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ABSTRACT 

Previously, we have shown that the N-methyl D-aspartate (NMDA)-receptor antagonist 

kynurenic acid (KYNA) and its analogue KYNA1 do not bind directly to mu, kappa and delta 

opioid receptors in vitro. On the other hand, chronic administration of KYNA and KYNA1 resulted 

in region (cortex vs striatum) and opioid receptor-type specific alterations in G-protein activation 

of mouse brain homogenates. Here we describe for the first time the acute effect of KYNA and 

KYNA1 on opioid receptor function with the possible involvement of the NMDA receptor. 

The acute 30 minutes in vivo  KYNA1 and  KYNA treatments altered opioid receptor G-

protein signaling or ligand potency depending on the opioid receptor type and brain region (rat 

cortex vs. striatum) using [35S]GTPS binding assays. Pretreatment with the NMDA receptor 

antagonist MK-801 impaired or reversed the effects of KYNA1 and KYNA. These results suggest 

an NMDA receptor mediated effect. After acute 30 minutes treatment HPLC measurements 

revealed a similar  KYNA1 and a higher KYNA plasma concentration compared to cerebrospinal 

fluid concentrations. Finally, KYNA, KYNA1 and MK-801 showed comparable results in opioid 

receptor G-protein activity and ligand potency with acute in vivo treatments when they were 

administered in vitro for 30 minutes on isolated cortex and striatum slices. 

We previously demonstrated that KYNA1 and KYNA acutely altered opioid receptor 

function in vivo and in vitro through the NMDA receptor depending on the opioid receptor type 

and brain region. This study may lead to a new, indirect approach to influence opioid receptor 

signaling. 
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LIST OF ABBREVIATIONS 

3-NLT: 3-nitro-L-tyrosine 

CNS: central nerve system 

CSF: cerebrospinal fluid  

BBB: blood-brain barrier 

DAMGO: Tyr-D-Ala- Gly-(NMe)Phe-Gly-ol 

DOPr:  opioid peptide receptor 

EGTA: ethylene glycol tetraacetic acid 

GDP: guanosine 5’-diphosphate 

GPCR: G-protein coupled receptor 

GTP: guanosine 5’-triphosphate 

GTPγS: Guanosine-5’-O-[γ-thio] triphosphate 

KOPr:  opioid peptide receptor 

KYNA: kynurenic acid 

MOPr:  opioid peptide receptor  

S.E.M.: standard error of means 

TEM: Tris-HCl, EGTA, MgCl2 

Tris-HCl: tris-(hydroxymethyl)-aminomethane hydrochloride 
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1 INTRODUCTION 

The kynurenine pathway of the tryptophan metabolism has emerged in recent years as a 

key regulator of the production of both neuroprotective (e.g., kynurenic acid), and neurotoxic 

metabolites such as 3-hydroxykynurenine (Lovelace et al., 2016).  Kynurenic acid (KYNA) 

(Fig.1A) is a glutamate receptor antagonist (Stone & Darlington, 2013) and acts as an agonist on 

GPR35 receptors (Resta et al., 2016). It has been proven that KYNA plays an important role in 

endogenous protective mechanisms, therefore it is a good target for pathophysiologycal 

investigation of certain neurodegenerative disorders like  Huntington’s and Parkinson’s disease 

(Zádori et al., 2011).  

Kynurenine and KYNA have been implicated in various pain processes (Heyliger et al., 

1998; Cosi et al., 2011; Párdutz et al., 2012; Pineda-Farias et al., 2013; Vécsei et al., 2013). KYNA 

can also induce antinociception in a dose-dependent manner by intrathecal administration in the 

von Frey test (Tuboly et al., 2015) and enhance the acute antinociceptive effects of morphine when 

co-administered (Morgan et al., 2009).The opioid system – where morphine acts - is well known 

for its crucial role in pain relief. The system is composed of three opioid receptors, namely mu, 

kappa and delta  (MOP, KOP and DOP) and a series of endogenous opioid peptides. Opioid 

receptors belong to the G-protein coupled receptor (GPCR) superfamily and they are mostly 

coupled to Gi/o type G-proteins. Activation of these receptors leads to the inhibition of adenylyl 

cyclase which causes hyperpolarisation in the cell and  inhibits the release of certain 

neurotransmitters (for review see Burford et al., 2000; Benyhe et al., 2015). Opioid receptors are 

expressed in the gastrointestinal tract, spinal cord and in high quantity in the cortical and striatal 

regions of the brain (Corbett et al., 2006).  
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In our earlier paper, we reported that KYNA and KYNA1 (Fig. 1B) - a structural analogue 

(also known as SZR72) with considerable blood-brain barrier (BBB) permeability (Nagy et al., 

2011) - did not bind directly to any opioid receptor, but after chronic administration they caused 

significant changes in receptor function in the cortex and striatum of mice (Zádor et al., 2014). 

Our hypothesis regarding to these effects was that KYNA and KYNA1 may alter opioid receptor 

function through the co-localized NMDA receptor. 

In this study for the first time we investigated the acute effect of KYNA and KYNA1 on 

opioid receptor function together with the possible involvement of the NMDA receptor. Rats were 

acutely treated with a single dose of KYNA or KYNA1 intraperitoneally (i.p.) alone or in 

combination with the NMDA receptor antagonist MK-801. Additionally, KYNA and KYNA1 

plasma and cerebrospinal fluid (CSF) concentration was measured after acute administration. 

