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Abstract. Age-related changes in brain structure are a question of interest to a broad field of research. Structural decline has
been consistently, but not unambiguously, linked to functional consequences, including cognitive impairment and dementia.
One of the areas considered of crucial importance throughout this process is the medial temporal lobe, and primarily the
hippocampal region. Gender also has a considerable effect on volume deterioration of subcortical grey matter (GM) structures,
such as the hippocampus. The influence of age × gender interaction on disproportionate GM volume changes might be
mediated by hormonal effects on the brain. Hippocampal volume loss appears to become accelerated in the postmenopausal
period. This decline might have significant influences on neuroplasticity in the CA1 region of the hippocampus highly
vulnerable to pathological influences. Additionally, menopause has been associated with critical pathobiochemical changes
involved in neurodegeneration. The micro- and macrostructural alterations and consequent functional deterioration of critical
hippocampal regions might result in clinical cognitive impairment–especially if there already is a decline in the cognitive
reserve capacity. Several lines of potential vulnerability factors appear to interact in the menopausal period eventually leading
to cognitive decline, mild cognitive impairment, or Alzheimer’s disease. This focused review aims to delineate the influence
of unmodifiable risk factors of neurodegenerative processes, i.e., age and gender, on critical subcortical GM structures in
the light of brain derived estrogen effects. The menopausal period appears to be of key importance for the risk of cognitive
decline representing a time of special vulnerability for molecular, structural, and functional influences and offering only a
narrow window for potential protective effects.

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Keywords: Aging, cognitive decline, gender, hippocampus CA1 region, subcortical grey matter29
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INTRODUCTION 30

Age-related changes in brain structure are a ques- 31

tion of interest to a number of different fields of 32

research including neuroendocrinology, neurobiol- 33

ogy, and neuroimaging, to just name a few. The 34
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growing body of research evidence has linked struc-35

