather than complex II, as

indicated by the large decrease following the administration of the inhibitor of complex I.
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The Leak protocol (Fig 2B) demonstrated significant decrease in state IV oxygen consump-

tion in response to IR injury as compared to the sham-operated animals. GPC administration

restored the level of leak respiration to that of the sham-operated animals.

XOR activity. XOR is a key enzyme in purine catabolism, and also catalyses the reduction

of nitrates and nitrites into nitric oxide (NO). During this process, ROS are produced, which

can be deleterious to the cells. As expected, XOR activity was increased in the IR group com-

pared to the SHAM group. These values were significantly decreased when GPC was applied 5

min before the reperfusion (Fig 3A).

Fig 1. Oxygen consumption (in pmol/s/ml) of liver mitochondria measured by means of high-resolution

respirometry. Liver homogenates were harvested from sham-operated animals. (A) Effect of different GPC

concentrations on state III respiration of liver mitochondria. Data are means ± SEM. #P< 0.05 vs SHAM group (one-

way ANOVA, Holm-Sidak test). (B) Effect of GPC on state II and III respiration. #P< 0.05 vs SHAM (state II) group;
*P< 0.05 vs SHAM (state III) group (one-way ANOVA, Holm-Sidak test). (C) Effect of 200 mM GPC on

mitochondrial anoxia-reoxygenation in vitro. Liver homogenates were subjected to 30’ anoxia in the presence of 200

mM GPC (black column: SHAM+GPC group) or without GPC pre-treatment (white column: SHAM group). Data are

presented as means ± SEM. #P< 0.05 vs 5’; *P< 0.05 vs SHAM group (two-way ANOVA, Bonferroni test). R:

Rotenone; S: Succinate; D: ADP

doi:10.1371/journal.pone.0166682.g001

Fig 2. Oxygen consumption of liver mitochondria measured by means of high-resolution respirometry (in pmol/s/ml). (A) SUIT protocol. (B) Leak

protocol. Animals were subjected to 60 min of liver ischemia followed by 60 min of reperfusion (IR group, black column) or were sham-operated (SHAM group,

white column). 16.56 mg/kg GPC administration was started 5 min before the end of ischemia (IR+GPC group, grey column), or at identical time point in

sham-operated animals (SHAM+GPC group, white striated column). Data are presented as means ± SEM. #P< 0.05 vs SH group; *P< 0.05 vs baseline (two-

way ANOVA, Bonferroni test). bsl: baseline; M: Malate; D: ADP; G: Glutamate; S:Succinate; CCCP: chemical inhibitor of OxPhos (uncoupler); Rot:

Rotenone; Ama: Antimycin A; Omy: Olygomycin.

doi:10.1371/journal.pone.0166682.g002
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NADPH oxidase activity. NADPH oxidases are a family of membrane-bound oxidore-

ductase complexes whose main function is the formation of ROS, by catalysing the reduction

of oxygen (2NADPH +2O2 —> 2NADP+ + 2H+ + 2O2- —> 2NADP+ + H2O2). While their

precise role in the IR pathogenesis is not fully elucidated, it is assumed that NADPH oxidases

play a key role in the propagation of oxidative stress. By the end of the 60-min reperfusion

period, the NADPH oxidase activity was significantly increased in the IR group, compared to

the SHAM groups (Fig 3B). When GPC was administered before the end of ischemia the

NADPH oxidase activity became even lower than the values of the SHAM groups.

GSH/(GSSG) ratio in liver homogenates. GPC administration in the SHAM+GPC

group did not influence the GSH/GSSG ratio as compared with the SHAM group. As expected,

hepatocytes were exposed to increased levels of oxidative stress after IR, as shown by a signifi-

cant increase of GSSG and the decreased GSH/GSSG ratio when compared to the SHAM

group, however, the GSSG levels were significantly decreased in response to GPC treatment in

the IR+GPC group (Fig 3C).

MPO activity. MPO is mostly produced by PMN leukocytes upon their activation. In the

vehicle-treated IR group, the tissue MPO level was significantly increased as compared with

that of the sham-operated animals. In the GPC-treated group, the MPO activity was signifi-

cantly lower than in the vehicle-treated IR group (Fig 4A).