Finally, isolated rat brain slices were treated in vitro with KYNA, KYNA1 and MK-801, to exclude 

the BBB and the peripheral metabolisation of KYNA and KYNA1, etc.). Samples from the cortex 

and striatum were investigated in opioid receptor mediated G-protein functional studies, similarly 

to our previous study (Zádor et al., 2014).  
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2 MATERIALS AND METHODS 

2.1 Chemicals 

The MOR specific agonist enkephalin analogue Tyr-D-Ala-Gly-(NMe)Phe-Gly-ol 

(DAMGO) and the KOR agonist peptide dynorphin 1-13 were purchased from Bachem Holding 

AG (Bubendorf, Switzerland). The structurally modified DOR specific deltorphin II derivative, 

Ile5,6deltorphin II was synthesized in the Laboratory of Chemical Biology of the Biological 

Research Centre (BRC, Szeged, Hungary). Acetonitrile and perchloric acid was purchased from 

Scharlau (Barcelona, Spain), acetic acid was purchased from VWR International (Radnar, PA, 

USA).  EGTA, Tris-HCl, MgCl2 x 6H2O, NaCl, KCl, NaHPO4, NaHCO3, CaCl2, MgSO4, D-

glucose, GDP, the GTP analogue GTPS, kynurenic acid (KYNA), MK-801 hydrogen maleate 

(NMDA receptor blocker) and 3-nitro-L-tyrosine (3-NLT) were obtained from Sigma-Aldrich (St. 

Louis, MO, USA). The KYNA analogue, KYNA1 was synthesized in the Department of 

Pharmaceutical Chemistry, University of Szeged. The radiolabeled GTP analogue, [35S]GTPγS 

(specific activity: 3.7 x 1013 Bq/mmol; 1000 Ci/mmol) was purchased from Hartmann Analytic 

(Braunschweig, Germany). For dissolving all ligands in receptor assays highly pure distilled water 

was used and they were stored in 1 mM stock solution at -20 °C. 

2.2 Animals and treatments 

 Animals 

For in vivo experiments 64 male Sprague-Dawley rats were used and 20 for in vitro with 

average body weights of 300g. The animals were bred and maintained under laboratory conditions 

on a 12-h dark 12-h light cycle at 22-24 °C and ~65% relative humidity in the animal house of the 

Department of Neurology, Faculty of Medicine, University of Szeged (Szeged, Hungary). All 
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experimental procedures were carried out in accordance with the European Communities Council 

Directive (2010/63/EU), and the Hungarian Act for the Protection of Animals in Research 

(XXVIII.tv. 32.§). 

 In vivo animal treatments 

All animals for the in vivo experiments received a single intraperitoneal (i.p.) injection. 

The animal treatments are summarized in Figure 1, together with the main steps following 

treatments. One set of animals was divided into 7 groups as follows: (1) control (saline), (2) 

KYNA1 (296 mg/kg), and (3) KYNA (189 mg/kg) (4) MK-801 (1 mg/kg) + KYNA1 (296 mg/kg), 

(5) MK-801 (1 mg/kg) + KYNA (189 mg/kg), that each group was included 5 animals (KYNA1 

and KYNA doses were equimolar, 1 mmol). These sets of animals were decapitated 30 minutes 

after the treatments (Fig. 1A). Additionally, two further groups containing 3 animals per group 

were set up receiving only a single i.p. MK-801 (1 mg/kg) injection. One of the group of animals 

was decapitated 15 minutes, while the other group of animals were decapitated 45 minutes after 

the treatment. These two groups were representing a control for the combined treatments to 

examine the effect of MK-801 per se on the opioid system prior to the administration (15 minutes) 

and right after reaching the peak plasma concentration of KYNA/KYNA1 (15+30 minutes, see the 

next paragraph) (Fig. 1A). The other set of animals was divided into 5 groups: (1) control (saline), 

(2) KYNA (189 mg/kg) and (3) KYNA1 (296 mg/kg), (4) MK-801 (1 mg/kg) + KYNA (189 

mg/kg), (5) MK-801 (1 mg/kg) + KYNA1 (296 mg/kg). Groups (1)-(3) contained 7, while groups 

(4) and (5) contained 6 animals per group. These sets of animals were sacrificed 2 hours after 

treatments (Fig. 1B). In the case of combined treatments MK-801 was administered to the animals 

15 minutes prior to KYNA and KYNA1 treatment, in this way NMDA receptors will be already 

blocked by MK-801 when KYNA and KYNA1 are administered. 
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The chosen time phases for decapitation (30 minutes and 2 hours) were based on previously 

measured plasma concentration (yet unpublished data) of KYNA and KYNA1 after their i.p. 

administration: 30 minutes after injection the plasma concentrations of KYNA/KYNA1 was the 

highest, while after 2 hours it was the lowest. 

After the treatments, animals were anesthetized at the appropriate time points by chloral 

hydrate (Fig. 1). Those sets of animals which were anesthized 30 minutes after saline, KYNA1 or 

KYNA alone treatments, the cerebrospinal fluid (CSF) and blood samples were collected 

immediately afterwards for KYNA and KYNA1 concentration analysis (see later 2.3) (Fig. 1A). 

This was followed by cardiac perfusion of the animals using 0.1M PBS and finally the animals 

were decapitated (Fig. 1). After decapitation the perfused brains were removed, and the entire 

striatum together with the overlying cortex were excised (Fig. 1). Samples then were stored at -80 

°C until membrane homogenate preparation. 