tural alterations to certain functional and clinical36

manifestations, including dementia-related disor-37

ders. Dementia has become a major health and public38

concern worldwide with an increasing prevalence in39

the aged population. The most common cause of40

dementia in the general population above 60 years41

of age is Alzheimer’s disease (AD) [1]. AD is char-42

acterized by progressive behavioral, affective, social,43

and cognitive impairment [2]. The neuropathologi-44

cal changes presumed to stand behind the functional45

impairment are primarily the amyloid depositions and46

the neurofibrillary tangles [3, 4]. These histopatho-47

logical alterations have been described in several48

brain regions involving widespread frontal, pari-49

etal, and temporal cortical and subcortical structures.50

Among these, medial temporal subcortical structures51

are typically considered the most commonly empha-52

sized areas affected [5]. The most important risk53

factor of developing AD that cannot be influenced54

is age itself [6]. The most recent systematic review55

and meta-analysis on prevalence and incidence of56

dementia, and dementia due to AD found that increas-57

ing age was significantly associated with increasing58

prevalence and incidence rates of dementia [7] and59

AD [8]. Thus it appears crucial to understand the60

age-related changes occurring in brain structures of61

potential key importance. Large sample epidemio-62

logical studies show that women have a significantly63

higher risk of developing AD for various reasons64

(e.g., longer lifespan) [9–11]. Interestingly, incidence65

rates appear to show and age-dependent relationship66

between sex and likelihood of developing AD. Inci-67

dence of AD has been reported to increase with age68

for both sexes until about 85–90 years but to continue69

to increase among women only [12]. Therefore, gen-70

der is also considered a crucial unmodifiable factor71

in AD pathology with clear differences in structural72

and functional decline of specific brain areas.73

This review will be focusing on age and gen-74

der dependent changes in grey matter (GM) micro-75

and macrostructures–and especially subcortical GM76

formations—and related cognitive alterations as a77

functional representation in AD pathology.78

GREY MATTER ALTERATIONS79

IDENTIFIED IN AD80

A number of studies have addressed the neu-81

roanatomical changes in the background of clinical82

symptoms presenting in AD. A recent large sample83

meta-analysis has used anatomic likelihood estima- 84

tion aiming to identify more robust and consistent 85

alterations [5]. GM atrophy has been found to pri- 86

marily affect bilateral medial temporal lobe (MTL) 87

structures, involving the amygdala, hippocampus, 88

parahippocampal gyrus, uncus, and entorhinal cor- 89

tex, as well as the thalamus, caudate, and cingulate 90

cortices [13]. Strikingly, one significant cluster in 91

the left MTL has been identified as a potential 92

anatomical marker for AD development and pro- 93

gression. A robust GM loss has frequently been 94

documented in regions of the MTL bilaterally [14, 95

15]. Furthermore, the microstructure of the white 96

matter fibers in the close vicinity of the mediotem- 97

poral structures are also affected by the disease [16]. 98

Hypometabolism as measured by PET studies and 99

hypoactivation as revealed by functional MRI have 100

also been reported [17]. Disrupted functional connec- 101

tivity in these regions further supports the critical role 102

of MTL structures in the pathophysiology of AD [18, 103

19]. A main question of debate remains as to what 104

extent these changes reflect the course of the disease. 105

Research evidence indicates that relevant alterations 106

are present primarily in areas of the MTL several 107

years before the clinical signs of AD [20]. More- 108

over, morphological abnormalities and atrophy have 109

been detected in the left MTL specifically as the most 110

consistent structure to predict conversion from mild 111

cognitive impairment (MCI) to AD [21]. Thus, based 112

on the pattern of structural atrophy, the left MTL has 113

been suggested as a marker of disease progression in 114

AD [5] (for a summary of referenced findings please 115

see Table 1). 116

AGE-RELATED CHANGES OF RELEVANT 117

GM STRUCTURES 118

A great body of research evidence confirms that 119

aging is associated with decrease in total whole-brain 120

volume [22–24], overall GM and white matter (WM) 121

volume [25–29], as well as cortical thickness [30]. 122

It seems evident to state that, parallel to total brain 123

volume, the volume of subcortical brain structures in 124

general decreases with age. However, evidence indi- 125

cates that the changes are very different in specific 126

brain areas [31, 32]. Even studies reporting no overall 127

significant effect of aging on WM volume did reveal 128

a decline with age in some areas [26, 33]. 129

In order to understand the relevance of the 130

structural loss, we have to decipher their com- 131

plex neurobiological background and their effect 132
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Table 1
Age- and gender-related changes of medial temporal lobe, with the major focus on the hippocampus

Golomb et al., [160] Size of hippocampal formation predicts longitudinal alterations of performance on memory tests.
Murphy et al., [50] Larger age-related total GM volume loss and atrophy in frontal and temporal areas in males than in females,

Greater atrophy in females than in males in hippocampus and parietal cortices.
Hemispheric metabolic asymmetry in temporal and parietal cortices, Broca’s area, thalamus, and also in

hippocampus.
Raz et al., [43] Largest age-related decline: volume of the prefrontal cortices.

Slighter age-related alterations: volume of the fusiform gyri, inferior temporal, superior parietal areas.
Weak effects of age on hippocampus and postcentral gyrus.
Larger total brain volume and the hippocampus in males than in females.

Jack et al., [161] Annual decline in hippocampal volume, increase in temporal horn volume was identified in the elderly.
2.5 times greater rates in patients with AD than in age- and gender-matched controls.

Xu et al., [60] Larger atrophy with aging in right frontal lobe posteriorly in males compared to females.
Age-related atrophy in right temporal lobe medially, in parietal cortices, cerebellum + left basal ganglia in

males, but not in females. Smaller left thalamus, parietal, occipital cortices + cerebellum volume compared
to the right hemisphere.

No age- and gender-related difference in this asymmetry.
Good, et al., [26] Linear global GM volume loss with age, steeper decline in men.

Accelerated loss bilaterally in the insula, superior parietal gyrus, central sulcus + cingulum.
Little or no age effect in amygdala, hippocampus + entorhinal cortex.

Ge et al., [25] Constant GM volume loss, linearly with age throughout adulthood, whereas delayed WM volume loss until
midlife. No effect of sex.

Scahill et al., [24] Acceleration in atrophy with age in all analyses, prominently after the age of 70, particularly in the ventricles
and in the hippocampus.

Wang et al., [162] Distinct patterns of hippocampal shape alteration with age, different patterns of hippocampal volume loss
may distinguish mild dementia from healthy aging.

Sullivan et al., [52] Linear thalamic volume loss with age in a similar pace in males and females, whereas more steep cortical
GM volume decline during aging in men than in women.

Fleisher et al., [80] Greater deleterious effect of APOE*E4 genotype status on gross hippocampal pathology and memory
functions in women as compared to men.

Lemaitre et al., [55] Between the ages of 63 and 75 years, largest GM atrophy in primary cortices + in angular gyri, superior
parietal gyri, orbitofrontal cortex + in hippocampus. No sex × age interaction.

Ahsan et al., [42] Larger left caudate, nucleus accumbens + putamen, and larger globus pallidus in men.
Smith et al., [29] Relative regional differences in GM volume frontal, parietal + temporal cortices, no volume loss in medial

temporal lobe and in posterior cingulate. No gender effects.
Sowell et al., [30] Thicker right inferior parietal + posterior temporal cortices in females.

Gender differences in these areas are detectable from late childhood and are maintained throughout life.
Curiati et al., [35] Selective focus of accelerated GM reduction only in men, including temporal neocortices, prefrontal cortices,

and medial temporal areas.
Neufang et al., [65] Larger GM volumes of left amygdala in males, larger right striatal GM volumes and hippocampal GM

volumes bilaterally in females.
Independently of gender, volumes of amygdala and hippocampus are associated with levels of circulating

testosterone.
Ostby et al., [36] From childhood until adulthood: non-linear decrease in GM in cerebral cortex, linear decrease in caudate,

putamen, pallidum, nucleus accumbens, and cerebellum.
Small, non-linear increase in amygdala and hippocampal GM volume.

