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Distribution of Crystalloids and Colloids 
During Fluid Resuscitation:
All Fluids Can be Good and Bad?

I. László, N. Öveges, and Z. Molnár

Introduction

Early fluid resuscitation remains the cornerstone of the treatment of severe hy­
povolemia, bleeding and septic shock. Although during these circumstances fluid 
administration is a life-saving intervention, it can also exert a number of adverse 
and potentially life-threatening effects; hence fluid therapy by-and-large is regarded 
a “double-edged sword” [1]. Unfortunately, for the three fundamental questions of: 
‘when’, ‘what’ and ‘how much’, there are no universally accepted answers. Nev­
ertheless, not giving enough volume may result in inadequate cardiac output and 
oxygen delivery (DO2) and hence severe oxygen debt; while fluid overload can 
cause edema formation both in vital organs and in the periphery, hence impairing 
tissue perfusion. Despite broad acceptance of the importance of using appropriate 
parameters to guide treatment during resuscitation, current practice seems rather 
uncoordinated worldwide as was recently demonstrated in the FENICE trial [2]. In 
addition to using appropriate hemodynamic parameters to guide fluid resuscitation, 
the type of the infusion fluid should also be chosen carefully.

Fundamentally, crystalloids or colloids are suitable for fluid resuscitation. The­
oretically, colloids have better volume expansion effects, therefore they restore the 
circulating blood volume and hence DO2 faster than crystalloids do. The natural 
colloid, albumin, is very expansive compared to crystalloids, but the cheaper syn­
thetic colloids have several potential adverse effects. Ever since colloids appeared 
on the scene the ‘crystalloid-colloid debate’ started, which seems like a never-end­
ing story. At present, the gigantic pendulum that swings our opinion between ‘good’ 
and ‘bad’ based on current evidence, points more to the latter where synthetic col­
loids are concerned.
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According to Starling’s ‘3-compartment model’, crystalloids, with their sodium 
content similar to that of the serum, are distributed in the extracellular space, while 
colloids should remain intravascular because of their large molecular weight. There­
fore, theoretically one unit of blood loss can be replaced by 3-4 units of crystalloid 
and one unit of colloid solution [3]. This theory has a long history and has been 
widely accepted worldwide since the 1960s [4]. However, several clinical trials in­
cluding thousands of critically ill patients seemed to disapprove this principle as 
there were no large differences in the volumes of crystalloids versus colloids needed 
to stabilize these patients.

Understanding physiology, especially the role of the recently discovered mul­
tiple functions of the endothelial glycocalyx layer, may cast a different light on 
these controversies. The purpose of this chapter is to highlight several issues, which 
should be taken into account when we are interpreting the results of recent clinical 
trials on crystalloid and colloid fluid resuscitation.

Starling's Hypothesis Revisited in the Context of the Glycocalyx

Fundamentally, there are three infusion solutions that can be administered intra­
venously: water, in the form of 5% dextrose; crystalloids, containing sodium ions in 
similar concentration to that of the plasma; and colloids, which are macromolecules 
of either albumin or synthetic colloid molecules, such as hydroxyethyl starches 
(HES), dextrans or gelatin solutions.

According to the classic Starling view, the main determinants of fluid transport 
between the three main fluid compartments of the intracellular, interstitial and in­
travascular spaces are determined mainly by the two semipermeable membranes: 
the endothelium and the cell membrane (Fig. 1). Water and glucose molecules can 
pass freely from the vasculature to the cells, hence they are distributed in the total 
body water. Sodium containing crystalloids can pass the endothelium but not the 
cell membrane, hence these are distributed in the extracellular space, proportionally 
to the volume of the interstitial and intravascular compartments to the total extracel­
lular fluid volume (Fig. 2). Colloids, because of their large molecular weight should 
remain intravascularly (Fig. 3).

The filtration rate per unit area across the capillary wall is mainly determined 
by hydrostatic and colloid osmotic pressures as indicated by the classic Starling’s 
equation:

Jv =  Kf((Pc -  Pi) -  ff(7Ti -  tfc))

where Jv is the fluid movement; (Pc — P¡) — a  ( tt ; — t t c )  is the driving force; Pc is 
the capillary hydrostatic pressure; Pi is the interstitial hydrostatic pressure; rc\ is the 
interstitial oncotic pressure; ttc is the capillary oncotic pressure; Kf is the filtration 
coefficient; and a  is the reflection coefficient.