 



9 
 
 

 

Figure 1. Animal treatments, groups, treatment duration times and main steps following the 

injections. A: Represents group 1-5 in which the animals were sacrificed 30 minutes after 

KYNA/KYNA1 treatment together with group 6 and 7 where animals received a single MK-801 

injection and sacrificed 15 and 45 minutes after treatment. B: Represents group 1-5 in which the 

animals were sacrificed 2 hours after KYNA/KYNA1 treatment. Circles and grey rectangulars 

marked with letters (A-E) represent the injection timepoints and the steps following treatmens, 

respectively. For additional information see under sections 2.2.2 and 2.2.1.   
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 In vitro isolated rat cortex and striatum treatments in isolated organ baths 

The in vitro studies were performed in isolated organ baths using 3 animals for each group 

(control, KYNA, KYNA1 and MK-801 treatment groups). After decapitation, brains were 

removed immediately in less than 30 seconds and placed it at 36-37 °C (physiological rat body 

temperature) artificial cerebrospinal fluid (ACSF, consisted of 130 mM NaCl, 3.5 mM KCl, 1 mM 

NaH2PO4, 24 mM NaHCO3, 3 mM CaCl2, 1.5 mM MgSO4 and 10 mM D-glucose) supplied with 

oxygen. Afterwards the striatum and cortex were quickly separated and transferred to the isolated 

organ bath chambers containing 10 ml, 37 °C ACSF with oxygen supply. Cortex and striatum 

slices were incubated for 30 minutes. After the incubation period KYNA, KYNA1 or MK-801 

were added to the bath for 30 minutes. The concentrations for KYNA and KYNA1 was 200 µM 

and for MK-801 it was 50 µM (Füvesi et al., 2004). Samples then were stored at -80 °C until for 

the cell membrane preparation (see under 2.4.1). 

2.3 Detection of KYNA and KYNA1 concentration in plasma and CSF with HPLC 

 Sample preparation 

Animals that were sacrificed 30 minutes after the in vivo treatments (see 2.2.2) the CSF 

was taken quickly from the suboccipital cistern of rats with 23G needle to Eppendorf tubes (rats 

were anaesthetized and they were taken to the stereotaxic setup in order to fix their head). After 

collection the CSF samples were stored at -80 °C until use for concentration detection of KYNA 

or KYNA1. After collecting the CSF, blood samples were collected immediately from the left 

ventricle into the cool, EDTA containing tubes and centrifuged at 12,000 rpm for 10 min at 4 °C. 

The serum samples for KYNA1 concentration detection were collected and stored at - 80 °C until 

use.  
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The serum samples for KYNA concentration detection were thawed and, after a brief 

vortex, the serum sample was 'shot' to a precipitation solvent (containing PCA with 3-NLT as 

internal standard, with resulting concentrations of 2.5 w/w% and 2 µM, respectively). The samples 

were subsequently centrifuged at 12,000 rpm for 10 min at 4 °C, and the supernatants were 

collected for measurement. Additionally, control animals (saline treated) were also used to detect 

endogenous KYNA levels in the plasma. 

 Chromatographic conditions for KYNA and KYNA1  

For the determination of KYNA1 from plasma and CNS and KYNA from CNS, a Thermo 

LCQFleet ion trap mass spectrometer was used equipped with an electrospray ionization (ESI) ion 

source combined with a Dionex Ultimate3000 HPLC system. The ionization parameters were as 

follows: heater temperature: 500°C, sheath gas flow rate: 60, auxiliary gas flow rate: 20, spray 

voltage: 4kV, capillary temperature: 400°C. Chromatographic separations were performed on an 

Kinetex C18 column, 100 mm × 4.6 mm 2.6 μm particle size (Phenomenex Inc., Torrance, CA, 

USA ) after passage through a SecurityGuard pre-column C18, 4 x 3.0 mm I.D., 5 μm particle size 

(Phenomenex Inc., Torrance, CA, USA ) with a mobile phase composition of  0.05% aqueous 

CH3COOH/ACN = 90/10 (v/v), applying isocratic elution. The flow rate and the injection volume 

were 1 ml/min and 50 μl, respectively. 

The KYNA concentrations of the serum samples were quantified on the basis of the method 

of Herve et al. (1996). Briefly, we used an Agilent 1100 HPLC system (Agilent Technologies, 

Santa Clara, CA, USA) equipped with fluorescence and a UV detector; the former was applied for 

the determination of KYNA and the latter for the determination of the internal standard (3-NLT). 

Chromatographic separations were performed on a Kinetex C18 column, 150 mm x 4.6 mm I.D., 
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5 μm particle size (Phenomenex Inc., Torrance, CA, USA) after passage through a Security Guard 

pre-column C18, 4 x 3.0 mm I.D., 5 μm particle size (Phenomenex Inc., Torrance, CA, USA) with 

a mobile phase composition of 0.2 M zinc acetate/ACN = 95/5 (v/v), the pH of which was adjusted 

to 6.2 with acetic acid, applying isocratic elution. The flow rate was 1 ml/min and the injection 

volume was 20 µl. The fluorescence detector was set at excitation and emission wavelengths of 

344 and 398 nm. The UV detector was set at a wavelength of 365 nm. The LOD and LLOQ for 

KYNA in the plasma samples were 1 nM and 3.75 nM, the relative standard deviation was ≤ 2.2% 

for the peak area response and ≤ 0.1% for the retention time for KYNA and the recoveries ranged 

from 103 to 108% for KYNA. 