Ystad et al., [163] Hippocampal volumes are important predictors for memory function in elderly women.
Hemispheric asymmetry in hippocampal volumes during aging.
In females, volume of left hippocampus has predictive value.
Gender and left hippocampal volume may predict verbal memory performance in healthy elderly.

Erickson et al., [82] Limited time window for hormone replacement therapy to positively influence hippocampal volume.
Fjell and Walhovd, Heterogeneous pattern in the atrophy of specific brain areas during aging: largest shrinking in frontal and

temporal cortices + in putamen, thalamus, and nucleus accumbens.2010 [38]
Mukai et al., [77] Important role of hippocampus-derived estradiol in the modulation of synaptic plasticity.
Goto et al., [83] Reduced GM volume in bilateral hippocampus in females in their fifties (most of them experiencing

menopause) compared to females in their forties (most of them not experiencing menopause).
→ Menopause may correlate with reduction of hippocampal volume.

Skup et al., [45] Different patterns of decline with age in males and females in AD group and MCI group compared to healthy
controls in precuneus and caudate nucleus bilaterally, right entorhinal gyrus, thalamus bilaterally, left
insula, and also in right amygdala.

Takahashi et al., [51] More retained GM concentrations in females during aging in inferior frontal gyri bilaterally, cingulate gyrus
anteriorly, hypothalamus and in medial thalamus.

(Continued)
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Table 1
(Continued)

Devanand et al., [164] Differences in volumes of hippocampus, entorhinal cortex, and parahippocampal gyrus between MCI and
healthy controls.

In patients converting from healthy to MCI: larger atrophy in the head of hippocampus, specifically in CA1 and
subiculum, in entorhinal cortex, especially in bilateral pole of EC.

Borghesani et al., [165] Improvement of midlife memory positively correlates with larger hippocampal volume in the elderly, compared
to those who had decline or no change in their episodic memory in their midlife.

Ooishi et al., [78] Crucial role of hippocampus-derived estradiol, T, and DHT in modulating synaptic plasticity.
Rijpkema et al., [53] No gender difference in caudate nucleus and nucleus accumbens.

Larger globus pallidus and putamen volume.
Spencer-Segal et al., [79] In females, important role of estrogen receptor signaling in hormone’s influence regarding hippocampal synaptic

plasticity.
Fjell et al., [34] Faster estimated decline in the elderly in hippocampus.
Taki et al., [166] Positive correlations between yearly regional GM volume alterations and age: temporal pole bilaterally, caudate

nucleus, insula, hippocampus.
Negative correlations between age and changes in cingulate gyri bilaterally + cerebellum.
Age × gender interaction between annual ratio of regional GM volume change in hippocampus bilaterally.

Crivello et al., [167] Higher GM decline in females compared to males (persistent throughout age ranges)
Hippocampus: similarly accelerated decline with age in males and females.

Li et al., [58] Age-related atrophy in basal ganglia and thalamus.
Hippocampus atrophy in males only, and no decline in the amygdala.

Perlaki et al., [57] No sexual dimorphism in the size of hippocampus.
Kiraly et al., [56] Larger hippocampus volume in females.

Age-related decrease of caudate nucleus, putamen and thalamic volumes in males.
Thalamic volume loss in females.
Faster decrease in total GM volume in males as compared to females.