Fig 3. (A) XOR activity; (B) NADPH oxidasesactivity; (C) GSH/GSSG ratio. Animalsweresubjectedto 60 min of

liverischemiafollowedby 60 min of reperfusion (IR group, blackcolumn) orweresham-operated (SHAM group,

whitecolumn). 16.56 mg/kg GPC administrationwasstarted 5 min beforethe end of ischemia (IR+GPC group,

greycolumn), oratidenticaltimepointinsham-operatedanimals (SHAM+GPC group, whitestriatedcolumn). XOR

activity (inpmol/mg protein); NADPH oxidasesactivity (inmmol/ml). Data arepresentedasmeans ± SEM. #P< 0.05 vs

SHAM group; *P< 0.05 vs IR group (one-way ANOVA, Holm-Sidak test).

doi:10.1371/journal.pone.0166682.g003

Fig 4. (A) Tissue MPO activity; (B) Tissue nitrite/nitrate (NOx) level; (C) Tissue MDA level. Animals were subjected to 60 min of liver ischemia followed by 60

min of reperfusion (IR group, black column) or were sham-operated (SHAM group, white column). 16.56 mg/kg GPC administration was started 5 min before

the end of ischemia (IR+GPC group, grey column), or at identical time point in sham-operated animals (SHAM+GPC group, white striated column).MPO

activity (in mU/mg protein); NOx level (in μM); tissue MDA (in mmol/ml). Data are presented as means ± SEM. #P< 0.05 vs SHAM group; (one-way ANOVA,

Holm-Sidak test).

doi:10.1371/journal.pone.0166682.g004
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Liver NOx levels. In the IR group, a significant elevation in NOx was present relative to

the SHAM groups. The GPC treatment protocol decreased the NOx elevation, in contrast with

the non-treated IR group; but the NOx level remained significantly higher than that in the

sham-operated group (Fig 4B).

Tissue MDA level. As expected, IR resulted in an increased MDA production after IR

(Fig 4C). The GPC treatment significantly reduced the level of MDA production, while no dif-

ference was seen between the two control groups (SHAM and SHAM+GPC).

Blood hydrogen peroxide and superoxide production. The superoxide-producing

capacity in the whole blood was significantly higher in the IR group at the end of reperfusion

when compared to the SHAM animals. The GPC treatment before the end of the ischemic

period reduced the elevated superoxide production to the level in the control animals (Fig 5B).

Significantly higher whole blood hydrogen peroxide levels were measured at the end of reper-

fusion in the IR group relative to the SHAM group, and the GPC treatment effectively reversed

the hydrogen peroxide production (Fig 5A).

In vivo histology. The morphological changes in the left liver lobe were evaluated by

means of in vivo imaging, using CLSEM. The FITC-dextran and acriflavine staining demon-

strated dilated sinusoids in the IR group, fluorescent dye leakage with edema formation was

present with visible signs of structural damage: changes in hexagonal cell shape and cytoplasm

blebbing and vesicle formation. GPC administration effectively attenuated the IR-induced

morphological changes. The severity of injury was moderated, these changes were still appar-

ent, but the average degree of damage was decreased from S4 to S2 level (Fig 6).

Discussion

IR injury is a common challenge of several fields of medicine. IR-induced antigen-independent

inflammatory reactions are largely ignited by the overproduction of ROS and, mainly at the sites

of complexes I and III, the mitochondria is among the major recognized sources [26]. Therefore,

targeted therapeutic strategies to limit mitochondrial dysfunction and to tackle the potentially

cell-damaging consequences of ROS generation are important translational research tasks.

GPC is a choline donor compound with a demonstrated parasympathomimetic action [11].

It is currently used in clinical practice to enhance functional recovery after cerebral stroke

Fig 5. (A) Superoxide level; (B) Hydrogen peroxide level. Animals were subjected to 60 min of liver ischemia

followed by 60 min of reperfusion (IR group, black column) or were sham-operated (SHAM group, white column).