2.4 G-protein activity assay 

 Cortex and striatum membrane preparations  

 The membrane fractions of rat cortex and striatum for [35S]GTPγS binding experiments 

were prepared after cardiac perfusion and the decapitation of the animals. Briefly, the cortex and 

striatum were collected and homogenized on ice in 50 mM Tris-HCl, 1 mM EGTA and 5 mM 

MgCl2 buffer (TEM, pH 7.4) with a teflon-glass homogenizer (potter homogenizer). Protein 

content for the assay was 10 µg/ml and stored at −80 °C until use. 

 Functional [ 35S]GTPγS binding assays  

The assays were performed according to previous reports, with slight modifications 

(Traynor & Nahorski, 1995; Sim & Childers, 1997) Membrane fractions of rat cortex and striatum 

were incubated in a final volume of 1 ml at 30 °C for 60 min in Tris-EGTA buffer (pH 7.4) 

composed of 50 mM Tris-HCl, 1 mM EGTA, 3 mM MgCl2, 100 mM NaCl, containing 20 

MBq/0.05 cm3 [35S]GTPγS (0.05 nM) together with increasing concentrations (10-10-10-5 M) of 
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DAMGO, dynorphin 1-13 or Ile5,6-deltorphin II. Total binding (T) was measured in the absence of 

the opioid ligands, non-specific binding (NS) was determined in the presence of 10 µM unlabeled 

GTPγS and subtracted from total binding. The difference (T-NS) represents basal activity. Bound 

and free [35S]GTPγS were separated by vacuum filtration through Whatman GF/B filters with 

Brandel M24R Cell harvester. The filtration and washing procedure together with radioactivity 

detection was performed as reported previously (Zádor et al., 2014). The [35S]GTPγS binding 

experiments were performed in triplicates and repeated at least three times. 

2.5 Data analysis 

In the HPLC analysis, the peak area responses were plotted against the corresponding 

concentration, and the linear regression computations were carried out by the least square method 

with the freely available R software (R Core Team, 2014). 

Experimental data of [35S]GTPS binding assays were presented and analysed as 

previously described (Zádor et al., 2014). Stimulation was given as percentage of the specific 

[35S]GTPS binding observed over the basal activity, which was settled as 100%. In the figures 

dose-response curves, Emax and/or logEC50 values have been shown. The significance level was 

determined by using One-way ANOVA with Bonferroni's Multiple Comparison statistical analysis 

in GraphPad Prism 5.0. Significance was accepted at the P< 0.05 level.  
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3 RESULTS 

3.1 The effect of acute KYNA and KYNA1 treatment alone and with the combination of 

MK-801 on agonist-mediated opioid receptor G-protein activation in rat cortex and 

striatum 

Opioid agonist-stimulated G-protein activation was measured in [35S]GTPS binding 

assays in cerebral cortex and striatum homogenates of saline (control) or KYNA/KYNA1-treated 

animals. MOP receptors were activated by the use of DAMGO. KOP receptor activation was 

measured in the presence of dynorphin (1-13), while DOP receptor stimulation was accomplished 

with Ile5,6-deltorphin II , a synthetic DOP receptor peptide agonist ligand. All opioid agonist 

ligands were applied in increasing concentrations to determine the maximum efficacy (Emax) of the 

opioid receptors G-protein and ligand potency (EC50). We also investigated the effect of NMDA 

receptor specific antagonist MK-801 on opioid receptor activity alone and in the presence of 

KYNA and KYNA1 (combined treatments).  

In the cortex area, 296 mg/kg KYNA1 treatment after 30 minutes significantly decreased 

the maximum efficacy of DAMGO at the MOP receptor, the reduction was nearly 50% (P < 0.001, 

df: 6; Fig. 2A). This effect was slightly reversed by 1 mg/kg MK-801. 189 mg/kg KYNA treatment 

alone and in combination with 1 mg/kg MK-801 did not change the MOP receptor mediated G-

protein activity (Fig. 2A). Interestingly 1 mg/kg MK-801 per se strongly reduced MOP receptor 

activity after 15 and 45 minutes in the cortex compared to control (both P < 0.01, df: 6; Fig. 2A) 

and after 45 minutes compared to KYNA treatment alone (P < 0.05, df: 6; Fig. 2A). The potency 

of DAMGO was not altered in either treatment condition (data not shown). 

Interestingly, 30 minutes KYNA1 treatment resulted an opposite effect in KOP receptor 

G-protein activity in the cortex compared to MOP receptor: the maximum efficacy of the KOP 
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receptor significantly increased compared to control (P < 0.05, df: 6; Fig. 2B). This enhancement 

was reduced by MK-801 in the combined treatments, but the reduction was statistically not 

significant (Fig. 2B). KYNA did not alter KOP receptor maximum efficacy significantly, neither 

MK-801 in either treatment condition (Fig. 2B). The potency of the KOP receptor stimulator ligand 

dynorphin 1-13 was not altered by either KYNA, KYNA1 or MK-801, similarly to DAMGO (data 

not shown). 

In contrast, the DOP receptor G-protein activity did not show any significant difference in 

the cortex area after 30 minutes KYNA and KYNA1 or 15 and 45 minutes MK-801 acute 

treatments (data not shown). However, the potency of the DOP receptor agonist Ile5,6-deltorphin 

II significantly enhanced after 30 minutes KYNA1 treatment, which was reversed to control level 

by MK-801 co-administered with KYNA1 (P < 0.01, df: 6; Fig. 2C).  