on functionality. Fjell and his co-workers have133

done tremendous work in an effort to character-134

ize cross-sectional and longitudinal changes in brain135

aging and to compare healthy normal aging to136

pathological alterations (i.e., the Alzheimer Disease137

Neuroimaging Initiative) [34]. Fjell et al. have used138

a nonparametric smoothing spline approach to assess139

age trajectories of anatomical structures in a large140

sample of healthy adults. Cross-sectional as well as141

longitudinal, follow-up data has been analyzed iden-142

tifying certain critical age periods. These critical ages143

would account for a more significant rate of change144

within the estimated range of volume loss. Latter145

has been described for total brain volume with a146

stronger correlation above the age of 60, as well as147

for the cerebral cortex, and, interestingly the pal-148

lidum, with the age of around 25 years correlating149

most with structural decline. A linear reduction with150

age has been identified for a number of subcortical151

structures, i.e., the amygdala, nucleus accumbens,152

putamen, and the thalamus, also supported by sev-153

eral previous findings [31, 35]. The hippocampus has154

been previously characterized by a nonlinear pat-155

tern of estimated change through adulthood. This156

might be explained by a prolonged phase of devel-157

opment [36], a longer stable period and, critically,158

an accelerated volume loss starting around the age159

of 50 and an even more robust negative relation- 160

ship above 60 [37–39]. Indeed, in the longitudinal 161

analysis, the hippocampus showed the fastest rate 162

of volume reduction (–0.83% per year) among sub- 163

cortical structures [34]. Changes in brain volume 164

constitute a truly dynamic process with a great num- 165

ber of potential influencing factors, which should be 166

ideally monitored by using longitudinal approaches 167

with a high density of assessments. Nevertheless, 168

more complex and sophisticated methods of analysis 169

as well as large volume data could yield more insight 170

into targeted questions [40]. 171

Another highly dynamic process throughout the 172

human lifespan is considered the interaction with and 173

accommodation of constant endogenous and exoge- 174

nous influences. The view of lifespan trajectories of 175

change in brain structure and function might serve as 176

a base of understanding vulnerability to certain age- 177

related disorders such as MCI and AD. It might be 178

crucial to emphasize the potential significance of life 179

course effects which, in a complex interaction, will 180

eventually separate dementia and cognitive decline 181

from normal aging-related mechanisms. However, it 182

also appears that the relationship between different 183

exogenous and endogenous events and their impact 184

on brain structure and function varies in importance 185

in the light of the time of their occurrence [41]. 186
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GENDER-RELATED CHANGES OF187

RELEVANT GM STRUCTURES188

Sexual dimorphism of the human brain anatomy189

has gained increasing interest, with subcortical GM190

structures also being investigated more widely [42].191

A number of studies have addressed the combined192

effects of age and gender on human brain structures.193

A more profound decline in GM volume has been194

described in males [33, 43, 44]. However, in patients195

with MCI and AD, GM volume has been found to196

decline faster in females as compared to males sup-197

porting the evidence of faster progression from MCI198

to AD [45]. This might be related to the main dif-199

ference in brain anatomy between sexes, i.e., brain200

size. A larger brain might well have a greater reserve201

capacity to withstand pathology at the same level of202

functionalilty and cognitive abilities [46]. This has203

also been underlined by autopsy studies reporting204

women to have significantly higher odds of a clin-205

ical diagnosis of AD at the same level of neuronal206

pathology [47].207

The effect of gender on the volume of these208

structures might be crucial, considering that basal209

ganglia possess a high density of sex steroid receptors210

[48]. However, neuroimaging results on the gender211

dependent volume of subcortical GM are somewhat212

contradictory. Some studies reported larger volumes213

of the caudate nuclei [49], hippocampus [50], and214

thalamus in females [51], while others had oppos-215

ing results [52, 53]. The amygdala [54], pallidum,216

and the putamen [53] have been consistently found217

to be larger in males. Thus, research evidence appears218

inconsistent especially considering the subcortical219

GM structure [55]. This might also be due to the220

method of analysis, considering the difficulty to221

delineate subcortical GM using conventional voxel222

based morphometric methods. Our research group223

has applied a deformable surface model based seg-224

mentation approach to address volumetric alterations225

especially in regions with low tissue contrast [56].226

While age, gender, and head size (intracranial vol-227

ume) are the most commonly included ‘nuisance’228

variables when performing neuroimaging analysis,229

studies vary as to which of these variables are230

included and which method is used for correction231

[57]. These factors might widely account for the232

great variability in the results. Accounting for skull233

size significantly influences results when it comes to234

GM volume and it might be of even greater impor-235

tance when considering differences between males236

and females. Our results revealed larger cortical and 237

subcortical GM volume for females as a result of 238

correction for total intracranial volume in a study 239

involving 103 participants in the age range of 21–58 240

years. The volume of the hippocampus was found sig- 241

nificantly larger in the female group as compared to 242

males. We also detected a significant effect of hemi- 243

sphere in the male group only, with larger volumes of 244

the right caudate and the left thalamus as compared 245

to their contralateral structures. 246

Interestingly, we also found an age-dependent 247

decrease in the volume of cortical as well as subcor- 248

tical GM. Latter remained significant after correction 249

for skull size in the caudate, putamen, and thalamus 250

bilaterally for males and the thalamus bilaterally for 251

females. Within the age range of 21 to 58 years, we 252

found a linear decrease in GM volume with aging. 253

Strikingly, this process proved to occur at a faster pace 254

in males. Converging research evidence emphasizes 255

the importance of considering age and sex interaction 256

effects on the volumetric decline of subcortical struc- 257

tures. Li and his colleagues found this to be of key 258

relevance for the hippocampus specifically, showing 259

a linear negative correlation with age for males only 260

[58]. Strikingly, for females, the pace of hippocam- 261

pal volume decline has been found to occur at an even 262

slower pace than whole brain volume loss. In contrast 263

with this, a strong effect of aging on basal ganglia 264

and thalamus volume changes has been observed pri- 265

marily for females. The authors link these results 266

to functional consequences involving predominantly 267

psychomotor performance especially at later ages 268

[59–61]. However, a number of studies did not find a 269

significant effect of gender on cognitive performance 270

or decline with age [62, 63]. While directly link- 271

ing functional aspects to structural changes in brain 272

anatomy might not be equivocal, elucidating effects 273

of age × sex interaction on specific subcortical GM 274

regions might well serve the investigation of related 275

psychopathological alterations, such as MCI or AD. 276

The background of the disproportionate GM vol- 277

ume changes has not yet been elucidated, but the 278

changes in hormone levels and the consequent 279

sensitivity of the brain to hormonal effects are 280

most certainly involved [64]. Sex hormones have 281

been found to critically influence regional matu- 282

ration of subcortical GM structures, e.g., higher 283

circulating testosterone levels correlated positively 284

with amygdala volume and negatively with hip- 285

pocampal volume [65]. Estrogen among androgens 286

has gained significant interest for its crucial role
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during brain development. Females with endogenous287