However, there is some evidence that in most tissues lymphatic flow would 
be insufficient to handle the extravasation of the amount of fluid as predicted by 
Starling, a phenomenon also termed the “low lymph flow paradox” [5, 6]. It has
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Fig. i  Fluid distribution in the three main fluid compartments. In a normal (70 kg) adult, the total 
body water is about 60% of the total body weight, approximately 40 L, divided into intracellular 
(~  24 L), interstitial (~  12 L) and intravascular (~  4 L) spaces separated by the endothelium and 
the cell membrane. According to Starling’s classic ‘3 compartmental model’ fluid distribution is 
mainly determined by these semipermeable membranes. Therefore, colloids stay in the intravas­
cular compartment, crystalloids are distributed in the extracellular space, and water, in the form of 
5% dextrose (5%D), is distributed in total body water

Fig. 2 Crystalloid dis­
tribution between the 
3 compartments in nor­
mal subjects. Crystalloid 
solutions can pass the en­
dothelium freely, but not the 
cell membrane because of 
their sodium ion content, 
hence they cannot enter the 
intracellular (IC) compart­
ment. Therefore, they are 
distributed in the intravascu­
lar (IV) and the interstitial 
(IS) compartments. The 
rate of distribution between 
these two compartments is 
determined by how each re­
lates in volume to the total 
extracellular fluid volume 
(12 + 4=  16 L in  our example 
in Fig. 1). Accordingly, for 
every unit of infused crystal­
loid, one fourth will remain 
intravascularly and three 
fourths interstitially
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Fig. 3 Colloid distribution 
in normal subjects. Theoret­
ically, due to their molecular 
weight, colloids should re­
main in the intravascular 
space. IV: intravascular; IS: 
interstitial; 1C: intracellular 
spaces

0.25 -

been proposed that it is the endothelial glycocalyx layer that plays a pivotal role 
as a primary molecular filter and also provides an oncotic gradient, which was 
not included in Starling’s hypothesis [7]. A web of membrane-bound glycopro­
teins and proteoglycans on the luminal side of endothelium has been identified to 
form the glycocalyx layer. This compartment consists of many highly sulfated gly- 
cosaminoglycan chains providing a negative charge for the endothelium. Due to 
these electrostatic properties, the subglycocalyx space produces a colloid oncotic 
pressure that may be an important determinant of vascular permeability and thus 
fluid balance [8]. The structure and function of the endothelial glycocalyx varies 
substantially among different organ systems, and it is also affected by several in­
flammatory conditions [9].

In a recent experiment on isolated guinea pig heart, Jacob et al. observed a very 
interesting phenomenon [10]. They perfused the coronaries with colloid free buffer, 
isotonic saline, albumin and HES solution, and measured extravascular transudate 
and edema formation. The experiment was then repeated when the glycocalyx was 
stripped from the vessel wall by treating it with heparinase. With intact glyco­
calyx, the net transudate, measured as hydraulic conductivity, was found to be 
9.14|il/min/g tissue for colloid free perfusion, which was dramatically reduced to
1.04pl/min/g when albumin was added in physiological concentration to the per­
fusate. It was also attenuated by HES supplementation but to a significantly lesser 
degree, to 2.67 pl/min/g. The observation that adding colloids to the perfusate re-
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this effect did not correlate with the colloid osmotic pressure: albumin, which is 
a much smaller molecule than HES, had significantly better effects in preventing 
transudate formation. This phenomenon is termed the “colloid osmotic pressure 
paradox”, and cannot be fully explained by Starling’s hypothesis and equation. One 
of the possible explanations is that the charges exposed by molecules forming the 
glycocalyx are mainly negative, whereas albumin carries molecules such as argi­
nine and lysine with positive charges. There is some experimental evidence that 
these arginine groups are responsible for the effects of albumin on vascular perme­
ability. By contrast, HES molecules are uniformly negatively charged, which may 
explain the significant difference in hydraulic conductivity observed by Jacob and 
coworkers [10].