In the striatum in case of MOP and KOP receptor maximum G-protein efficacy was 

reduced by 30 minutes KYNA (MOP receptor: P < 0.01, KOP receptor: P < 0.001, df: 6; Fig. 2D 

and E), KYNA1 treatments (both receptors: P < 0.001, df: 6, Fig. 2D and E) and also both (15 and 

45 minutes) MK-801 treatments alone (MOP and KOP receptor, 15 and 45 min.: P < 0.001, df: 6; 

Fig.2D and E). MK-801 in combination with KYNA1 and KYNA did not cause any significant 

alterations in G-protein activity compared to their treatments alone in MOP receptor (Fig. 2D). In 

case of KOP receptor co-administering MK-801 resulted a noticeable increase in the Emax values 

compared to KYNA1 and KYNA alone, although the difference was not significant (Fig. 2E). 

Interesting to note, that KYNA1 treatment alone reduced KOP receptor G-protein activity more 

effectively than the 15 and 45 minutes MK-801 treatment (15 and 45 min.: P < 0.05, df: 6; Fig. 

2E). In the DOP receptor only 30 minutes KYNA and 45 minutes MK-801 treatments caused a 

significant reduction with a similar degree in the receptors G-protein activity (P < 0.01, df: 6; Fig. 
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2F). Additionally, in the striatum neither of the potency of the opioid receptor selective agonist 

ligands was altered significantly by KYNA1, KYNA or MK-801 (data not shown).  

After 2 hour treatment of KYNA1 and KYNA, no significant changes were observed in 

either of the opioid receptors G-protein activity or ligand potency regardless of the brain areas 

(data not shown). Thus, in summary, KYNA1 and KYNA was only effective 30 minutes after the 

injection, and the alterations were opposite depending on the brain area and opioid receptor (Table 

1). 
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Figure 2.    The acute (30 min, in vivo) effect of KYNA, KYNA1 alone and in combination 

with MK-801 on agonist-stimulated opioid receptor G-protein activity in [35S]GTPγS 

binding assays performed in rat cortex (A-C) and striatum (D-F). Each animal received a 

single i.p. injection of 296 mg/kg KYNA1 or 189 mg/kg KYNA dosage, while MK-801 was 

administered in 1 mg/kg i.p., as described in section 2.2.2. A, B and D-F represents the maximal 

efficacy (Emax) over basal activity (100 %) of MOP and KOP receptors G-protein in cortex (A and 

B) and striatum (D and E) and of DOP receptor G-protein in striatum (F), respectively. C 

represents the potency (logEC50) of the DOR specific agonist Ile5,6-deltorphin II. Columns 

represent means ± S.E.M. for at least three experiments performed in triplicate. The calculation of 

Emax and EC50 values can be seen under section 2.5. *: indicates the significance level of Emax and 

logEC50 values compared to control. #: indicates the significance level of Emax values compared to 

KYNA treatment alone. ×: indicates the significant reduction of Emax value after KYNA1 injection 

per se compared to MK-801 15 and 45 minutes treatment alone. One-way ANOVA with 

Bonferroni's Multiple Comparison was used for statistical analysis. ***: P < 0.001, **: P < 0.01, 

*/#/×: P < 0.05. 
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Table 1.   Summary and comparison of acute in vivo effect KYNA, KYNA1 and MK-801 

treatment on opioid receptors mediated G-protein activity and ligand potency.  

 KYNA (30’)  KYNA1 (30’)  MK-801 (15’)  MK-801 (45’) 

G-protein 

efficacy 

Ligand 

potency 

 G-protein 

efficacy 

Ligand 

potency 

 G-protein  

efficacy 

Ligand 

potency 

 G-protein  

efficacy 

Ligand 

potency 

MOR 
Ctx.            

Str.            

KOR 
Ctx.            

Str.            

DOR 
Ctx.            

Str.            

Ctx.: cortex, Str.: striatum, : significant enhancement, : significant inhibition, : no significant effect. 
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3.2 KYNA and KYNA1 plasma and CSF concentrations after 30 minutes administration  

 Since the opioid receptor G-protein activity in the cortex and striatum was only altered 

after 30 minutes of KYNA1 and KYNA treatment, we measured the concentration of these two 

compounds in the cerebrobrospinal fluid (CSF) and compared it to their concentration in the blood 

plasma. The treatment conditions were the same as described in section 2.2.2. Additionally, the 

endogenous KYNA plasma concentration was also determined for control. KYNA1 and KYNA 

CSF and plasma concentrations were measured by HPLC.  

30 minutes following KYNA treatment the concentration of KYNA dramatically increased 

compared to endogenous KYNA plasma concentrations as expected (P < 0.001, df: 4; Fig. 3). It 

reached to 630 µM in the plasma (endogenous KYNA plasma concentration: 0.2 µM), while this 

was reduced to 48 µM in the CSF (P < 0.001, df: 4; Fig. 3). KYNA1 displayed a significantly 

lower, 124 µM concentration in the plasma compared to KYNA (P < 0.001, df: 4; Fig. 3), and 65 