estrogen deficiency have been found to have dis-288

proportionately reduced hippocampal volumes and289

increased amygdala volume as compared to age-290

matched controls [66]. This might be related to the291

complex distribution of estrogen receptors through-292

out the brain. Distinct estrogen receptor subtypes293

have been identified in nearly all cell types of the294

central nervous system, and importantly, in brain295

regions typically associated with cognitive func-296

tion such as memory and affective processing, e.g.,297

the amygdala and the hippocampus [67]. Strikingly,298

the estrogen-related volume deficiency evidenced by299

structural neuroimaging has also been associated300

with functional consequences revealed by cognitive301

assessment [68].302

Epidemiological results support the notion that303

age-related loss of steroid hormones is associ-304

ated with an increasing risk to develop AD [69].305

Above this, AD prevalence is higher in post-306

menopausal women as compared to age-matched307

men–not explained by the generally higher life308

expectancy for females [70, 71]. The crucial role of309

estrogen is supported by several lines of evidence,310

with early menopause having been associated with311

an increased prevalence of dementia [72]. Estro-312

gen has been found to modulate neurogenesis and313

activation of new neurons in response to targeted cog-314

nitive demands in the hippocampus [73, 74]. This315

might be mostly dependent on brain derived estra-316

diol concentration [75], suggesting the importance317

of neuronal, and especially hippocampal, estrogen318

production [76]. Estrogen has a potent effect on319

inducing neurogenesis, neuronal morphology, and320

plasticity in specific areas of the hippocampus,321

such as the CA1 region and the dentate gyrus [74,322

77–79]. An association between estrogen deficiency323

and hippocampal volume loss in females with clin-324

ically diagnosed MCI [80] might well serve as a325

potential common course leading to AD. However,326

there might be another crucial aspect, which should327

be emphasized when considering neuronal estro-328

gen related hippocampus structure and function. A329

significant sex hormone cycle related effect on spe-330

cific cognitive performance has only been found331

during initial testing and disappeared with repeated332

examinations of the same parameter, controlling for333

other confounding factors [81]. This occurred dur-334

ing an 8-week long testing period, which raises335

interesting questions about a life course perspec-336

tive of hippocampus-related cognitive performance337

and the risks of consequent dementia. Furthermore,338

hormone treatment effects on the hippocampus 339

in post menopause detected a limited window of 340

opportunity to influence hippocampal volume. How- 341

ever, the larger hippocampal volumes associated 342

with hormone treatment initiated at the time of 343

menopause did not translate to improved cognitive 344

performance [82]. 345

Hippocampal volume loss appears to become 346

accelerated in the postmenopausal period [83], 347

which, associated with brain estrogen production 348

decline, might be due to a significant reduction in neu- 349

ronal plasticity primarily in the CA1 region. While 350

postmenopausal hormone replacement therapy might 351

spare the total hippocampal volume in a limited win- 352

dow of action, this might not be effective on the key 353

areas of neuroproliferation. Consecutively, cognitive 354

performance is not affected beneficially, eventually 355

leading to the development of MCI or AD, due to 356

the impaired cognitive reserve abilities influenced by 357

several other factors (Fig. 1). 358

FUNCTIONAL CONSEQUENCES OF GM 359

CHANGES RELEVANT FOR DEMENTIA 360

OCCURANCE 361

Above the structural differences, there is increas- 362

ing evidence for the functional sexual dimorphism of 363

subcortical structures. Hippocampus-related memory 364

functions are differently affected by stress in males 365

and females [84]. Peripartum hormonal changes are 366

known to modulate the hippocampal function [85]. In 367

addition to gender effects, recent evidence supports 368

the influence of brain hemisphere showing lateral- 369

ization of structure-function relationships, as well as 370

more specific relationships between individual struc- 371

tures (e.g., left hippocampus) and functions relevant 372

to particular aptitudes (e.g., vocabulary) [86]. Numer- 373

ous differences between the cognitive patterns of the 374

two sexes have been reported [87]. Estrogen and 375

testosterone appear to play a significant and contin- 376

uous role in cognition throughout the lifespan [58]. 377

In puberty, adolescents who mature later have better 378

visuospatial skills than those who mature earlier [88]. 379

Furthermore, a longer reproductive period is associ- 380

ated with higher levels of verbal fluency later during 381

adulthood [89]. In adulthood, certain differences 382

between male and female cognitive features are well 383

known, e.g., higher performance on visuospatial tasks 384

in males and female advantage in verbal skills [90]. 385

This characteristic pattern of different cognitive abil- 386

ities appears to persist later in life [91]. Interestingly, 387
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Fig. 1. According to major communication pathways of the hippocampal circuit multisensory input information enters primarily the entorhinal
cortex (EC) then projecting towards the dentate gyrus (DG) and the CA3. Pyramidal cells of the CA3 send their axons to the CA1, which
then projects to deep layers of the EC and sends the selected information along the output paths of the hippocampus. Additionally, feedback
is being provided to the EC. The postmenopausal period and related estrogen loss might be associated with changes in the neuroplastic
capacity of especially vulnerable regions of the hippocampus, such as the CA1 region. This region is rich in brain derived estrogen receptors
and represents a key area for estrogen related neuronal manifestations. Molecular and pathobiochemical alterations might be present in
the background of this deterioration, i.e., mitochondria-related inflammatory, oxidative effects. As a consequence, the selection of relevant
information might become impaired or completely altered. In addition, the feedback source of the EC representing the major multisensory
input area also becomes disturbed or even absent. In the presence of an impaired cognitive reserve capacity related to several previous internal
and external factors, this might be an especially vulnerable time window for hippocampal structural and functional decline. This could result
in an accelerated volume loss of the hippocampus and presumably, a consequent significant cognitive decline.
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cognitive skills of women tend to decline slower388