These authors also suggested modifying the Starling equation to:

Jv/A  =  Lp((Pc — Pt) — (7Te — 7Tg))

where Jv / A is the filtration rate per unit area; Lp the hydraulic conductivity of 
the vessel wall; Pc — Pt the difference in hydrostatic pressure between the capillary 
lumen (c) and tissue (t); nre the colloid osmotic pressure in the endothelial surface 
layer; and 7rg the colloid osmotic pressures directly below the endothelial surface 
layer in the glycocalyx.

Nevertheless, under normal circumstances, when the glycocalyx is intact, the 
Starling concept is still valid and fluid transport is determined by the ‘Starling 
forces’ (Fig. 4a), and the volume-replacement ratio should be several times higher 
for colloids compared to crystalloids. Indeed, several experimental studies mainly 
in bleeding-resuscitation animal models reported the volume-replacement ratios

Table 1 Experimental studies

Trial \ :Mo4eil _ ° TVp^ofjduidsV VRR ' Comments, \
Kocsi ' Controlled Voluven : 1.1 The 1:1 blood loss:colloid VRR main­
(n= 13) 
[12]

bleeding on 
Pigs

(6% HES) tained baseline GEDV throughout the 
experiment .

Simon Controlled -- -R L 1T1 12 In comparison to RL, all HES solutions
(n = 25) .. animal study -H E S  700/6.1 1-3.08 were more effective at maintaining
[11] : in septic 

shock in pigs
-  HES 130 
-H E S  

700/2,5T

1:2.97
1:3.78

plasma volume

Ponschab Bleeding- ::Balanced crys­ 1:1.08 High volume (1:3) causedmore
(n=24) . resuscitation talloid, in 1:1 1:2.85 pronounced cooling and impaired c o - .
[13] .p ig  model or 1:3 replace-, 

ment ratio
agulation . ^ .

Fodor - Bleeding- . -  Blood 1:1 No difference between colloids and
(n=25) resuscitation : -  HES 6% crystalloids on pulmonary function.
[14] inrats -  NaCl 0.9% •• However, detailed invasive hemody­

namic assessment was not performed

VRR: volume-replacement ratio; GEDV: global end diastolic volume; HES: hydroxyethyl starch; 
RL: Ringer’s lactate
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for colloids as predicted by Starling’s hypothesis [11-14]. These are summarized 
briefly in Table 1. The explanation could be that, in animal models, because of 
the relatively short experimental time, and because most models investigated hy­
povolemia, bleeding and resuscitation, the glycocalyx has no time for degradation. 
Nevertheless, these studies had different aims than to test Starling’s hypothesis, and 
this should be performed in the future.

The glycocalyx has a pivotal role not just in regulating endothelial permeabil­
ity but in several others functions: it modulates shear force induced nitric oxide

Fig. 4 Schematic transection of a capillary, a  In normal subjects, the glycocalyx (GC) is intact 
and Starling’s concept is more-or-less valid so that fluid transport is mainly determined by the 
Starling equation (see text), b In several critical illness conditions, both the glycocalyx and the en­
dothelium become damaged. During these conditions, the regulating functions of the endothelium 
and glycocalyx are partially or totally lost. These will affect fluid transport across the vessel walls 
with excessive fluid and protein extravasation, will cause leukocyte adherence and platelet adhe­
sion, further impairing capillary blood flow, and the complex function of the endothelium and the 
microcirculation. ECs: endothelial cells; RBC: red blood cells; PLT: platelets; WBC: white blood 
cells; Pi: interstitial hydrostatic pressure; ire: colloid osmotic pressures in the endothelial surface 
layer; n g: colloid osmotic pressures directly below the endothelial surface layer in the glycocalyx
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(NO)-synthesis and dismutation of oxygen free radicals in the endothelial cells and 
controls coagulation and inflammation by preventing platelet adhesion and leuko­
cyte adherence to the vessel walls [15]. It is, therefore, not surprising that whenever 
the glycocalyx layer is damaged, important pathophysiological changes take place, 
which can have serious effects on the function of the affected organ, or organs.