µM in the CSF. 
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Figure 3. The blood plasma and CSF concentration levels of KYNA1 and KYNA after 30 

minutes of 296 mg/kg (KYNA1) and 189 mg/kg (KYNA) acute administration of the 

compounds. Additionally, the endogenous KYNA plasma concentrations (End. plasma) is also 

indicated for the control. For further information regarding to animal treatments and HPLC 

analysis see under section 2.2.2 and 2.3, respectively). Columns represent means ± S.E.M. for at 

least three experiments. *: indicates the significant increase in concentrations of KYNA after 

treatment compared to endogenous KYNA levels in the plasma. #: indicates the significant 

decrease of KYNA CSF concentration levels compared to plasma after treatment. ×: indicates the 

significant difference between KYNA and KYNA1 plasma concentration levels. One-way 

ANOVA with Bonferroni's Multiple Comparison was used for statistical analysis. ***/###: P < 

0.001. 
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3.3 The effect of in vitro administered KYNA1, KYNA and MK-801 on agonist-mediated 

opioid receptor G-protein activation in the isolated rat cortex and striatum slices 

In these studies freshly prepared brain slices of rat striatum and cortex were prepared and 

treated with KYNA, KYNA1 and MK-801 in an isolated organ bath. Following 30 min incubation 

tissue specimens were further processed by homogenisation for G-protein activity studies as 

described earlier (section 2.4.1). MOP, KOP and DOP G-protein activity was measured the same 

way as in in vivo studies (see section 2.4.2).   

In the in vitro studies of isolated cortex slices, the maximum G-protein activity of MOP 

receptor significantly decreased nearly 60% in the cortex after 200 µM KYNA1 treatment (P < 

0.001, df: 3), which was significantly lower compared to the reducing effect of 200 µM KYNA (P 

< 0.001, df: 3; Fig. 4A). The results in 50 µM MK-801 treated cortex were very similar to KYNA1 

treated samples, the reduction reached 70 % (P < 0.001, df: 3; Fig. 4A). The potency of DAMGO 

on MOP receptor was not altered after either in vitro treatments (data not shown). Similar results 

were observed in KOP receptor G-protein maximum activity in the cortex after KYNA1 and MK-

801 treatments, but the inhibitory effects were much more prominent in both cases (P < 0.001, df: 

3; Fig. 4B). Interestingly, KYNA did not alter the maximum activity of KOP receptor in the cortex 

(Fig. 4B) and similarly to MOP receptor agonist, the potency of the KOP receptor agonist ligand 

(dynorphin 1-13) remained unaltered after in case of all in vitro treatments (data not shown). The 

DOP receptor G-protein activity was reduced significantly after KYNA, KYNA1 and MK-801 

treatments as well (P < 0.001, df: 3; Fig. 4C), moreover the ligand potency of Ile5,6-deltorphin II  

was increased after KYNA1 treatment (P < 0.05, df: 3; Fig. 4D). 

In the striatum the in vitro treatments showed very similar results compared to cortex. For 

all three opioid receptor G-protein activity was reduced by all three compounds compared to 
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control. MOP and KOP receptor G-protein activity was reduced in a similar extent by the 

compounds and compared to the cortex (KYNA1: P < 0.001, KYNA: P < 0.05, MK-801: P < 

0.001, df: 3; Fig. 4E and F). In case of DOP receptors the reduction was less robust than in the 

cortex region, but KYNA reduced the Emax value with comparable extent to KYNA1 and MK-801 

similarly to the cortex (KYNA1: P < 0.01, KYNA: P < 0.05, MK-801: P < 0.05, df: 3; Fig. 4G). 

The main difference in the striatum is that the DOP receptor agonist potency was not altered by 

either compound (data not shown). Additionally, KYNA1 and MK-801 reduced MOP and KOP 

receptor maximum G-protein efficacy more effectively than KYNA (P < 0.001, df: 3; Fig. 4E and 

F).  

In summary the in vitro treatments displayed a reducing effect in receptor G-protein 

signaling regardless of the opioid receptor type and brain region (except for KYNA in KOP 

receptor) (Table 2). Also the levels of inhibition were very similar in the two brain regions within 

the opioid receptor types. Additionally, KYNA1 and MK-801 displayed stronger effects than 

KYNA in case of MOP and KOP receptor in both cortex and striatum. 



23 
 
 

C
ontr

ol

K
Y
N
A
1

K
Y
N
A

M
K
-8

01
 

100

120

140

160

180

200

***
##***

##

*
E

m
a

x

M
O

P
r 

G
-p

ro
te

in
 (

%
)

C
ontr

ol

K
Y
N
A
1

K
Y
N
A

M
K
-8

01

100

150

200

250

300

350

400

***

***

E
m

a
x

K
O

P
r 

G
-p

ro
te

in
 (

%
)

C
ontr

ol

K
Y
N
A
1

K
Y
N
A

M
K
-8

01

100

120

140

160

180

***

E
m

a
x

D
O

P
r 

G
-p

ro
te

in
 (

%
)

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

C
ontr

ol

K
YN

A

K
YN

A1

M
K
-8

01

*

lo
g

E
C

5
0

Il
e

5
,6

-d
e
lt

o
rp

h
in

 I
I 

(M
)

C
ontr

ol

K
Y
N
A
1

K
Y
N
A

M
K
-8

01

100

120

140

160

180

200

220

240

260

***
###

***
###

*

E
m

a
x

M
O

P
r 

G
-p

ro
te

in
 (

%
)

C
ontr

ol

K
Y
N
A
1

K
Y
N
A

M
K
-8

01
 

100

150

200

250

300

350

400

***
###

***
###

*

E
m

a
x

K
O

P
r 

G
-p

ro
te

in
 (

%
)