than those of men [92]. Estrogen has been389

suggested as a protective factor against dementia390

through facilitating neurogenesis in the hippocam-391

pus and thus enhancing hippocampus-related spatial392

learning and aspects of memory [74].393

Distinguished patterns of cognitive skills were con-394

firmed not only in healthy aging, but also in patients395

with AD. Assessing AD patient’s verbal skills, a396

meta-analysis revealed a difference in naming tasks397

and semantic fluency with lower performance in398

women [93]. As to visuospatial skills, no significant399

difference was found between women and men with400

AD [94]. Based on another meta-analysis assessing401

global dementia severity in men and women, it was402

found that women reached a significantly lower score403

compared to men with AD [95].404

Apart from the individual’s sex and its hormonal405

influences on cognition through the lifespan, other406

contributing factors might enhance or prevent cogni-407

tive decline and developing AD. According to a recent408

cohort study, lower performance in school during409

childhood may increase the risk for cognitive decline410

in later life [96]. Greater midlife stress is associated411

with a higher risk to develop dementia, especially412

AD among women [97]. Strongly negative life events413

such as losing a close relative can also increase vul-414

nerability to enhance cognitive decline along with415

depression; however, milder but chronic stress factors416

may even stimulate cognitive functioning [98].417

Brain areas typically affected in MCI and AD418

have a specific hierarchical order in which they419

become altered during the course of the disease based420

on Braak and Braak’s neuropathological model [3].421

According to this model, the first lesions can be422

detected in the MTL, including the hippocampus,423

parahippocampus, and crucial areas of the limbic424

circle, e.g., the amygdala, then in several areas of425

the temporal lobe, followed by other regions of the426

neocortex. The affected structures have their distinct427

roles in cognition; however, they contribute alto-428

gether to the characteristic clinical manifestation of429

AD. As an example of key importance, higher visual430

perception, including identification and recognition431

of faces and landmarks, as well as recognition of432

facial emotions, is dependent on the medial temporal433

lobe structures [99]. The impairment of these abili-434

ties might have an impact on behavioral disturbances435

in early AD and might even serve early identification436

of AD [100].437

Being a key structure of the MTL and its memory438

network, the integrity of the hippocampus is required439

not only in episodic and semantic memory, but also 440

in spatial information processing and manipulation 441

[101]. The reduced ability to retain new information is 442

one of the earliest core features of dementia and con- 443

stitutes a heavy burden on the daily life of patients and 444

caregivers [102]. A significant correlation of reduced 445

hippocampal volume combined with higher levels 446

of cortisol and performance on auditory and ver- 447

bal memory subtests of the Wechsler’s Intelligence 448

Scale and Block Design tests measuring visuospa- 449

tial skills has also been reported [103]. A recent 450

study describes decreased thickness of the hippocam- 451

pal GM formation in AD as compared to healthy 452

individuals or patients with MCI [104]. Considering 453

that scores on the Mini-Mental State Examination 454

(MMSE) and the Alzheimer’s Disease Assessment 455

Scale-Cognition (ADAS-Cog) correlate with base- 456

line entorhinal cortex thickness, its atrophy might 457

be a predictor of subsequent cognitive impairment. 458

The atrophy of hippocampal areas has been asso- 459

ciated with more severe deficits in several aspects 460

memory (especially episodic memory) and execu- 461

tive function [105]. Associated with lower activity 462

in these areas, AD patients have demonstrated poorer 463

encoding and retrieval than healthy individuals [106]. 464

Simultaneously, increased activation in ventral lateral 465

prefrontal areas may be interpreted as a compensatory 466

mechanism in AD. 467

When considering the broader picture of cogni- 468

tive disturbances already detectable in early stages 469

of dementia, several other areas need to be men- 470

tioned. The thalamus, as a key area of the limbic 471

circuit and the episodic memory network, has also 472

been reported to be affected in early stage AD [107]. 473

Alterations of the amygdala appear to have a pro- 474

found effect on emotional aspects of memory in AD 475

[108, 109]. Emotional stimuli, especially those with 476

negative valence, have altered influence on memory 477

functions in AD patients [110] and amygdala atrophy 478

has been correlated positively with emotional mem- 479

ory impairment severity [111]. Some recent studies 480

even pointed out other complex functions of the MTL, 481

including path integration, e.g., spatial representa- 482

tion, self-motion sensing, and temporal processing 483

[112]. Lesions of the anterior areas of the hippocam- 484

pus, parahippocampus, amygdala, and the anterior 485

and lateral section of temporal gyrus are associated 486

with poor performance on tests of delayed memory, 487

long-term memory and spatial memory. Addition- 488

ally, patients with alterations of these structures 489

have difficulties in target-directed walking because of 490