The Glycocalyx in the Critically III

There is mounting evidence that the glycocalyx becomes impaired or destroyed in 
several critical illness conditions, including inflammation (both infectious and non- 
infectious), trauma, sepsis, ischemia-reperfusion injuries, but also persistent hypo-, 
and hypervolemia [16]. During these conditions, the regulating functions of the en­
dothelium and glycocalyx are lost, which can have serious effects on permeability 
and hence fluid transport across the vessel walls with excessive fluid and protein 
extravasation (Fig. 4b), but other functions like leukocyte adherence and platelet 
adhesion are also affected. There is experimental evidence that during these con­
ditions, the interstitial space becomes overwhelmed with colloid molecules [10]. 
Although albumin seemed to be somewhat more able to interact with these condi­
tions than HES, nevertheless it could not prevent colloid extravasation, which was 
also enforced by increasing hydrostatic pressures. These experimental findings are 
in agreement with the results of our clinical study, in which patients with septic 
shock and acute respiratory distress syndrome (ARDS) were administered either 
HES (molecular weight of 250 kDa) or gelatin (30kDa) to treat hypovolemia. We 
used detailed hemodynamic monitoring and observed no difference in the volume­
replacing effects of these colloids, and no change in the extravascular fluid volume, 
despite the huge difference in their molecular weight and colloid osmotic pressure 
[17]. This was possibly due to the very severe and long-standing (several days) 
condition of these patients, when it is highly likely that the glycocalyx was already 
severely damaged, hence ‘size’ (i. e., molecular weight) no longer mattered.

These observations are important when we try to interpret the results of recent 
large clinical trials comparing crystalloids and colloids in the critically ill.

Volume-replacement Effects of Crystalloids and Colloids 
in the Critically III

Although most recent large clinical trials had end-points of 28-day mortality or or­
gan dysfunction, it is worthwhile analyzing the results from a different perspective. 
One of the landmark trials was the SAFE study, published in 2004, in which investi­
gators compared the safety of albumin to normal saline in ICU patients (n = 6,997). 
The results showed no significant differences between the groups in hemodynamic 
resuscitation endpoints, such as mean arterial pressure (MAP) or heart rate, al­
though the use of albumin was associated with a significant but clinically small 
increase in central venous pressure (CVP). The studv showed no sienificant differ-
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ence between albumin and normal saline regarding 28-day mortality rate or devel­
opment of new organ failure [18]. The SAFE study was followed by the VISEP 
[19], CHEST [20] and 6S [21] trials, all reaching a more or less similar conclusion. 
Results showed a strong association between acute kidney injury, increased use of 
renal replacement therapy (RRT) and the use of HES solution, which was also ac­
companied with unfavorable patient outcome [19-21]. By contrast, in the CRISTAL 
trial, which was designed to test mortality related to colloid and crystalloid based 
fluid replacement in ICU patients, investigators detected a difference in death rate 
after 90 days, favoring the use of colloids. Furthermore, patients spent significantly 
fewer days on mechanical ventilation and needed shorter durations of vasopressor 
therapy in the colloid group than in the crystalloid group [22].

There are several common features in these studies. First of all, the ratio of the 
administered volume of crystalloid and colloids was completely different to what 
would have been expected according to the Starling principle (Table 2). In general, 
30-50% more crystalloid seemed to have the same volume-expanding effect as col­
loids. Based on these results, a common view was formed that HES does not have 
higher potency for volume expansion than crystalloids, but carries a greater risk of 
renal dysfunction and mortality [18-25].