C
ontr

ol

K
Y
N
A
1

K
Y
N
A

M
K
-8

01

100

110

120

130

140

*

**

*E
m

a
x

D
O

P
r 

G
-p

ro
te

in
 (

%
)

C
o

rt
e

x
S

tr
ia

tu
m

A B C D

E F G

 

Figure 4.     Agonist-stimulated opioid receptor G-protein activity in [35S]GTPγS binding 

assays performed in rat cortex (A-D) and striatum (E-G) homogenised brain slices after 

acute in vitro treatment of KYNA1, KYNA and MK 801. KYNA1 and KYNA were 

administered on cortex and striatum brain slices in 200 µM, while MK 801 in 50 µM 

concentrations. Samples were treated for 30 minutes in isolated organ baths as described in section 

2.2.3. A-C and E-G represents the maximal efficacy (Emax) over basal activity (100 %) of MOP, 

KOP and DOP receptors G-protein in cortex (A-C) and striatum (E-G). D represents the potency 

(logEC50) of the DOR specific agonist Ile5,6-deltorphin II. Columns represent means ± S.E.M. for 

at least three experiments performed in triplicate. The calculation of Emax and EC50 values is 

discussed under section 2.5. *: indicates the significance level of Emax and logEC50 values 

compared to control. #: indicates the significance level of Emax values of KYNA1 and MK-801 

compared to KYNA. One-way ANOVA with Bonferroni's Multiple Comparison was used for 

statistical analysis. ***: P < 0.001, **: P < 0.01, *: P < 0.05. 
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Table 2.  Summary and comparison of acute in vitro effect KYNA, KYNA1 and MK-801 

treatment on opioid receptors mediated G-protein activity and ligand potency. 

   KYNA  KYNA1  MK-801 

G-protein 

efficacy 

Ligand 

potency 

 G-protein 

efficacy 

Ligand 

potency 

 G-protein 

efficacy 

Ligand 

potency 

MOR 
Ctx.         

Str.         

KOR 
Ctx.         

Str.         

DOR 
Ctx.         

Str.         

Ctx.: cortex, Str.: striatum, : significant enhancement, : significant inhibition, : no significant 

effect. 
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4 DISCUSSION 

In this study we have shown for the first time that KYNA1 and KYNA not only alters 

opioid receptor function after chronic treatment as showed previously (Zádor et al., 2014), but also 

after acute administration in a tissue and receptor specific way. Moreover, the effects were 

modified by MK-801, a selective NMDA receptor antagonist, indicating that the changes might be 

mediated through this receptor. The effects seen in vivo were found also in acute in vitro 

experiments in isolated cortex and striatum slices. Our results further support previous findings 

showing the effect of KYNA on the opioid receptors activity (Marek et al., 1991; Kekesi et al., 

2002; Horvath et al., 2007; Mecs et al., 2009; Morgan et al., 2009; Safrany-Fark et al., 2015). 

When compared the results of chronic (128 and 200 mg/kg/day, i.p., for 9 days)  and acute 

treatments, the data accords just in few cases (DOP receptor in cortex and striatum and KOP 

receptor in striatum by KYNA treatment). In the other cases, the effects were opposite (KYNA1 

treatment on KOP receptor in the striatum), or it did not cause any significant alterations when 

compared to the appropriate acutely treated group (KYNA1 on MOP receptor). Nevertheless, the 

molecular mechanisms behind these effects might be due to altered opioid receptor G-protein gene 

or protein expression or receptor sensitivity, which is most probably mediated through 

KYNA/KYNA1 specific receptors since they do not bind directly to opioid receptors (Zádor et al., 

2014). The NMDA receptor has been demonstrated to bind KYNA - although with low micromolar 

affinity (Stone, 1993) – also, the interaction of NMDA and opioid receptors have been 

demonstrated in many levels (Mao, 1999). Morevoer, a functional interaction and co-localization 

has been described between the MOP receptor and NMDA receptor in the NAcc shell – which is 

part of the ventral striatum - with electrophysiological (Martin et al., 1997) and anatomical studies 

(Hiller et al., 1994) and with immunocytochemical labeling (Gracy & Pickel, 1996; Svingos et al., 
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1996; Gracy et al., 1997). Thus in order to investigate the possible role of the NMDA receptor we 

applied MK-801 (also known as dizocilpine) (Wong et al., 1986), a highly NMDA receptor 

selective antagonist (Kornhuber et al., 1989; Koek et al., 1993). MK-801 has also been 

demonstrated to alter opioid receptor-mediated effects (Kotlińska, 2001; Morgan et al., 2009), 

however it does not bind directly to opioid receptors (Koek et al., 1993) similarly to KYNA. 

MK-801 alone behaved similarly as KYNA1 or KYNA (Fig. 2A and D). MK-801 in 

combination with KYNA1 or KYNA displayed a somewhat less pronunced reduction opioid 

receptor G-protein activity in certain groups (KYNA1+MK-801: Fig. 2A and D;  KYNA+MK-

801: Fig. 2F) compared to KYNA1 or MK-801 alone. The results might be explained by the 

impairment of KYNA1/KYNA and MK-801 individual activity when administered together, since 

they exerted similar effects alone, indicating an NMDA receptor mediated effect. The same 

explanation arises in case of MOP and KOP receptors expressed in the striatum, where KYNA and 

MK-801 alone or in combination reduced G-protein signaling (Fig. 2D and E). In case of DOP 

receptor in the cortex, the enhanced agonist (Ile5,6-deltorphin II ) ligand potency followed by 30 

minutes KYNA1 treatment was reduced to control levels by MK-801 pretreatment (Fig. 2C). 