deficits of allocentric spatial information processing. 491
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The picture is certainly much more complex and it492

becomes increasingly difficult to decipher a causal493

relationship. Nevertheless, the role of the hippocam-494

pal region appears to be crucial in the occurrence and495

progression of the cognitive impairment in MCI and496

AD.497

It is debated whether the extent of MTL structural498

atrophy is a better predictor of clinical dementia as499

compared to the memory deficit. Some studies found500

that the ratio of amygdala volume loss and bilat-501

eral entorhinal cortex shrinkage predicted time until502

MCI symptom occurrence [113]. Others, for example503

Visser et al., reported scores on cognitive test batter-504

ies to serve as better predictors than MTL atrophy in505

a longitudinal study design [114].506

Considering that the volume of subcortical GM507

critically impacts the size of neurons, glia cells, and508

number of synapses it entails, we might hypothesis509

that it affects the function and performance of these510

structures. While deducing cognitive or any other511

type of functional activity of subcortical GM solely512

from their structural characteristics would be inad-513

missibly simplified, observing changes in volume of514

subcortical GM influenced by gender and aging might515

yield better insight into several pathological condi-516

tions, e.g., MCI and AD [115].517

TRANSITION FROM HEALTHY AGING518

TO MILD COGNITIVE IMPAIRMENT519

AND AD520

MCI is considered a precursor stage of AD with an521

annual conversion rate of approximately 15% [116].522

However, the clinical manifestation of MCI is still523

not considered a predestination of a future conver-524

sion to AD. One of the crucial biomarkers proposed525

in the aim of a more valid diagnostic construct is526

MTL atrophy [117]. A large number of studies have527

focused on hippocampal volume loss focusing on528

MCI conversion to AD reporting a non-uniform pat-529

tern of hippocampal shrinkage. Converging research530

evidence emphasizes the key role of the CA1 region531

and subiculum showing the most significant involve-532

ment throughout disease progression early on in the533

course of illness [118–124]. While hippocampus vol-534

ume has been reported to hold the highest predictive535

accuracy for conversion to AD, the best multivariate536

model for AD prediction, interestingly, consisted of537

cognitive variables only [125].538

A potential explanation for this seeming discrep-539

ancy might be related to methods of imaging analysis540

with more advanced techniques needed to ascertain 541

reliable and accurate data processing. The radial atro- 542

phy technique used to investigate subtle changes in 543

distinct regions of the hippocampus might be a useful 544

method in addressing prominent volume loss prior to 545

clinical pathology. Here, the CA1 region might be of 546

crucial importance, considering its robust volumet- 547

ric loss above the age of 60 also compared to other 548

regions of the hippocampus. However, if this is true 549

for the normal aging process, what could then be the 550

key turning point that eventually leads to the outcome 551

of dementia? 552

A view that gains increasing support offers an 553

explanation relying on neuroplasticity. Brain regions 554

characterized by high neuroplasticity have been 555

found to be especially vulnerable to neurodegen- 556

eration as well [126–128]. The CA1 region of the 557

hippocampus maintains its neuroplastic flexibility 558

well into adulthood presumably serving cognitive 559

capacity in interaction with external and internal 560

demands. Converging evidence supports the finding 561

that high level abilities of neuroplasticity are retained 562

late in life [129–131], especially in areas with long 563

axonal connections, such as the hippocampal region 564

[127]. The neurons in these regions might be able 565

to maintain their morphological and functional flex- 566

ibility to serve cognitive processes, however, these 567

abilities might on the other hand increase their vul- 568

nerability to neurotoxic effects eventually resulting 569

in structural and functional decline [132, 133]. The 570

hippocampal region is undoubtedly a key area for 571

high-order cognitive processes, such as memory and 572

learning, associated with high demands for neu- 573

roplasticity and neuronal flexibility [134, 135]. In 574

addition to this, other neuronal morphological pro- 575

cesses, such as dendritic spine plasticity, might also 576

play a crucial role in cognitive flexibility through- 577

out the lifespan [136]. This mechanism might be 578

involved in cognitive processes related to the CA1 579

region of the hippocampus [137, 138]. However, 580

this might also be a vulnerability component for 581

pathological effects, i.e., disturbed neurogenesis and 582

neuronal flexibility in the hippocampus has been 583

suggested as a crucial early component in cog- 584

nitive decline and even AD [139]. The relatively 585

rapid structural decline observed in postmenopausal 586

women in these vulnerable regions might further 587

accelerate the deterioration resulting in a vicious 588

circle [140]. This is supported by findings of 589

an age × gender × subcortical structural dependent 590

interaction with an impact on cognitive reserve abil- 591

ities [141].
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RELEVANT MICROSTRUCTURAL AND592