However, it is important to note that none of these trials used detailed hemo­
dynamic monitoring, which is the second common feature of these studies. The 
administration of intravenous fluids was mainly based on clinicians’ subjective de­
cision [18, 19, 21, 22, 25], or on parameters such as heart rate [20], blood pressure 
[19, 21, 23], CVP [19, 21, 23], urine output [18-21, 23], lactate levels [20] or cen­
tral venous oxygen saturation [19, 21, 23]. Cardiac output and stroke volume were 
not measured in most of the trials, which is essential to prove volume responsive­
ness, and none of the applied indices listed above are good monitoring tools of fluid 
therapy [1, 26]. Therefore, it is possible that a considerable number of these pa­
tients was treated inappropriately. Although it is not the task of the current review, 
it is important to note that the methods used as indications for fluid administration, 
also reflect our everyday practice, as was nicely confirmed in a recent observational 
study [2]. In this large international survey, it was revealed that fluid therapy is 
mainly guided by inadequate indices during our daily clinical routine. Therefore, 
one cannot exclude that in these trials a considerable proportion of patients were 
not hypovolemic at all. Indeed, in the CHEST trial the mean values of the target 
parameters were as follows: heart rate of 89/min, MAP 74mmHg, CVP 9mmHg 
and serum lactate 2 mmol/1. [20] None of these values suggests hypovolemia, or at 
least it is highly unlikely that any of us would commence fluid resuscitation based 
on these values. There is some evidence that in healthy male subjects colloid so­
lutions provided a four times greater increase in blood volume compared to saline, 
and extravasation was significantly higher after saline infusion [27]. Therefore, if 
we consider that a considerable proportion of these patients were critically ill, hence 
their glycocalyx was impaired, and although they were not hypovolemic they still 
received colloids, this may have led to excessive extravasation. Furthermore, if fluid 
was administered to normovolemic patients, this could have caused increased hy­
drostatic pressures in the microcirculation leading to excessive HES extravasation
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Table 2 Human randomized controlled trials

'Trial Population-' .Types of fluid,\4'
" VS," N '  -V

Frnfer 
(n = 6.933) 
[18]

ICUpatients . Albumin, saline

Brunk- 
horst .
(n = 537) - 
[19]

: IGU patients with 
severe sepsis

HES. RL

.Myburgh. :: 
(,n = 7.000) 
[20]

IGU patients HES 130/0 4, saline

Guidet.. 
(,n= 174) 
[23]

■Paüents with severer 
: sepsis:

HES 130/0 4, saline

Pernet 
(n = 798) 
[21]

ICU patients with 
• severe sepsis :

HES 130/0.42, Ringer’s acetate ,

Annane - : ICU patients with-. Colloids fgelatins/dextrans, HES.:4
in ==2.857) 
[22]

. hypovolemic shock . or 20% albumin), crystalloids (iso-, 
tonic or hypertonic saline. Ringer’s 
lactate) .

.Yates
(n=202).
[24]

High-risk surgical ; 
patients.

: HES 130/0.4, Hartman’s solution

Caironi 
(n= 1.810) 
[25]

Severe sepsis, septic, 
shock , .

20%. albumin, crystalloid

Lobo 
(n= 10) 
[27]

Healthy male:sub- : 
jects

Gelofusin or HES 6% , sahne ...

Cr/Go,'\Inyasive ^  - 
„ : \ v  'fietnpi, -, 

"dynamic "■>' . 
- \  ' 'monitoring ^  ' 
1.32: No

.1.32 No

1.20 No 

1.23 No 

1.00 No 

■ IS- ■ No .

1.69 . .- No .:

1.02 No 

100 No

Cr/Co: ratio of crystalloid/colloid; HES: hydroxyethyl starch; ICU: intensive care unit

and deposit of colloid molecules in the tissues, further amplifying its adverse/toxic 
effects.

Clinical Implications

These observations can have an important impact on our daily clinical practice. 
These results suggest that, in addition to global and regional hemodynamic parame­
ters, the role of the glycocalyx should be taken into account during the management 
of fluid resuscitation. Measuring several degradation markers (Table 3) in the blood 
[28-331 and even visualizing the microvasculature (Table 4) has now become pos-
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Table 3 Glycocalyx degradation markers

Trial -  * •_Modek £ M ethods sCpnclusionsv£bn^en ts u
Johansson ..Prospective observa­ syndecan-1. .Traum ais associated with en-
(n = 75) tional study in trauma (ng/ml); ELISA dothelial. damage, glycocalyx.
(n = 80)[28., 
293
Ostrowski

patients degradation

Experimental human syndecan-1 : Endotoxemia did not but sepsis did
(n = 29) [30] endotoxemia (n = 9) : (ng/ml); ELISA cause endothelial damage, indi­

and septic patients cated by biomarkers that correlated

3 II. £3 with disease severity
Steppan Septic patients syndecan-1 . Significant flaking of the endothe-.
(n= 150) [31] (n = 104),major . (ng/ml); ELISA . lial glycocalyx occurred inpatients

abdominal surgery . HS (pg/ml): . with sepsis, and to a lesser extent .
(n = 28), healthy vol­
unteers (n= 18)

ELISA in surgical patients .