16.56 mg/kg GPC administration was started 5 min before the end of ischemia (IR+GPC group, grey column), or at

identical time point in sham-operated animals (SHAM+GPC group, white striated column). Superoxide level (in

U/L); hydrogen peroxide level (in U/L). Data are presented as means ± SEM. #P< 0.05 vs SHAM group; *P< 0.05 vs

IR group (one-way ANOVA, Holm-Sidak test).

doi:10.1371/journal.pone.0166682.g005
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[10], and to reduce the cognitive symptoms of dementia [27, 12]. Exogenous GPC is detected in

the circulation one hour after an iv injection, it passes through the blood-brain barrier, stimu-

lates PC biosynthesis, and activates postsynaptic cholinergic receptors [9, 13, 28]. Tissue distri-

bution studies have shown that GPC and its metabolites are particularly accumulated in organs

of excretion (kidney/liver), but the liver contains the highest concentration [9, 13]. Cellular

uptake of GPC may occur by osmoregulation or under the control of an active transport system

[29]. Osmotic regulation of GPC requires choline in the medium, presumably as a precursor for

GPC synthesis. Choline transport into the cells, however, is not osmoregulated. Furthermore,

an increase in GPC content under hyperosmotic conditions is not associated with an increased

activity of the transport systems of biosynthetic precursors [30]. These results suggest some

interaction between the two regulatory systems in the cellular uptake of the circulating GPC.

Regardless of its possible abundance in the membranes, liver concentrations of endogenous

GPC are significantly depleted after hemorrhagic shock, a prototype of systemic IR injury [7],

and previous data suggested us that exogenous GPC may influence the tissue reactions in IR

Fig 6. Histological changes in the rat liver. Tissue sections show the results of in vivo fluorescence confocal laser scanning endomicroscopy (CLSEM)

with FITC dextran and acriflavine labelling (at 4 and 40 μm depth). Structural damages such as dilated sinusoids, loss of fluorescence intensity, changes in

hexagonal cell shape, cytoplasmaticblebbing and vesicle formation can be observed in the IR group. The bar represents 100 μm.

doi:10.1371/journal.pone.0166682.g006
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scenarios [12, 13, 31]. Herein, we have outlined a novel route of action for the molecule. The

present study explains the anti-inflammatory action at mitochondrial level and provides a

mechanistic basis for these observations.

The in vitro experimental data demonstrated the direct effects of GPC on mitochondrial

oxygen consumption in the 100 and 200 mM concentration ranges. Next, GPC supplementa-

tion attenuated the respiratory consequences of anoxia by reducing the leak of protons into

the matrix and preserving the state III respiration of mitochondria. This effect was mainly

attributed to an action on complex I at the appropriate concentration of 200 mM. Within the

mitochondria, the mechanism by which GPC increases basal oxygen consumption rates is not

well-understood, but the possibilities can be listed in two categories: 1) interacting with pro-

teins and causing modulations in their functions or 2) influencing the redox environment. It

should be added that the I-V sequence of the respiratory complexes is perhaps not the highest

level of OxPhos organization. Flux control experiments confirm that the respiratory chain

operates as one single functional unit [32, 33]. According to the “fluid-state model”, individual

protein complexes of the electron transport chain freely diffuse in the membrane and the elec-

tron transfer is based on random collisions of single complexes. Recent findings also suggest

that OxPhos enzymes are organized into supramolecular assemblies[34]. It has been shown

that point mutations in genes of the subunits of an OxPhos complex affect the stability of

another complex. Thus, complex III and complex IV are necessary for the assembly or stability

of complex I [34, 35]. Moreover, it appears that supercomplexes are further organized into

larger string structures. The example is the ATP synthase complex (complex V), which assem-

bles into long oligomeric chains [36]. Some supercomplexes require appropriate osmotic envi-

ronment for their formation [37, 38]. Whether GPC influences the conformation of this

system is an open question.

Secondly, the redox-optimized ROS balance hypothesis postulates that the redox environ-

ment is the main controller of both production and scavenging of ROS as intermediary

between mitochondrial respiration and ROS formation [39]. We have shown that exogenous

GPC targets the mitochondrial oxidative metabolism in IR stress, and provided evidence that

the IR-associated inflammatory activation may be limited this way. Mitochondrial dysfunction

generates ROS and hypoxic conditions induce leak of protons of the ETC into the intermem-

branous space [40] that can lead to increased ROS formation. We have demonstrated that

GPC treatment reduces the leak respiration after the IR challenge, and in accordance with pre-

vious findings the lower leak respiration was accompanied with decreased ROS formation [7,

40, 41]. Furthermore, exogenous GPC enhanced mitochondrial oxygen consumption, both in

normoxic and hypoxic conditions, which clearly demonstrates that GPC can potentiate the

mitochondrial activity. To further clarify this issue, another protocol was applied by adding

substrates and inhibitors of individual ETC complexes. In response to complex I inhibitor

rotenone, the oxygen consumption diminished significantly, which suggests that complex I is

the target site of the GPC-mediated action.