PATHOBIOCHEMICAL CHANGES IN THE593

BACKGROUND OF STRUCTURAL AND594

FUNCTIONAL DETERIORATION595

In the light of the presumably impaired neuro-596

plasticity consequently leading to macrostructural597

changes in the hippocampal formation, one has to598

certainly address the microstructural neuropathology599

behind it. Focusing on specific hormonal effects, it600

has been shown that neuronal substrates associated601

with cognitive decline are significantly impacted by602

estrogens [142]. Research evidence indicates that603

most of estrogens’ neuronal effects are related to604

brain derived estrogen, synthetized within the cen-605

tral nervous system [143, 144]. While levels of brain606

estrogen might largely differ from that of circu-607

lating estrogen, female brain estrogen levels have608

been found to relate well with blood estrogen lev-609

els measurable on the periphery [145]. Strikingly, a610

significant decline in brain-derived estrogen charac-611

terizes the postmenopausal period. It has also been612

suggested that this decline occurs mainly around613

menopause and, paired with a significant reduction614

in brain derived estrogen synthesis, it might lead to615

consequent cognitive deterioration [146, 147]. One616

key neuronal substrate that integrates several estrogen617

regulated molecular pathways is the mitochondria618

[148–150]. Estrogen receptors have been found in619

the mitochondria and the key role of mitochondria620

in estrogen associated neuroprotection has been sup-621

ported by several different lines of evidence involving622

anti-inflammatory actions, anti-oxidant effects, and623

glutamate-related mechanisms among others (for an624

excellent review, see [151]). New evidence also625

indicates that a mitochondrial estrogen receptor defi-626

ciency found in the female AD brain results in627

impaired anti-inflammatory and anti-oxidative capac-628

ity of the mitochondria indicating vulnerability for629

neurodegeneration [152]. Our research has focused630

on the mitochondrial disturbances critical in aging,631

neurodegeneration, and AD specifically also involv-632

ing the kynurenine system [153–155], glutamatergic633

mechanisms [156], and bioenergetic effects [157].634

The complex interaction of these processes might635

well serve as a pathobiochemical and molecular636

background for the structural and functional alter-637

ation described in neurodegeneration. This is also638

supported by the relationship between worse patho-639

logical changes (i.e., amyloid depositions and total640

tau levels) and a more rapid hippocampal atrophy and641

cognitive decline in females, marking a potentially642

increased vulnerability for the clinical manifesta- 643

tions of MCI and AD [158]. In the female brain, 644

the menopausal period brings deterioration in the 645

above mentioned bioenergetical balance with a poten- 646

tial lack of compensatory mechanisms representing a 647

vulnerability to cognitive decline [159]. 648

CONCLUDING REMARKS 649

AD is a growing healthcare issue worldwide 650

demanding more and more precise characterization 651

and identification of potential turning points from 652

healthy aging to MCI and AD. An increasing body of 653

research evidence has confirmed specific subcortical 654

GM alterations in the brain during this process, evolv- 655

ing based on a hierarchical model. The firstly affected 656

and most crucial areas are the components of MTL, 657

especially the hippocampus. Endogenous and exoge- 658

nous factors interacting with each other contribute to 659

continuous alterations of these areas from our birth 660

throughout adulthood. There are non-modifiable vari- 661

ables, such as age and gender, which have specific 662

effects during aging, involving hormonal influence. 663

In women, hippocampal volume loss appears to be 664

accelerated in the postmenopausal period. This vol- 665

ume loss might be associated significantly and in a 666

beginning stage with the neuroplasticity of the CA1 667

region in hippocampus, considering its high sensi- 668

tivity to pathological alterations. The atrophy and 669

consequent structural decline and functional impair- 670

ment of this region evolving to other hippocampal 671

and MTL areas might lead to the clinical manifes- 672

tation of cognitive decline. This risk might be the 673

greatest in the case of an already narrowed cognitive 674

reserve capacity or subclinical cognitive impairment. 675

Serving as a potential biomarker, specific structural 676

hippocampal changes might be associated with con- 677

sequent functional patterns of cognition, potentially 678

supporting the identification of MCI and AD prior to 679

the clinical symptoms of the disease. The interaction 680

of age and gender combined with individual variables 681

such brain-derived estrogen receptors, bioenergetical 682

balance, and compensatory mechanisms should be 683

taken altogether into consideration when assessing a 684

potential occurrence of MCI and AD. 685
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