Yagmur Critically ill patients HA (pg/L); au­ Authors suggest that HA might •
(n = 225) [32]. (n= 164; and tomated latex have implications m the pathogene­

healthy controls agglutination sis of critical illness and sepsis :
(a =610 assay .

Schmidt Mechanically venti­ . CS (pg/ml) Circulating glycosaminoglycans
(n=17) [33] lated ICU patients HS (pg/ml) may provide insight into respira-:

Mass spectrome­
try

tory pathophysiology

CS: chondroitin sulfate; ELISA: enzyme-linked immunosorbent assay; HA: hyaluronic acid; HS: 
heparan sulfate; ICU\ intensive care unit

Table 4 Techniques to visualize the endothelial glycocalyx

Trial _ Modell , -Method - - ^ Conclusions - - \   ̂ N y
Donáti Septic patients Sublingual . Correlation between PBR and ,
(n = 66) [34] (n=32) .. sidestream dark . : number of rolling leukocytes post-::

Non-septic ICU pa­ . field (SDF) ... capillary, confirming that glycoca- .
tients (n= 18) lyx shedding enhances leukocyte- 

endothelium interaction
Reitsma . Endothelial glycoca­ Electron . .The EG can be adequately im- ..
(n = 22) [15] lyx structure in the microscopy aged and quantified using two-

intact carotid artery : photon laser scanning microscopy
on C57B16/J mouse ■ in intact, viable mounted carotid 

• arteries
Gao [35] Male Wistar rats, Brightfield . The removal of heparan sulfate

weighing 200-300g • images • may cause collapse of the.glycoca- 
- lyx -

The surface glycocalyx layer isYen [36] Ex vivo experiment High resolution
on rat and mouse confocalmi- .. continuously and evenly distributed
aortas croscopy . on the aorta wall but not on the

mtcrovessel wall

EG: endothelial glycocalyx; EM: electron microscopy; PBR: perfused boundary region; RL: rolling 
leukocyte
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sible [15, 34-36], and may become part of bedside routine in the not too distant 
future. Theoretically, for example in an acutely bleeding patient in the emergency 
room or in the operating room, the glycocalyx may be intact, which could be proven 
by novel investigations, and fluid resuscitation with colloids may be more benefi­
cial and more effective compared to crystalloids. By contrast, during circumstances 
when the glycocalyx is impaired, colloids should be avoided. However, rather than 
just assuming the condition of the glycocalyx, its routine measurement could have 
an important impact on our daily practice and even on patient outcome.

Conclusion

Transport of fluids across the vessel wall was first described by Ernest Starling. 
Although his hypothesis is predominantly still valid, especially under physiolog­
ical circumstances, the “low lymph flow paradox” and the “colloid osmotic pres­
sure paradox” cannot be explained by simply applying the Starling equation. The 
discovery of the glycocalyx and its multiple roles in maintaining an intact and ap­
propriately functioning endothelial surface layer has shone new light on vascular 
physiology. Therefore, in the future a paradigm shift will become necessary in order 
to appropriately assess and better guide fluid therapy. Without a detailed evaluation 
of the global effects of hypovolemia and fluid resuscitation, and assessment of the 
function of the microcirculation and the function of the glycocalyx, one cannot give 
adequate answers to the questions of ‘when, what and for how long’ should we ad­
minister fluids to our patients. We have to accept that, despite the significant results 
of large trials that are valid for the majority of the investigated population, at the 
bedside we should take an appropriate physiological parameter-based individual­
ized approach. Thus, it turns out that all fluids can be good and bad depending on 
the specific circumstances.
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