We have investigated IR-induced ETC changes together with XOR and NADPH oxidases

responses. The activity of both pro-inflammatory enzymes were decreased in response to GPC

administration, which suggests that the primary influence on leak respiration was followed by

secondary consequences on the main extra-mitochondrial, i.e. cellular enzymes involved in

ROS formation. Furthermore, the IR-induced increases in superoxide and hydrogen peroxide

levels in the circulating blood were accompanied by increased local NOx concentrations, pro-

viding indirect evidence for the evolving oxido-nitrosative stress in the liver tissue. RNS acting

together with ROS generates “footprints” of tissue damage [42]. ROS interacting with NO pro-

duces peroxynitrite [43] and nitration of mitochondrial proteins resulting in acute and chronic

liver diseases.
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In our model, the increase in MDA and other oxidative and nitrosative stress markers were

significantly reduced by GPC supplementation. The need of restoration of cellular GSH levels

for efficient scavenging of peroxynitrite is emphasized. GPC administration reversed the IR-

induced decrease in GSH level and maintained the ratio of GSH to GSSG.

We also detected increased MPO activity as a secondary inflammatory marker, mainly

secreted by active immune cells including PMNs. Again, MPO activity was decreased after the

administration of GPC. All considered, these results suggest that mitochondrial alterations

preceded the cellular, enzymatic ROS production and the onset of oxidative stress in liver tis-

sue lead to PMN activation in the circulation.

In conclusion, we have shown that exogenous GPC influences the mitochondrial oxidative

metabolism, the primary source of ROS production. Nevertheless, this study has some limita-

tions which have to be pointed out. Firstly, the isolation of mitochondria can disrupt the intri-

cate mitochondrial network integrity leading to possible differences between in vitro and in

vivo data. In this line, the impact of cytosolic factors could not be correctly studied due to the

loss of cytoplasm and the cellular soluble components during the isolation procedure. This is

of particular importance because the normal mitochondrial function requires a crosstalk with

cytosolic factors (such as the GSH/GSSG system) to maintain cellular homeostasis, and the in

vivo experiments have been conducted in the absence of scavengers that control glutathione

levels. Besides, the assessment of mitochondrial respiration was performed without measuring

the protein levels of individual respiratory enzyme complexes, thus a possibility that altered

complex levels contributed to the in vivo respirometry changes cannot be excluded.

However, we have provided evidence for the direct action of GPC on mitochondrial com-

plex I function as proved by increased oxygen consumption and the reduced leak respiration.

The redox-imbalance of the intracellular environment, altered enzyme activities can lead to

further increases in superoxide production. GPC administration attenuated the membrane

peroxidation and the consecutive stages of tissue damage therefore this type of mechanism

might be an interesting focus for therapeutic strategies in IR episodes.

Supporting Information

S1 Fig. Hydrogen peroxide (H2O2) production (pmol/s/mg protein) of liver mitochondria

measured by means of high-resolution respirometry. Animals were subjected to 60 min of

liver ischemia followed by 60 min of reperfusion (IR group, black column) or were sham-oper-

ated (SHAM group, white column). 16.56 mg/kg GPC administration was started 5 min before

the end of ischemia (IR+GPC group, grey column), or at identical time point in sham-operated

animals (SHAM+GPC group, white striated column). Data are presented as means ± SEM. #P<

0.05 vs SH group; �P< 0.05 vs baseline (two-way ANOVA, Bonferroni test). Rot: Rotenone;

Ama: Antimycin A; FCCP: Carbonyl cyanide p-trifluoro-methoxyphenylhydrazone, uncoupler.

(TIF)

S2 Fig. Complex I and Complex II-dependent oxygen consumption (in pmol/s/ml) of iso-

lated liver mitochondria measured by means of high-resolution respirometry. Mitochon-

dria were subjected to 30-min anoxia and 30-min reoxygenation (AR group, black column) or

AR and 200 μmol GPC pretreatment (AR+GPC, grey column). Mitochondria in normoxic

environment served as controls (SH and SH+GPC, white and striated columns). Data are pre-

sented as means ± SEM. �P< 0.05 vs AR group (one-way ANOVA, Holm-Sidak test).

(TIF)

S1 File. Experimental protocols and results of additional experimental series: Examination

of reverse electron transport (RET) and Examination of Complex I and II–linked
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