Interestingly, MK-801 alone did not cause any alterations in ligand potency following 15 or 45 

minute administration (Fig. 2C), which indicates that MK-801 inhibited the effect of KYNA1 

through NMDA receptor. Furthermore, it also shows that the enhanced DOP receptor agonist 

ligand potency is a KYNA1 specific action, whereas the attenuated opioid receptor G-protein 

activity in the cortex (MOP and DOP receptor) and striatum (all three opioid receptors) are also 

MK-801 related. 

AMPA and kainate receptors are also a direct targets for KYNA and there is evidence that 

they can also interact with opioid receptors. Their interactions have been studied mainly in terms 
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of opioid addiction and has been described so far in the amygdala and hippocampus (Kam et al., 

2010; Scavone et al., 2011), which are outside the point of our examined brain regions. To the best 

of our knowledge there are no current studies so far describing AMPA/kainate-opioid receptor 

interactions in the striatum or cortex. However, it does not exclude the possibility and may be an 

alternative mechanism which through KYNA/KYNA1 alters opioid receptor function. 

Another possible explanation for our results is the connection between GPCR ion-

dependency and glutamate receptors. Sodium ion has been long known to affect allosterically 

opioid receptor binding (Katritch et al., 2014). In fact, a distinctive sodium binding pocket was 

discovered recently on MOP and DOP receptors (Fenalti et al., 2014; Huang et al., 2015). Hence, 

ionotropic glutamate receptors (NMDA, AMPA and kainate receptors etc.) being ligand-gated 

non-selective cation channels, may alter sodium ion concentrations induced by KYNA/KYNA1, 

which than may trigger an altered opioid receptor binding. This could be a plausible explanation 

for the increased DOP receptor agonist potency after KYNA1 treatment in the cortex (Fig. 2C). 

Since only the 30 minutes duration time showed significant results (Table 1), we carried 

out HPLC measurements of KYNA1 and KYNA concentration levels in the CSF following 30 

minute treatment. As expected the KYNA CSF concentration levels dramatically reduced 

compared to plasma levels, while in case of KYNA1 there was only a minor difference (Fig. 3). 

This proves that KYNA1 passes through the blood-brain barrier more easily than KYNA, which 

is in agreement with previous studies (Nagy et al., 2011). Additionally, KYNA1 concentrations 

were significantly lower in plasma compared to KYNA indicating that KYNA1 might have been 

metabolized to KYNA. 

The observed effect after 30 minutes in vivo KYNA1 treatment might be at some part 

KYNA related. To examine this possibility G-protein activity studies were carried out in cortex 
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and striatum slices treated in vitro with KYNA1, KYNA and MK-801 in isolated organ baths for 

30 minutes. With this setup we can exclude or at least minimize the peripheral metabolism and 

elimination of KYNA1 and also exclude the BBB from the system, yet again the possible receptor-

receptor interactions can remain intact. Accordingly, KYNA1 displayed the same effect as in in 

vivo experiments (similar to KYNA and MK-801), thus KYNA1 itself does affect opioid receptor 

G-protein activity. However, in case of KOP receptor in the cortex, the effect was opposite 

compared to in vivo experiments (Fig. 4B vs. 2B). Additionally, in some cases the in vitro results 

showed significant alterations where the in vivo setup did not. For instance, in the in vivo 

experiments KYNA1 did not alter the G-protein activity of DOP receptors expressed in the cortex, 

whereas in vitro this parameter was reduced (Fig. 4C vs. 2C).  

These differences between in vivo and in vitro results might be due to rapid peripheral 

metabolism of the compounds and the presence of the BBB. However, the main effect - which is 

decreasing the activity of opioid receptors - can be seen in both experimental setups. The different 

levels of G-proteins or receptors could be another possible explanation. The most striking result 

was the increase of KOP G-protein activity, which was only observed in the cortex following in 

vivo KYNA1 treatment (Fig 2B). It has been demonstrated that a bolus i.p. injection of a very high 

dose of KYNA can cause a decrease in the cerebral blood flow, which reduction was more 

significant in the cortex area (Varga et al., unpublished). KOP receptors are known to contribute 

to neuroprotection in animal models of cerebral ischemia (Goyagi et al., 2003; Fang et al., 2013). 

The increased KOP receptor activity induced by KYNA1 treatment might be due to a 

compensatory mechanism of the KOP receptor, representing its neuroprotective effect against 

reduced cortex blood flow. Furthermore, during this mechanism KYNA1 might be converted to 

KYNA in the cortex, exerting its vasoconstrictor effect at high dosage. KYNA treatment did not 
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affect KOP receptor activity in the cortex most probably because of its poor BBB penetration. In 

other words, KYNA did not reach the necessary concentration levels in the cortex to reduce the 

blood flow in this area, thus it did not trigger the compensatory mechanism of the KOP receptor 

system. 

5 CONCLUSIONS   

The present study for the first time provides evidence for an indirect, NMDA receptor-

mediated mechanism regarding the effects of KYNA/KYNA1 on opioid receptor function at the 

receptor-G-protein level. Thus KYNA and KYNA1 might be possible drug candidates for 

controlling the activity of the opioid system via the NMDA receptor, for instance, during opioid 

withdrawing in addiction therapy or pain management. 
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